
An Introduction to Boosting and Leveraging

Ron Meir1 and Gunnar Rätsch2

1 Department of Electrical Engineering, Technion, Haifa 32000, Israel
rmeir@ee.technion.ac.il,

http://www-ee.technion.ac.il/˜rmeir
2 Research School of Information Sciences & Engineering

The Australian National University, Canberra, ACT 0200, Australia
Gunnar.Raetsch@anu.edu.au

http://mlg.anu.edu.au/˜raetsch

Abstract. We provide an introduction to theoretical and practical as-
pects of Boosting and Ensemble learning, providing a useful reference for
researchers in the field of Boosting as well as for those seeking to enter
this fascinating area of research. We begin with a short background con-
cerning the necessary learning theoretical foundations of weak learners
and their linear combinations. We then point out the useful connection
between Boosting and the Theory of Optimization, which facilitates the
understanding of Boosting and later on enables us to move on to new
Boosting algorithms, applicable to a broad spectrum of problems. In or-
der to increase the relevance of the paper to practitioners, we have added
remarks, pseudo code, “tricks of the trade”, and algorithmic considera-
tions where appropriate. Finally, we illustrate the usefulness of Boosting
algorithms by giving an overview of some existing applications. The main
ideas are illustrated on the problem of binary classification, although sev-
eral extensions are discussed.

1 A Brief History of Boosting

The underlying idea of Boosting is to combine simple “rules” to form an en-
semble such that the performance of the single ensemble member is improved,
i.e. “boosted”. Let h1, h2, . . . , hT be a set of hypotheses, and consider the com-
posite ensemble hypothesis

f(x) =
T∑

t=1

αtht(x). (1)

Here αt denotes the coefficient with which the ensemble member ht is combined;
both αt and the learner or hypothesis ht are to be learned within the Boosting
procedure.

The idea of Boosting has its roots in PAC learning (cf. [188]). Kearns and
Valiant [101] proved the astonishing fact that learners, each performing only
slightly better than random, can be combined to form an arbitrarily good en-
semble hypothesis (when enough data is available). Schapire [163] was the first

S. Mendelson, A.J. Smola (Eds.): Advanced Lectures on Machine Learning, LNAI 2600, pp. 118–183, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: h×N RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile (h×N) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

An Introduction to Boosting and Leveraging 119

to provide a provably polynomial time Boosting algorithm, while [55] were the
first to apply the Boosting idea to a real-world OCR task, relying on neural
networks as base learners.

The AdaBoost (Adaptive Boosting) algorithm by [67, 68, 70] (cf. Algo-
rithm 2.1) is generally considered as a first step towards more practical Boosting
algorithms. Very similar to AdaBoost is the Arcing algorithm, for which con-
vergence to a linear programming solution can be shown (cf. [27]). Although
the Boosting scheme seemed intuitive in the context of algorithmic design, a
step forward in transparency was taken by explaining Boosting in terms of
a stage-wise gradient descent procedure in an exponential cost function (cf.
[27, 63, 74, 127, 153]). A further interesting step towards practical applicabil-
ity is worth mentioning: large parts of the early Boosting literature persistently
contained the misconception that Boosting would not overfit even when run-
ning for a large number of iterations. Simulations by [81, 153] on data sets with
higher noise content could clearly show overfitting effects, which can only be
avoided by regularizing Boosting so as to limit the complexity of the function
class (cf. Section 6).

When trying to develop means for achieving robust Boosting it is important
to elucidate the relations between Optimization Theory and Boosting procedures
(e.g. [71, 27, 48, 156, 149]). Developing this interesting relationship opened the
field to new types of Boosting algorithms. Among other options it now became
possible to rigorously define Boosting algorithms for regression (cf. [58, 149]),
multi-class problems [3, 155], unsupervised learning (cf. [32, 150]) and to estab-
lish convergence proofs for Boosting algorithms by using results from the The-
ory of Optimization. Further extensions to Boosting algorithms can be found in
[32, 150, 74, 168, 169, 183, 3, 57, 129, 53].

Recently, Boosting strategies have been quite successfully used in various
real-world applications. For instance [176] and earlier [55] and [112] used boosted
ensembles of neural networks for OCR. [139] proposed a non-intrusive monitoring
system for assessing whether certain household appliances consume power or not.
In [49] Boosting was used for tumor classification with gene expression data. For
further applications and more details we refer to the Applications Section 8.3
and to http://www.boosting.org/applications.

Although we attempt a full and balanced treatment of most available liter-
ature, naturally the presentation leans in parts towards the authors’ own work.
In fact, the Boosting literature, as will become clear from the bibliography, is so
extensive, that a full treatment would require a book length treatise. The present
review differs from other reviews, such as the ones of [72, 165, 166], mainly in the
choice of the presented material: we place more emphasis on robust algorithms
for Boosting, on connections to other margin based approaches (such as support
vector machines), and on connections to the Theory of Optimization. Finally,
we discuss applications and extensions of Boosting.

