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The discrimination power of various human facial features is studied and a new scheme for automatic face
recognition (AFR) is proposed. The first part of the paper focuses on the linear discriminant analysis (LDA)
of different aspects of human faces in the spatial as well as in the wavelet domain. This analysis allows ob-
jective evaluation of the significance of visual information in different parts (features) of the face for identifying
the human subject. The LDA of faces also provides us with a small set of features that carry the most rel-
evant information for classification purposes. The features are obtained through eigenvector analysis of scat-
ter matrices with the objective of maximizing between-class variations and minimizing within-class variations.
The result is an efficient projection-based feature-extraction and classification scheme for AFR. Each projec-
tion creates a decision axis with a certain level of discrimination power or reliability. Soft decisions made
based on each of the projections are combined, and probabilistic or evidential approaches to multisource data
analysis are used to provide more reliable recognition results. For a medium-sized database of human faces,
excellent classification accuracy is achieved with the use of very-low-dimensional feature vectors. Moreover,
the method used is general and is applicable to many other image-recognition tasks. © 1997 Optical Society
of America [S0740-3232(97)01008-9]
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1. INTRODUCTION
Inspired by the human’s ability to recognize faces as spe-
cial objects and motivated by the increased interest in the
commercial applications of automatic face recognition
(AFR) as well as by the emergence of real-time processors,
research on automatic recognition of faces has become
very active. Studies on the analysis of human facial im-
ages have been conducted in various disciplines. These
studies range from psychophysical analysis of human rec-
ognition of faces and related psychovisual tests1,2 to re-
search on practical and engineering aspects of computer
recognition and verification of human faces and facial
expressions3 and race and gender classification.4,5

The problem of AFR alone is a composite task that in-
volves detection and location of faces in a cluttered back-
ground, facial feature extraction, and subject identifica-
tion and verification.6,7 Depending on the nature of the
application, e.g., image acquisition conditions, size of da-
tabase, clutter and variability of the background and fore-
ground, noise, occlusion, and finally cost and speed re-
quirements, some of the subtasks are more challenging
than others.
The detection of a face or a group of faces in a single

image or a sequence of images, which has applications in
face recognition as well as video conferencing systems, is
a challenging task and has been studied by many
researchers.7–12 Once the face image is extracted from
the scene, its gray level and size are usually normalized
before storing or testing. In some applications, such as
identification of passport pictures or drivers’ licenses, con-
ditions of image acquisition are usually so controlled that
some of the preprocessing stages may not be necessary.
0740-3232/97/0801724-10$10.00 ©
One of the most important components of an AFR sys-
tem is the extraction of facial features, in which attempts
are made to find the most appropriate representation of
face images for identification purposes. The main chal-
lenge in feature extraction is to represent the input data
in a low-dimensional feature space, in which points corre-
sponding to different poses of the same subject are close
to each other and far from points corresponding to in-
stances of other subjects’ faces. However, there is a lot of
within-class variation that is due to differing facial ex-
pressions, head orientations, lighting conditions, etc.,
which makes the task more complex.
Closely tied to the task of feature extraction is the in-

telligent and sensible definition of similarity between test
and known patterns. The task of finding a relevant dis-
tance measure in the selected feature space, and thereby
effectively utilizing the embedded information to identify
human subjects accurately, is one of the main challenges
in face identification. In this paper we focus on feature-
extraction and face-identification processes.
Typically, each face is represented by use of a set of

gray-scale images or templates, a small-dimensional fea-
ture vector, or a graph. There are also various proposals
for recognition schemes based on face profiles13 and
isodensity or depth maps.14,15 There are two major ap-
proaches to facial feature extraction for recognition in
computer vision research: holistic template matching-
based systems and geometrical local feature-based
schemes and their variations.7

In holistic template-matching systems each template is
a prototype face, a facelike gray-scale image, or an ab-
stract reduced-dimensional feature vector that has been
1997 Optical Society of America
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obtained through processing the face image as a whole.
Low-dimensional representations are highly desirable for
large databases, fast adaptation, and good generalization.
On the basis of these needs, studies have been performed
on the minimum acceptable image size and the smallest
number of gray levels required for good recognition
results.6 Reduction in dimensionality can also be
achieved by using various data-compression schemes.
For example, representations based on principal-
component analysis16–20 (PCA) and singular-value decom-
position have been studied and used extensively for vari-
ous applications. It has also been shown that the nonlin-
ear mapping capability of multilayer neural networks can
be utilized and that the internal and hidden representa-
tions of face patterns, which typically are of much lower
dimensionality than the original image, can be used for
race and gender classification.4,5 Some of the most suc-
cessful AFR schemes are based on the Karhunen–Loève
transform17,19 (KLT), which yield the so-called eigenfaces.
In these methods the set of all face images is considered a
vector space, and the eigenfaces are simply the dominant
principal components of this face space; they are com-
puted as eigenvectors of the covariance matrix of data.
In geometrical feature-based systems, one attempts to

locate major face components or feature points in the
image.21–24 The relative sizes of and distances between
the major face components are then computed. The set
of all normalized size and distance measurements consti-
tute the final feature vectors for classification. One can
also use the information contained in the feature points to
form a geometrical graph representation of the face that
directly shows sizes and relative locations of major face
attributes.22 Most geometrical feature-based systems in-
volve several steps of window-based local processing, fol-
lowed by some iterative search algorithms, to locate the
feature points. These methods are more adaptable to
large variations in scale, size, and location of the face in
an image but are more susceptible to errors when face de-
tails are occluded by objects, e.g., glasses, or by facial
hair, facial expressions, or variations in head orientation.
Compared with template and PCA-based systems, these
methods are computationally more expensive. Compara-
tive studies of template versus local feature-based sys-
tems can be found in Refs. 4, 7, and 25. There are also
various hybrid schemes that apply the KLT or the tem-
plate matching idea to face components and use
correlation-based searching to locate and identify facial
feature points.4,19 The advantage of performing
component-by-component matching is improved robust-
ness against head orientation changes, but its disadvan-
tage is the complexity of searching for and locating face
components.
The human audiovisual system, as a powerful recogni-

tion model, takes great advantage of context and auxil-
iary information. Inspired by this observation, one can
devise schemes that can consistently incorporate context
and collateral information, when and if they become
available, to enhance its final decisions. Incorporating
information such as race, age, and gender, obtained
through independent analysis, improves recognition
results.19 Also, since face recognition involves a classifi-
cation problem with large within-class variations, caused
by dramatic image variation in different poses of the sub-
ject, one has to devise methods of reducing or compensat-
ing for such variability. For example,
1. For each subject, store several templates, one for

each major distinct facial expression and head orienta-
tion. Such systems are typically referred to as view-
based systems.
2. Use deformable templates along with a three-

dimensional model of a human face to synthesize virtual
poses and apply the template matching algorithm to the
synthesized representations.26

3. Incorporate such variations into the process of fea-
ture extraction.

In this paper we take the third approach and keep the
first method as an optional stage that can be employed de-
pending on the complexity of the specific task. Our ap-
proach is a holistic linear discriminant analysis (LDA)-
based feature extraction for human faces followed by an
evidential soft-decision integration for multisource data
analysis. This method is a projection-based scheme of
low complexity that avoids any iterative search or compu-
tation. In this method both off-line feature extraction
and on-line feature computation can be done at high
speeds, and recognition can be done in almost real time.
Our experimental results show that high levels of recog-
nition performance can be achieved with low complexity
and a small number of features.
The organization of this paper is as follows. In Section

2 we provide an objective study of multiscale features of
face images in terms of their discrimination power. In
Section 3 we propose a holistic method of projection-based
discriminant facial feature extraction through LDA of
face images. We also make a comparative study of the
features obtained with the proposed scheme and the fea-
tures used in compression-based methods such as PCA.
In Section 4 we address the task of classification and
matching through multisource data analysis and combin-
ing soft decisions from multiple imprecise information
sources. Finally, we propose a task-dependent measure
of similarity in the feature space that is based on the re-
liability of the basic decisions, to be used at the identifi-
cation stage.