The content of this review is organized as follows. After presenting some ba-
sic ideas on Boosting and ensemble methods in the next section, a brief overview
of the underlying theory is given in Section 3. The notion of the margin and its

120 R. Meir and G. Rätsch

connection to successful Boosting is analyzed in Section 4, and the important
link between Boosting and Optimization Theory is discussed in Section 5. Sub-
sequently, in Section 6, we present several approaches to making Boosting more
robust, and proceed in Section 7 by presenting several extensions of the basic
Boosting framework. Section 8.3 then presents a short summary of applications,
and Section 9 summarizes the review and presents some open problems.

2 An Introduction to Boosting and Ensemble Methods

This section includes a brief definition of the general learning setting addressed
in this paper, followed by a discussion of different aspects of ensemble learning.

2.1 Learning from Data and the PAC Property

We focus in this review (except in Section 7) on the problem of binary clas-
sification [50]. The task of binary classification is to find a rule (hypothesis),
which, based on a set of observations, assigns an object to one of two classes.
We represent objects as belonging to an input space X, and denote the possible
outputs of a hypothesis by Y. One possible formalization of this task is to es-
timate a function f : X → Y, using input-output training data pairs generated
independently at random from an unknown probability distribution P (x, y),

(x1, y1), . . . , (xn, yn) ∈ R
d × {−1, +1}

such that f will correctly predict unseen examples (x, y). In the case where
Y = {−1, +1} we have a so-called hard classifier and the label assigned to an
input x is given by f(x). Often one takes Y = R, termed a soft classifier, in
which case the label assignment is performed according to sign(f(x)). The true
performance of a classifier f is assessed by

L(f) =
∫

λ(f(x), y)dP (x, y), (2)

where λ denotes a suitably chosen loss function. The risk L(f) is often termed the
generalization error as it measures the expected loss with respect to examples
which were not observed in the training set. For binary classification one often
uses the so-called 0/1-loss λ(f(x), y) = I(yf(x) ≤ 0), where I(E) = 1 if the
event E occurs and zero otherwise. Other loss functions are often introduced
depending on the specific context.

Unfortunately the risk cannot be minimized directly, since the underlying
probability distribution P (x, y) is unknown. Therefore, we have to try to esti-
mate a function that is close to the optimal one based on the available informa-
tion, i.e. the training sample and properties of the function class F from which
the solution f is chosen. To this end, we need what is called an induction prin-
ciple. A particularly simple one consists of approximating the minimum of the
risk (2) by the minimum of the empirical risk

An Introduction to Boosting and Leveraging 121

L̂(f) =
1
N

N∑

n=1

λ(f(xn), yn). (3)

From the law of large numbers (e.g. [61]) one expects that L̂(f) → L(f) as N →
∞. However, in order to guarantee that the function obtained by minimizing L̂(f)
also attains asymptotically the minimum of L(f) a stronger condition is required.
Intuitively, the complexity of the class of functions F needs to be controlled,
since otherwise a function f with arbitrarily low error on the sample may be
found, which, however, leads to very poor generalization. A sufficient condition
for preventing this phenomenon is the requirement that L̂(f) converge uniformly
(over F) to L(f); see [50, 191, 4] for further details.

While it is possible to provide conditions for the learning machine which
ensure that asymptotically (as N → ∞) the empirical risk minimizer will perform
optimally, for small sample sizes large deviations are possible and overfitting
might occur. Then a small generalization error cannot be obtained by simply
minimizing the training error (3). As mentioned above, one way to avoid the
overfitting dilemma – called regularization – is to restrict the size of the function
class F that one chooses the function f from [190, 4]. The intuition, which will
be formalized in Section 3, is that a “simple” function that explains most of the
data is preferable to a complex one which fits the data very well (Occam’s razor,
e.g. [21]).

For Boosting algorithms which generate a complex composite hypothesis as
in (1), one may be tempted to think that the complexity of the resulting function
class would increase dramatically when using an ensemble of many learners. How-
ever this is provably not the case under certain conditions (see e.g. Theorem 3),
as the ensemble complexity saturates (cf. Section 3). This insight may lead us to
think that since the complexity of Boosting is limited we might not encounter the
effect of overfitting at all. However when using Boosting procedures on noisy real-
world data, it turns out that regularization (e.g. [103, 186, 143, 43]) is mandatory
if overfitting is to be avoided (cf. Section 6). This is in line with the general expe-
rience in statistical learning procedures when using complex non-linear models,
for instance for neural networks, where a regularization term is used to appropri-
ately limit the complexity of the models (e.g. [2, 159, 143, 133, 135, 187, 191, 36]).