2. LINEAR DISCRIMINANT ANALYSIS OF
FACIAL IMAGES
As highly structured two-dimensional patterns, human
face images can be analyzed in the spatial and the fre-
quency domains. These patterns are composed of compo-
nents that are easily recognized at high levels but are
loosely defined at low levels of our visual system.2,27

Each of the facial components (features) has a different
discrimination power for identifying a person or the per-
son’s gender, race, and age. There have been many stud-
ies of the significance of such features that used subjec-
tive psychovisual experiments.1,2

Using objective measures, in this section we propose a
computational scheme for evaluating the significance of
different facial attributes in terms of their discrimination
potential. The results of this analysis can be supported
by subjective psychovisual findings. To analyze any rep-
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resentation V, where V can be the original image, its spa-
tial segments, or transformed images, we provide the fol-
lowing framework.
First, we need a training set composed of a relatively

large group of subjects with diverse facial characteristics.
The appropriate selection of the training set directly de-
termines the validity of the final results. The database
should contain several examples of face images for each
subject in the training set and at least one example in the
test set. These examples should represent different fron-
tal views of subjects with minor variations in view angle.
They should also include different facial expressions, dif-
ferent lighting and background conditions, and examples
with and without glasses. It is assumed that all images
are already normalized to m 3 n arrays and that they
contain only the face regions and not much of the subjects’
bodies.
Second, for each image and subimage, starting with the

two-dimensional m 3 n array of intensity values
I(x, y), we construct the lexicographic vector expansion
f P Rm3n. This vector corresponds to the initial repre-
sentation of the face. Thus the set of all faces in the fea-
ture space is treated as a high-dimensional vector space.
Third, by defining all instances of the same person’s

face as being in one class and the faces of different sub-
jects as being in different classes for all subjects in the
training set, we establish a framework for performing a
cluster separation analysis in the feature space. Also,
having labeled all instances in the training set and hav-
ing defined all the classes, we compute the within- and
between-class scatter matrices as follows:

Sw
~V ! 5 (

i51

L

Pr~Ci!S i , (1)

Sb
~V ! 5 (

i51

L

Pr~Ci!~m 2 m i!~m 2 m i!
T. (2)

Here Sw is the within-class scatter matrix showing the
average scatter ( i of the sample vectors (V) of different
classes Ci around their respective mean, vectors m i :

S i 5 E@~V 2 m i! 3 ~V 2 m i!
TuC 5 Ci#. (3)

Similarly, Sb is the between-class scatter matrix, repre-
senting the scatter of the conditional mean, vectors (m i)
around the overall mean vector m. PrCi is the probabil-
ity of the ith class. The discriminatory power of a repre-
sentation can be quantified by using various measures.
In this paper we use the separation matrix, which shows
the combination of within- and between-class scatters of
the feature points in the representation space. The class
separation matrix and a measure of separability can be
computed as

S ~V ! 5 Sw
21Sb (4)

JV 5 sep~V ! 5 trace~S ~V !! (5)

JV is our measure of the discrimination power (DP) of a
given representation V. As mentioned above, the repre-
sentation may correspond to the data in its original form
(e.g., a gray-scale image), or it can be based on a set of ab-
stract features computed for a specific task.
For example, through this analysis we are able to com-

pare the DP’s of different spatial segments (components)
of a face. We can apply the analysis to segments of the
face images such as the areas around the eyes, mouth,
hair, and chin or combinations of them. Figure 1 shows a
separation analysis for horizontal segments of the face
images in the database. The results show that the DP’s
of all segments are comparable and that the area between
the nose and the mouth has more identification informa-
tion than other parts. Figure 2 shows that the DP of the
whole image is significantly larger than the DP’s of its
parts.
Using wavelet transforms28–30 as multiscale orthogonal

representations of face images, we can also perform a
comparative analysis of the DP’s of subimages in the
wavelet domain. Different components of a wavelet de-
composition capture different visual aspects of a gray-
scale image. As Fig. 3 shows, at each level of decompo-
sition there are four orthogonal subimages corresponding
to

• LL: the smoothed, low-frequency variations.
• LH: sharp changes in the horizontal direction, i.e.,

vertical edges.
• HL: sharp changes in the vertical direction, i.e.,

horizontal edges.
• HH: sharp changes in nonhorizontal, nonvertical

directions, i.e., other edges.

We applied the LDA to each subimage of the wavelet
transform (WT) of the face and estimated the DP of each
Fig. 1. Variation of the discrimination power of horizontal segments of the face defined by a window of fixed height sliding from top to
bottom of the image.
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Fig. 2. Variation of the discrimination power of a horizontal segment of the face that grows in height from top to bottom of the image.
subband. Figure 3 compares the separations obtained by
using each of the subbands. Despite their equal sizes,
different subimages carry different amounts of informa-
tion for classification; the low-resolution components are
the most informative. The horizontal edge patterns are
almost as important as the vertical edge patterns, and
their relative importance depends on the scale. Finally,
the least important component in terms of face discrimi-
nation is the fourth subband, i.e., the slanted edge pat-
terns. These results are consistent with our intuition
and also with subjective psychovisual experiments.
One can also apply this idea to the study of the impor-

tance of facial components for gender or race classification
from images.

3. DISCRIMINANT EIGENFEATURES FOR
FACE RECOGNITION
In this section we propose a new algorithm for face recog-
nition that makes use of a small yet efficient set of dis-
criminant eigentemplates. The analysis is similar to the
method suggested by Pentland and colleagues,18,19 which
is based on PCA. The fundamental difference is that in

Fig. 3. Different components of a wavelet transform that cap-
ture sharp variations of the image intensity in different direc-
tions and have different discrimination potentials. The num-
bers represent the relative discrimination power.
our system eigenvalue analysis is performed on the sepa-
ration matrix rather than on the covariance matrix.
Human face images as two-dimensional patterns have

a lot in common and are spectrally quite similar. There-
fore, considering the face image as a whole, one expects to
see important discriminant features that have low ener-
gies. These low-energy discriminant features may not be
captured in a compression-based feature-extraction
scheme such as PCA, or even in multilayer neural net-
works, which rely on minimization of the average Euclid-
ean error. In fact, there is no guarantee that the error
incurred by applying the compression scheme, despite its
low energy, does not carry significant discrimination in-
formation. Also, there is no reason to believe that for a
given compression-based feature space, feature points
corresponding to different poses of the same subject will
be closer (in Euclidean distance) to one another than to
those of other subjects. In fact, it has been argued and
experimentally shown that ignoring the first few eigen-
vectors, corresponding to the top principal components,
can lead to a substantial increase in recognition
accuracy.19,31 Therefore the secondary selection from
PCA vectors is based on their discrimination power. But
one could ask, why do we not start with criteria based on
discrimination rather than on representation from the be-
ginning to make the whole process more consistent?
The PCA approach provides us with features that cap-

ture the main directions along which face images differ
the most, but it does not attempt to reduce the within-
class scatter of the feature points. In other words, since
no class membership information is used, examples of the
same class and of different classes are treated the same
way. LDA, however, uses the class membership informa-
tion and allows us to find eigenfeatures and therefore rep-
resentations in which the variations among different
faces are emphasized, while the variations of the same
face that are due to illumination conditions, facial expres-
sion, orientation etc., are de-emphasized.
According to this observation, and on the basis of the

results that follow, we believe that for classification pur-
poses LDA-based feature extraction seems to be an appro-
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priate and logical alternative to PCA or any other
compression-based system that tries to find the most com-
pact representation of face images. Concurrently but in-
dependently of our studies, LDA has been used by Swets
and Weng32,33 to discriminate human faces from other ob-
jects.
To capture the inherent symmetry of basic facial fea-

tures and the fact that a face can be identified from its
mirror image, we can use the mirror image of each ex-
ample as a source of information.17 Also, by adding noisy
but identifiable versions of given examples, we can ex-
pand our training data and improve the robustness of the
feature extraction against a small amount of noise in the
input. Therefore for each image in the database we in-
clude its mirror image and one of its noisy versions, as
shown in Fig. 4. Let F denote the face database, i.e.,

F 5 $Fs : s 5 1, 2, ..., NS%, (6)

Fs 5 $f i
s, f̃ i

s, ~f i
s 1 n! : i 5 1, 2, ..., NE ,

n 5 @N~0, s2!#m3n%, (7)

where f̃ i
s and f i

s 1 n are mirror images and noisy ver-
sions, respectively, of f i , the ith example of subject s in
the data base F. Also, NS is the number of subjects and
NE is the number of examples per subject in the initial
database. Following our earlier observations, and hav-
ing determined the separation matrix, we perform an ei-
genvalue analysis of the separation matrix S (F) on the
augmented database:

eig$S ~F!%

5 $~l i , ui!, i 5 1, ..., NS 2 1,l i . l i11%. (8)