Before proceeding to discuss ensemble methods we briefly review the strong
and weak PAC models for learning binary concepts [188]. Let S be a sample
consisting of N data points {(xn, yn)}N

n=1, where xn are generated independently
at random from some distribution P (x) and yn = f(xn), and f belongs to some
known class F of binary functions. A strong PAC learning algorithm has the
property that for every distribution P , every f ∈ F and every 0 ≤ ε, δ ≤ 1/2
with probability larger than 1−δ, the algorithm outputs a hypothesis h such that
Pr[h(x) �= f(x)] ≤ ε. The running time of the algorithm should be polynomial
in 1/ε, 1/δ, n, d, where d is the dimension (appropriately defined) of the input
space. A weak PAC learning algorithm is defined analogously, except that it is
only required to satisfy the conditions for particular ε and δ, rather than all
pairs. Various extensions and generalization of the basic PAC concept can be
found in [87, 102, 4].

122 R. Meir and G. Rätsch

2.2 Ensemble Learning, Boosting, and Leveraging

Consider a combination of hypotheses in the form of (1). Clearly there are many
approaches for selecting both the coefficients αt and the base hypotheses ht. In
the so-called Bagging approach [25], the hypotheses {ht}T

t=1 are chosen based
on a set of T bootstrap samples, and the coefficients αt are set to αt = 1/T (see
e.g. [142] for more refined choices). Although this algorithm seems somewhat
simplistic, it has the nice property that it tends to reduce the variance of the
overall estimate f(x) as discussed for regression [27, 79] and classification [26, 75,
51]. Thus, Bagging is quite often found to improve the performance of complex
(unstable) classifiers, such as neural networks or decision trees [25, 51].

For Boosting the combination of the hypotheses is chosen in a more sophis-
ticated manner. The evolution of the AdaBoost algorithm can be understood
from Figure 1. The intuitive idea is that examples that are misclassified get
higher weights in the next iteration, for instance the examples near the decision
boundary are usually harder to classify and therefore get high weights after a few
iterations. This idea of iterative reweighting of the training sample is essential
to Boosting.

More formally, a non-negative weighting d(t) = (d(t)
1 , . . . , d

(t)
N) is assigned

to the data at step t, and a weak learner ht is constructed based on d(t). This
weighting is updated at each iteration t according to the weighted error incurred
by the weak learner in the last iteration (see Algorithm 2.1). At each step t, the
weak learner is required to produce a small weighted empirical error defined by

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1st Iteration 2nd Iteration 3rd Iteration

5th Iteration 10th Iteration 100th Iteration

Fig. 1. Illustration of AdaBoost on a 2D toy data set: The color indicates the label
and the diameter is proportional to the weight of the examples in the first, second,
third, 5th, 10th and 100th iteration. The dashed lines show the decision boundaries of
the single classifiers (up to the 5th iteration). The solid line shows the decision line of
the combined classifier. In the last two plots the decision line of Bagging is plotted for
a comparison. (Figure taken from [153].)

An Introduction to Boosting and Leveraging 123

Algorithm 2.1 The AdaBoost algorithm [70].
1. Input: S = {(x1, y1), . . . , (xN , yN)}, Number of Iterations T

2. Initialize: d
(1)
n = 1/N for all n = 1, . . . , N

3. Do for t = 1, . . . , T ,
a) Train classifier with respect to the weighted sample set {S,d(t)} and

obtain hypothesis ht : x �→ {−1, +1}, i.e. ht = L(S,d(t))
b) Calculate the weighted training error εt of ht:

εt =
N∑

n=1

d(t)
n I(yn �= ht(xn)) ,

c) Set:

αt =
1
2

log
1 − εt

εt

d) Update weights:
d(t+1)

n = d(t)
n exp {−αtynht(xn)} /Zt ,

where Zt is a normalization constant, such that
∑N

n=1 d
(t+1)
n = 1.

4. Break if εt = 0 or εt ≥ 1
2 and set T = t − 1.

5. Output: fT (x) =
T∑

t=1

αt∑T
r=1 αr

ht(x)

εt(ht,d(t)) =
N∑

n=1

d(t)
n I(yn �= ht(xn)). (4)

After selecting the hypothesis ht, its weight αt is computed such that it minimizes
a certain loss function (cf. step (3c)). In AdaBoost one minimizes

GAB(α) =
N∑

n=1

exp {−yn (αht(xn) + ft−1(xn))} , (5)

where ft−1 is the combined hypothesis of the previous iteration given by

ft−1(xn) =
t−1∑

r=1

αrhr(xn). (6)

Another very effective approach, proposed in [74], is the LogitBoost algorithm,
where the cost function analogous to (5) is given by

GLR(α) =
N∑

n=1

log {1 + exp (−yn(αht(xn) + ft−1(xn)))} . (7)

124 R. Meir and G. Rätsch

An important feature of (7) as compared to (5) is that the former increases only
linearly for negative values of yn(αht(xn)+ ft−1(xn)), while the latter increases
exponentially. It turns out that this difference is important in noisy situations,
where AdaBoost tends to focus too much on outliers and noisy data. In Section 6
we will discuss other techniques to approach this problem. Some further details
concerning LogitBoost will be given in Section 5.2.

For AdaBoost it has been shown [168] that αt in (5) can be computed analyt-
ically leading to the expression in step (3c) of Algorithm 2.1. Based on the new
combined hypothesis, the weighting d of the sample is updated as in step (3d)
of Algorithm 2.1. The initial weighting d(1) is chosen uniformly: d

(1)
n = 1/N .

The so-called Arcing algorithms proposed in [27] are similar to AdaBoost,
but use a different loss function.1 Each loss function leads to different weighting
schemes of the examples and hypothesis coefficients. One well-known example
is Arc-X4 where one uses a fourth order polynomial to compute the weight of
the examples. Arcing is the predecessor of the more general leveraging algo-
rithms discussed in Section 5.2. Moreover, for one variant, called Arc-GV, it has
been shown [27] to find the linear combination that solves a linear optimization
problem (LP) (cf. Section 4).

The AdaBoost algorithm presented above is based on using binary (hard)
weak learners. In [168] and much subsequent work, real-valued (soft) weak learn-
ers were used. One may also find the hypothesis weight αt and the hypothesis
ht in parallel, such that (5) is minimized. Many other variants of Boosting al-
gorithms have emerged over the past few years, many of which operate very
similarly to AdaBoost, even though they often do not possess the PAC-boosting
property. The PAC-boosting property refers to schemes which are able to guar-
antee that weak learning algorithms are indeed transformed into strong learning
algorithms in the sense described in Section 2.1. Duffy and Helmbold [59] reserve
the term ‘boosting’ for algorithms for which the PAC-boosting property can be
proved to hold, while using ‘leveraging’ in all other cases. Since we are not overly
concerned with PAC learning per se in this review, we use the terms ‘boosting’
and ‘leveraging’ interchangeably.

In principle, any leveraging approach iteratively selects one hypothesis ht ∈
H at a time and then updates their weights; this can be implemented in different
ways. Ideally, given {h1, . . . , ht}, one solves the optimization problem for all
hypothesis coefficients {α1, . . . , αt}, as proposed by [81, 104, 48]. In contrast to
this, the greedy approach is used by the original AdaBoost/Arc-GV algorithm
as discussed above: only the weight of the last hypothesis is selected, while
minimizing some appropriate cost function [27, 74, 127, 153]. Later we will show
in Sections 4 and 5 that this relates to barrier optimization techniques [156]
and coordinate descent methods [197, 151]. Additionally, we will briefly discuss
relations to information geometry [24, 34, 110, 104, 39, 147, 111] and column
generation techniques (cf. Section 6.2).

An important issue in the context of the algorithms discussed in this review
pertains to the construction of the weak learner (e.g. step (3a) in Algorithm 2.1).

1 Any convex loss function is allowed that goes to infinity when the margin goes to
minus infinity and to zero when the margin goes to infinity.

An Introduction to Boosting and Leveraging 125

At step t, the weak learner is constructed based on the weighting d(t). There are
basically two approaches to taking the weighting into consideration. In the first
approach, we assume that the learning algorithm can operate with reweighted
examples. For example, if the weak learner is based on minimizing a cost func-
tion (see Section 5), one can construct a revised cost function which assigns a
weight to each of the examples, so that heavily weighted examples are more in-
fluential. For example, for the least squares error one may attempt to minimize∑N

n=1 d
(t)
n (yn − h(xn))2. However, not all weak learners are easily adaptable to

the inclusion of weights. An approach proposed in [68] is based on resampling
the data with replacement based on the distribution d(t). The latter approach
is more general as it is applicable to any weak learner; however, the former ap-
proach has been more widely used in practice. Friedman [73] has also considered
sampling based approaches within the general framework described in Section 5.
He found that in certain situations (small samples and powerful weak learners) it
is advantageous to sample a subset of the data rather than the full data set itself,
where different subsets are sampled at each iteration of the algorithm. Overall,
however, it is not yet clear whether there is a distinct advantage to using either
one of the two approaches.

3 Learning Theoretical Foundations of Boosting

3.1 The Existence of Weak Learners

We have seen that AdaBoost operates by forming a re-weighting d of the data
at each step, and constructing a base learner based on d. In order to gauge the
performance of a base learner, we first define a baseline learner.