To reduce the computational cost for large data-set sizes,
one can use the following equality32,34:

Sbui 5 l iSwui . (9)

This shows that the ui’s and l i’s are generalized eigenvec-
tors of $Sb , Sw%. From this equation the l i’s can be com-
puted as the roots of the characteristic polynomial

uSb 2 l iSwu 5 0, (10)

and then the ui’s can be obtained by solving

~Sb 2 l iSw!ui 5 0 (11)

Fig. 4. For each example in the database we add its mirror im-
age and a noisy version.
only for the selected largest eigenvectors.32 Note that
the dimensionality m of the resulting set of feature vec-
tors is m , rank(S) 5 min(n, NS 2 1). Now define

L~m ! 5 $l i , i 5 1, ..., m , NS 2 1%, (12)

U ~m ! 5 $ui , i 5 1, ..., m , NS 2 1%, (13)

so that L (m) and U (m) represent the set of m largest ei-
genvalues of S (F) and their corresponding eigenvectors.
Considering U (m) as one of the possible linear transfor-
mations V from Rn to Rm, withm , n, one can show that

V 5 $U : X , Rn → UTX 5 Y , Rm, m , n%, (14)

U ~m ! 5 argmin UPV$JX 2 JUTX%, (15)

where JX 5 tr(S (X)) and JY 5 tr(S (Y)) are separabilities
computed over the X and Y 5 UTX spaces, respectively.
This means that U (m) minimizes the drop usep(X)
2 sep(UTX)u in classification information incurred by
the reduction in the feature space dimensionality, and no
other Rn to Rm linear mapping can provide more separa-
tion than U (n) does.
Therefore the optimal linear transformation from the

initial representation space in Rn to a low-dimensional
feature space in Rm, which is based on our selected sepa-
ration measure, results from projecting the input vectors
f onto m eigenvectors corresponding to the m largest ei-
genvalues of the separation matrix S (F). These optimal
vectors can be obtained from a sufficiently rich training
set and can be updated if needed.
The columns of U (m) are the eigenvectors correspond-

ing to them largest eigenvalues; they represent the direc-
tions along which the projections of the face images
within the database show the maximum class separation.
Each face image in the database is represented, stored,

and tested in terms of its projections onto the selected set
of discriminant vectors, i.e., the directions corresponding
to the largest eigenvalues of S (F):

;f i
s P Fs , ;u P U ~m ! : c i

s~u ! 5 ^f i
s, u&, (16)

Cs 5 $C i
s~u ! : ;u P U ~m !, I 5 1, ..., NS%. (17)

Although all images of each subject are considered in
the process of training, only one of them needs to be
saved, as a template for testing. If a view-based ap-
proach is taken, one example for each distinct view has to
be stored. Since only the projection coefficients need to
be saved, for each subject we retain the example that is
closest to the mean of the corresponding cluster in the
feature space. Storing the projection coefficients instead
of the actual images is highly desirable when large data-
bases are used. Also, applying this holistic LDA to mul-
tiscale representations of face images, one can obtain
multiscale discriminant eigentemplates. For example,
one can apply LDA to each component of the WT of face
images and select the most discriminant eigentemplates
obtained from various scales. This approach is more
complex because it requires the WT computation of each
test example, but in some applications it may be useful,
for example, when the DP of the original representation is
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not captured in the first few eigenvectors or when the con-
dition of m , Nclasses 2 1) becomes restrictive, e.g., in
gender classification.

4. MULTISOURCE SOFT-DECISION
INTEGRATION
A number of different approaches have been proposed for
analyzing information obtained from several sources.34–36

The simplest method is to form an extended data (feature)
vector, containing information from all the sources and
treat this vector as the vector output of a single source.
Usually, in such systems all similarities and distances are
measured in the Euclidean sense. This approach can be
computationally expensive; it is successful only when all
the sources have similar statistical characteristics and
comparable reliabilities. In our application this assump-
tion is not valid, and therefore a more intelligent alterna-
tive approach has to be taken.
Each projection of the input pattern onto a discrimi-

nant vector ui creates a decision axis with a certain level
of reliability and discrimination power. The level of sig-
nificance or reliability a i of the decisions based on ui is
directly related to the class separation along that axis
that is equal to the corresponding (normalized) eigen-
value in the LDA:

;~l i , ui! P ~L~m ! 3 U ~m !! : a i 5
l i

(
i51

m

l i

. (18)

Fig. 5. Distribution of projection coefficients along three dis-
criminant vectors with different levels of discrimination power
for several poses from four different subjects.