Definition 1. Let d = (d1, . . . , dN) be a probability weighting of the data points
S. Let S+ be the subset of the positively labeled points, and similarly for S−. Set
D+ =

∑
n:yn=+1 dn and similarly for D−. The baseline classifier fBL is defined

as fBL(x) = sign(D+ − D−) for all x. In other words, the baseline classifier
predicts +1 if D+ ≥ D− and −1 otherwise. It is immediately obvious that for
any weighting d, the error of the baseline classifier is at most 1/2.

The notion of weak learner has been introduced in the context of PAC learn-
ing at the end of Section 2.1. However, this definition is too limited for most
applications. In the context of this review, we define a weak learner as follows.
A learner is a weak learner for sample S if, given any weighting d on S, it is able
to achieve a weighted classification error (see (4)) which is strictly smaller than
1/2.

A key ingredient of Boosting algorithms is a weak learner which is required
to exist in order for the overall algorithm to perform well. In the context of
binary classification, we demand that the weighted empirical error of each weak
learner is strictly smaller than 1

2 − 1
2γ, where γ is an edge parameter quantifying

the deviation of the performance of the weak learner from the baseline classifier
introduced in Definition 1. Consider a weak learner that outputs a binary clas-
sifier h based on a data set, S = {(xn, yn)}N

n=1 each pair (xn, yn) of which is
weighted by a non-negative weight dn. We then demand that

126 R. Meir and G. Rätsch

ε(h,d) =
N∑

n=1

dnI[yn �= h(xn)] ≤ 1
2

− 1
2
γ, (γ > 0). (8)

For simple weak learners, it may not be possible to find a strictly positive
value of γ for which (8) holds without making any assumptions about the
data. For example, consider the two-dimensional xor problem with N = 4,
x1 = (−1,−1),x2 = (+1, +1),x3 = (−1, +1),x4 = (+1, +1), and corresponding
labels {−1,−1, +1, +1}. If the weak learner h is restricted to be an axis-parallel
half-space, it is clear that no such h can achieve an error smaller than 1/2 for a
uniform weighting over the examples.

We consider two situations, where it is possible to establish the strict positiv-
ity of γ, and to set a lower bound on its value. Consider a mapping f from the bi-
nary cube X = {−1, +1}d to Y = {−1, 1}, and assume the true labels yn are given
by yn = f(xn). We wish to approximate f by combinations of binary hypotheses
ht belonging to H. Intuitively we expect that a large edge γ can be achieved if
we can find a weak hypothesis h which correlates well with f (cf. Section 4.1).
Let H be a class of binary hypotheses (Boolean functions), and let D be a distri-
bution over X. The correlation between f and H, with respect to D, is given by
CH,D(f) = suph∈H ED{f(x)h(x)}. The distribution-free correlation between f
and H is given by CH(f) = infD CH,D(f). [64] shows that if T > 2 log(2)dCH(f)−2

then f can be represented exactly as f(x) = sign
(∑T

t=1 ht(x)
)
. In other words,

if H is highly correlated with the target function f , then f can be exactly repre-
sented as a convex combinations of a small number of functions from H. Hence,
after a sufficiently large number of Boosting iterations, the empirical error can
be expected to approach zero. Interestingly, this result is related to the Min-Max
theorem presented in Section 4.1.

+
+

+ +

++

+

+ +

+

+

+
+ +

−
−

−

−
−

−−
−

−
−

−
−
− −−

−−
−

−
−−

−
−

−

−

−

−
− −

− − −
− −

−

− −
− −

−
−

−

−

−

−

−

−
−

−

−
−

−

B

η

Fig. 2. A single convex set con-
taining the positively labeled ex-
amples separated from the nega-
tive examples by a gap of η.

The results of [64] address only the case of Boolean functions and a known
target function f . An important question that arises relates to the establishment
of geometric conditions for which the existence of a weak learner can be guaran-
teed. Consider the case where the input patterns x belong to R

d, and let H, the
class of weak learners, consisting of linear classifiers of the form sign(w�x + b).
It is not hard to show [122], that for any distribution d over a training set of

An Introduction to Boosting and Leveraging 127

distinct points, ε(h,d) ≤ 1
2 − c/N , where c is an absolute constant. In other

words, for any d one can find a linear classifier that achieves an edge of at least
c/N . However, as will become clear in Section 3.4 such an advantage does not
suffice to guarantee good generalization. This is not surprising, since the claim
holds even for arbitrarily labeled points, for which no generalization can be ex-
pected. In order to obtain a larger edge, some assumptions need to be made
about the data. Intuitively, we expect that situations where the positively and
negatively labeled points are well separated are conducive to achieving a large
edge by linear classifiers. Consider, for example, the case where the positively
labeled points are enclosed within a compact convex region in K ⊂ R

d, while
the remaining points are located outside of this region, such that the distance
between the oppositely labeled points is at least η, for some η > 0 (see Figure 2).
It is not hard to show that in this case [122] γ ≥ γ0 > 0, namely the edge is
strictly larger than zero, independently of the sample size (γ0 is related to the
number of faces of the smallest convex polytope that covers only the positively
labeled points, see also discussion in Section 4.2).

In general situations, the data may be strongly overlapping. In order to deal
with such cases, much more advanced tools need to be wielded based on the
theory of Geometric Discrepancy [128]. The technical details of this develop-
ment are beyond the scope of this paper. The interested reader is referred to
[121, 122] for further details. In general, there has not been much work on estab-
lishing geometric conditions for the existence of weak learners for other types of
classifiers.

3.2 Convergence of the Training Error to Zero

As we have seen in the previous section, it is possible under appropriate condi-
tions to guarantee that the weighted empirical error of a weak learner is smaller
than 1

2 − 1
2γ, γ > 0. We now show that this condition suffices to ensure that

the empirical error of the composite hypothesis converges to zero as the number
of iterations increases. In fact, anticipating the generalization bounds in Sec-
tion 3.4, we present a somewhat stronger result. We establish the claim for the
AdaBoost algorithm; similar claims can be proven for other Boosting algorithms
(cf. Section 4.1 and [59]).

Keeping in mind that we may use a real-valued function f for classification,
we often want to take advantage of the actual value of f , even though classifica-
tion is performed using sign(f). The actual value of f contains information about
the confidence with which sign(f) is predicted (e.g. [4]). For binary classification
(y ∈ {−1, +1}) and f ∈ R we define the margin of f at example (xn, yn) as

ρn(f) = ynf(xn). (9)

Consider the following function defined for 0 ≤ θ ≤ 1
2 ,

ϕθ(z) =

1 if z ≤ 0,
1 − z/θ if 0 < z ≤ θ,
0 otherwise .

128 R. Meir and G. Rätsch

Let f be a real-valued function taking values in [−1, +1]. The empirical margin
error is defined as

L̂θ(f) =
1
N

N∑

n=1

ϕθ(ynf(xn)). (10)

It is obvious from the definition that the classification error, namely the fraction
of misclassified examples, is given by θ = 0, i.e. L̂(f) = L̂0(f). In addition,
L̂θ(f) is monotonically increasing in θ. We note that one often uses the so-called
0/1-margin error defined by

L̃θ(f) =
1
N

N∑

n=1

I(ynf(xn) ≤ θ).

Noting that ϕθ(yf(x)) ≤ I(yf(x) ≤ θ), it follows that L̂θ(f) ≤ L̃θ(f). Since we
use L̂θ(f) as part of an upper bound on the generalization error in Section 3.4,
the bound we obtain using it is tighter than would be obtained using L̃θ(f).

Theorem 1 ([167]). Consider AdaBoost as described in Algorithm 2.1. Assume
that at each round t, the weighted empirical error satisfies ε(ht,d(t)) ≤ 1

2 − 1
2γt.

Then the empirical margin error of the composite hypothesis fT obeys

L̂θ(fT) ≤
T∏

t=1

(1 − γt)
1−θ
2 (1 + γt)

1+θ
2 . (11)

Proof. We present a proof from [167] for the case where ht ∈ {−1, +1}. We begin
by showing that for every {αt}

L̃θ(fT) ≤ exp

(
θ

T∑

t=1

αt

)(
T∏

t=1

Zt

)
. (12)

By definition

Zt =
N∑

n=1

d(t)
n e−ynαtht(xn)

=
∑

n:yn=ht(xn)

d(t)
n e−αt +

∑

n:yn �=ht(xn)

d(t)
n eαt

= (1 − εt)e−αt + εte
αt .

From the definition of fT it follows that

yfT (x) ≤ θ ⇒ exp

(
−y

T∑

t=1

αtht(x) + θ

T∑

t=1

αt

)
≥ 1,

which we rewrite as

An Introduction to Boosting and Leveraging 129

I[Y fT (X) ≤ θ] ≤ exp

(
−y

T∑

t=1

αtht(x) + θ

T∑

t=1

αt

)
. (13)

Note that

d(T+1)
n =

d
(T)
n exp (−αT ynhT (xn))

ZT

=
exp

(
−∑T

t=1 αtynht(xn)
)

N
∏T

t=1 Zt

(by induction). (14)

Using (13) and (14) we find that

L̃θ(f) =
1
N

N∑

n=1

I[ynfT (xn) ≤ θ]

≤ 1
N

N∑

n=1

[
exp

(
−yn

T∑

t=1

αtht(xn) + θ

T∑

t=1

αt

)]

=
1
N

exp

(
θ

T∑

t=1

αt

)
N∑

n=1

exp

(
−yn

T∑

t=1

αtht(xn)

)

= exp

(
θ

T∑

t=1

αt

)(
T∏

t=1

Zt

)
N∑

n=1

d(T+1)
n

︸ ︷︷ ︸
=1

= exp

(
θ

T∑

t=1

αt

)(
T∏

t=1

Zt

)
.