Fig. 6. Raw distances between each test example and the
known clusters along each discriminant axis reuslt in the soft de-
cision along that axis.
Figure 5 shows the distribution of projection coeffi-
cients onto three discriminant vectors. For any test vec-
torized face image f, we project the image onto each of
the top discriminant vectors u. On the basis of the dis-
tances between the resulting coefficients f(u) and those
of the existing templates cu

s stored in the database, we
estimate the level of similarity of the input image to each
known subject (see Fig. 6):

;u P U ~m ! : f~u ! 5 ^f, u&, (19)

;s P S̃ : du~f, s ! 5 uf~u ! 2 cu
su, (20)

pu~f, s ! 5 1 2
du~f, s !

(
sPS̃

du~f, s !

, (21)

where pu(f, s) reflects the relative level of similarity be-
tween input f and subject s according to source u, which
has reliability au .
Having determined our decision axis and the reliabili-

ties, we can apply a probabilistic or an evidential scheme
of multisource data analysis to combine the soft decisions
made on the basis of the individual imprecise sources to
obtain a more precise and reliable final result. The nor-
malized similarity measures (p’s) indicate the proportions
of evidence suggested by different sources. They can be
interpreted as the so-called basic masses of evidence or
they can be used as rough estimates of posterior prob-
abilities given each measurement. From this stage on, a
probabilistic or an evidential reasoning approach can be
taken to combine basic soft decisions. A comparative
study of various probabilistic and evidential reasoning
schemes is given in Ref. 35.
Similarly working with distances as dissimilarity mea-

sures, one can combine a basic soft decision and incorpo-
rate the reliability of each source to define a reasonable
measure of distance in the feature space. Although the
most common measure used in the literature is Euclidean
distance, as a more reasonable measure we suggest a
weighted-mean absolute square distance, with the
weights based on the discrimination powers. In other
words,

du~f, s ! 5
du~f, s !

(
sPS̃

du~f, s !

(22)

D~f, s ! 5 (
uPU~m !

@du~f, s ! 3 au#. (23)

Therefore for a given input f the best match s0 and its
confidence measure is

s0 5 argminsPS̃$D~f, s !%, (24)

conf~f, s0! 5 1 2
D~f, s0!

D~f, s8!
, (25)

where s8 is the second-best candidate and conf stands for
confidence measure. In this framework, incorporating
collateral information or prior knowledge and expecta-
tions from context becomes very easy and logical. All we
need to do is to consider each of them as an additional
source of information corresponding to a decision axis
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with a certain reliability and include it in the decision
process. See Table 1 for a summary of recognition rates.

5. EXPERIMENTS AND RESULTS

In our experiments, to satisfy the requirements men-
tioned in Section 2 we used a mixture of two databases.
We started with the database provided by Olivetti Re-
search Ltd.37 This database contains 10 different images
of each of 40 different subjects. All the images were
taken against a homogeneous background, and some were
taken at different times. The database includes frontal
views of upright faces with slight changes in illumination,
facial expression (open or closed eyes, smiling or nonsmil-
ing), facial details (glasses or no glasses), and some side
movements. Originally we chose this database because
it contained many instances of frontal views for each sub-
ject. Then, to increase the size of the database, we added
some hand-segmented face images from the FERRET

database.38 We also included mirror-image and noisy
versions of each face example to expand the data set and
improve the robustness of recognition performance to im-
age distortions. The total number of images used in
training and in testing were approximately 1500 and 500,
respectively. Each face was represented by a 50 3 60
pixel 8-bit gray-level image, which for our experiments
was reduced to 25 3 30. The database was divided into
two disjoint training and test sets. Using this composite
database, we performed several tests on gender classifica-
tion and face recognition.