Next, set αt = (1/2) log((1 − εt)/εt) as in Algorithm 2.1, which easily implies
that

Zt = 2
√

εt(1 − εt).

Substituting this result into (12) we find that

L̃θ(f) ≤
T∏

t=1

√
4ε1−θ

t (1 − εt)1+θ

which yields the desired result upon recalling that εt = 1/2 − γt/2, and noting
that L̂θ(f) ≤ L̃θ(f).

In the special case that θ = 0, i.e. one considers the training error, we find that

L̂(fT) ≤ e− ∑T
t=1 γ2

t /2,

from which we infer that the condition
∑T

t=1 γ2
t → ∞ suffices to guarantee that

L̂(fT) → 0. For example, the condition γt ≥ c/
√

t suffices for this.2 Clearly
2 When one uses binary valued hypotheses, then γt ≥ c/t is already sufficient to

achieve a margin of at least zero on all training examples (cf. [146], Lemma 2.2, 2.3).

130 R. Meir and G. Rätsch

this holds if γt ≥ γ0 > 0 for some positive constant γ0. In fact, in this case
L̂θ(fT) → 0 for any θ ≤ γ0/2.

In general, however, one may not be interested in the convergence of the
empirical error to zero, due to overfitting (see discussion in Section 6). Sufficient
conditions for convergence of the error to a nonzero value can be found in [121].

3.3 Generalization Error Bounds

In this section we consider binary classifiers only, namely f : X 	→ {−1, +1}.
A learning algorithm can be viewed as a procedure for mapping any data set
S = {(xn, yn)}N

n=1 to some hypothesis h belonging to a hypothesis class H
consisting of functions from X to {−1, +1}. In principle, one is interested in
quantifying the performance of the hypothesis f̂ on future data. Since the data
S consists of randomly drawn pairs (xn, yn), both the data-set and the generated
hypothesis f̂ are random variables. Let λ(y, f(x)) be a loss function, measuring
the loss incurred by using the hypothesis f to classify input x, the true label
of which is y. As in Section 2.1 the expected loss incurred by a hypothesis f is
given by L(h) = E{λ(y, f(x))}, where the expectation is taken with respect to
the unknown probability distribution generating the pairs (xn, yn). In the sequel
we will consider the case of binary classification and 0/1-loss

λ(y, f(x)) = I[y �= f(x)],

where I[E] = 1, if the event E occurs and zero otherwise. In this case it is easy
to see that L(f) = Pr[y �= h(x)], namely the probability of misclassification.

A classic result by Vapnik and Chervonenkis relates the empirical classifi-
cation error of a binary hypothesis f , to the probability of error Pr[y �= f(x)].
For binary functions f we use the notation P (y �= f(x)) for the probability of
error and P̂ (y �= f(x) for the empirical classification error. Before presenting
the result, we need to define the VC-dimension of a class of binary hypotheses
F. Consider a set of N points X = (x1, . . . ,xN). Each binary function f defines
a dichotomy (f(x1), . . . , f(xN)) ∈ {−1, +1}N on these points. Allowing f to
run over all elements of F, we generate a subset of the binary N -dimensional
cube {−1, +1}N , denoted by FX , i.e. FX = {(f(x1), . . . , f(xN)) : f ∈ F}. The
VC-dimension of F, VCdim(F), is defined as the maximal cardinality of the set
of points X = (x1, . . . ,xN) for which |FX | = 2N . Good estimates of the VC
dimension are available for many classes of hypotheses. For example, in the d-
dimensional space R

d one finds for hyperplanes a VC dimension of d + 1, while
for rectangles the VC dimension is 2d. Many more results and bounds on the
VC dimension of various classes can be found in [50] and [4].

We present an improved version of the classic VC bound, taken from [11].

Theorem 2 ([192]). Let F be a class of {−1, +1}-valued functions defined over
a set X. Let P be a probability distribution on X × {−1, +1}, and suppose that
N -samples S = {(x1, y1), . . . , (xN , yN)} are generated independently at random
according to P . Then, there is an absolute constant c, such that for any integer
N , with probability at least 1 − δ over samples of length N , every f ∈ F satisfies

An Introduction to Boosting and Leveraging 131

P (y �= f(x)) ≤ P̂ (y �= f(x)) + c

√
VCdim(F) + log(1/δ)

N
. (15)

We comment that the original bound in [192] contained an extra factor of
log N multiplying VCdim(F) in (15).

The finite-sample bound presented in Theorem 2 has proved very useful in
theoretical studies. It should also be stressed that the bound is distribution
free, namely it holds independently of the underlying probability measure P .
Moreover, it can be shown ([50], Theorem 14.5) to be optimal in rate in a precise
minimax sense. However, in practical applications it is often far too conservative
to yield useful results.