Table 1. Summary of Recognition Rates

Task
No. of

Examples
No. of

Features

Recognition
Rate (%)

(Training Set)

Recognition
Rate (%)
(Test Set)

Face
recognition

2000 4 100 99.2

Gender
classification

400 1 100 95
The first test was on gender classification with use of a
subset of the database containing multiple frontal views
of 20 males and 20 females of different races. LDA was
applied to the data, and the most discriminant template
was extracted. Figure 7 shows this eigentemplate and
the distribution of projection coefficients for all images in
the set. As Fig. 7 shows, with only one feature very good
separation can be achieved. Classification tests on a dis-
joint test set also gave 95% accuracy. Also, applying this
discriminant template to a set of new faces from individu-
als outside the training set reduced the accuracy
to ;92%.
As mentioned above, one can also apply LDA to wavelet

transforms of face images and extract the most discrimi-
nant vectors of each transform component and combine
multiscale classification results by using the proposed
method of soft-decision integration.
We then applied LDA to a database of 1500 faces, with

60 classes corresponding to 60 individuals. Figure 8
shows the discriminatory power of the top 40 eigenvectors
chosen according to PCA and LDA. As Fig. 8 depicts, the
classification information of the principal components
does not decrease monotonically with their energy; in
other words, there are many cases in which a low-energy
component has a higher discriminatory power than a
high-energy component. The figure also shows that the
top few discriminant vectors from LDA contain almost all
the classification information embedded in the original
image space.
Figure 9 shows the separation of clusters for ten poses

of four different individuals, obtained with use of the two
most discriminatory eigenvectors or eigenpictures. As
Figure 9 indicates, the differences among classes (indi-
viduals) are emphasized, while the variations of the same
face in different poses are deemphasized. The separation
is achieved despite all the image variations resulting from
the various poses of each subject. Figure 10 shows the
distribution of clusters for 200 images of 10 subjects in
the best two-dimensional discriminant feature space and
in the best two-dimensional PCA-based space.
For each test face example, we first projected it onto the
Fig. 7. Distribution of feature points for male and female examples in the database.
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Fig. 8. Comparison of DP’s of the top 40 selected eigenvectors based on PCA and LDA.

Fig. 9. Separation of clusters in the selected two-dimensional feature space. Four clusters correspond to variations of the faces of four
different subjects in the database.
selected eigenvectors and found the distance from the cor-
responding point in the four-dimensional feature space to
all of the previously saved instances. All distances were
measured according to Eq. (23), and the best match was
selected. For the given database, excellent (i.e., 99.2%)
accuracy was achieved on the test set.
To evaluate the generalization of the feature extraction

beyond the original training and test sets, we tested the
classification results on pictures of new individuals, none
of whom was present in the training set. Because of our
limitations in terms of data availability, we could use only
ten new subjects with two pictures per subject: one
saved in the database as a template and two for testing.
As expected, the application of the projection templates to
these completely new faces resulted in a reduction in clas-
sification accuracy to ;90%.
This reduction was expected, considering the fact that

we did not have a very large training set. Extracting dis-
criminant facial features from a large training set with di-
verse examples should improve the generalization and
performance of the system on recognition of subjects out-
side the training set.
The simplicity of our systems, the size of the database,

and the robustness of the results to small variations of
the pose and the noise show that our suggested scheme is
a good alternative approach to face recognition. It pro-
vides highly competitive results at much lower complexity
with the use of low-dimensional feature sizes.
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Fig. 10. Cluster separation in the best two-dimensional feature space. Top, based on LDA; bottom, based on PCA.
6. CONCLUSIONS
The application of LDA to study the discriminatory power
of various facial features in spatial and wavelet domain is
presented. Also, an LDA-based feature extraction for
face recognition is proposed and tested. A holistic
projection-based approach to face feature extraction is
taken in which eigentemplates are the most discriminant
vectors derived from LDA of face images in a rich enough
database. The effectiveness of the proposed LDA-based
features is compared with that of PCA-based eigenfaces.
For classification a variation of evidential reasoning is
used, in which each projection becomes a source of dis-
criminating information, with reliability proportional to
its discrimination power. The weighted combination of
similarity or dissimilarity scores suggested by all projec-
tion coefficients is the basis for membership values.
Several results on face recognition and gender classifi-

cation are presented, in which highly competitive recog-
nition accuracies are achieved with a small number of fea-
tures. The feature extraction can be applied to WT
representation of images to provide a multiscale discrimi-
nant framework. In such cases the system becomes more
complex at the expense of improving separability and per-
formance. The proposed feature extraction combined
with soft classification seems to be a promising alterna-
tive to other face-recognition systems.
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