3.4 Margin Based Generalization Bounds

In spite of the claimed optimality of the above bound, there is good reason to
investigate bounds which improve upon it. While such an endeavor may seem
futile in light of the purported optimality of (15), we observe that the bound
is optimal only in a distribution-free setting, where no restrictions are placed
on the probability distribution P . In fact, one may want to take advantage of
certain regularity properties of the data in order to improve the bound. However,
in order to retain the appealing distribution-free feature of the bound (15), we
do not want to impose any a-priori conditions on P . Rather, the idea is to
construct a so-called luckiness function based on the data [179], which yields
improved bounds in situations where the structure of the data happens to be
‘simple’. In order to make more effective use of a classifier, we now allow the
class of classifiers F to be real-valued. In view of the discussion in Section 3.1, a
good candidate for a luckiness function is the margin-based loss L̂θ(f) defined
in (10). The probability of error is given by L(f) = P (y �= sign(f(x))).

For real-valued classifiers F, define a new notion of complexity, related to the
VC dimension but somewhat more general. Let {σ1, . . . , σN} be a sequence of
{−1, +1}-valued random variables generated independently by setting each σn

to {−1, +1} with equal probability. Additionally, let {x1, . . . ,xN} be generated
independently at random according to some law P . The Rademacher complexity
[189] of the class F is given by

RN (F) = E sup
f∈F

∣∣∣∣∣
1
N

N∑

n=1

σnf(xn)

∣∣∣∣∣ ,

where the expectation is taken with respect to both {σn} and {xn}. The
Rademacher complexity has proven to be essential in the derivation of effec-
tive generalization bounds (e.g. [189, 11, 108, 10]).

The basic intuition behind the definition of RN (F) is its interpretation as
a measure of correlation between the class F and a random set of labels. For
very rich function classes F we expect a large value of RN (F) while small func-
tion classes can only achieve small correlations with random labels. In the
special case that the class F consists of binary functions, one can show that
RN (F) = O(

√
VCdim(F)/N). For real-valued functions, one needs to extend the

132 R. Meir and G. Rätsch

notion of VC dimension to the so-called pseudo-dimension (e.g. [4]), in which
case one can show that RN (F) = O(

√
Pdim(F)/N). It is not hard to show that

VCdim(sign(F)) ≤ Pdim(F).
The following theorem (cf. [108]) provides a bound on the probability of

misclassification using a margin-based loss function.

Theorem 3 ([108]). Let F be a class of real-valued functions from X to
[−1, +1], and let θ ∈ [0, 1]. Let P be a probability distribution on X × {−1, +1},
and suppose that N -samples S = {(x1, y1), . . . , (xN , yN)} are generated inde-
pendently at random according to P . Then, for any integer N , with probability
at least 1 − δ over samples of length N , every f ∈ F satisfies

L(f) ≤ L̂θ(f) +
4RN (F)

θ
+

√
log(2/δ)

2N
. (16)

In order to understand the significance of Theorem 3, consider a situation
where one can find a function f which achieves a low margin error L̂θ(f) for
a large value of the margin parameter θ. In other words, L̂θ(f) ≈ L̂(f) for
large values of θ. In this case the second term on the r.h.s. in (16) can be
made to be smaller than the corresponding term in (15) (recall that RN (F) =
O(
√

Pdim(F)/N) for classes with finite pseudo-dimension), using the standard
VC bounds. Note that Theorem 3 has implications concerning the size of the
margin θ. In particular, assuming F is a class with finite VC dimension, we have
that the second term on the r.h.s. of (16) is of the order O(

√
VCdim(F)/Nθ2).

In order that this term decrease to zero it is mandatory that θ � 1/
√

N . In
other words, in order to lead to useful generalization bounds the margin must
be sufficiently large with respect to the sample size N .

However, the main significance of (16) arises from its application to the spe-
cific class of functions arising in Boosting algorithms. Recall that in Boosting,
one generates a hypothesis f which can be written as fT (x) =

∑T
t=1 αtht(x),

namely a linear combination with non-negative coefficients of base hypotheses
h1, . . . , ht, each belonging to the class H. Consider the class of functions

coT (F) =

{
f : f(x) =

T∑

t=1

αtht(x) : αt ≥ 0,

T∑

t=1

αt = 1, ht ∈ H

}
,

corresponding to the �1-normalized function output by the Boosting algorithm.
The convex hull is given by letting T → ∞ in coT .

The key feature in the application of Theorem 3 to Boosting is the observation
that for any class of real-valued functions H, RN (coT (H)) = RN (H) for any T
(e.g. [11]), namely the Rademacher complexity of coT (H) is not larger than that
of the base class H itself. On the other hand, since ht(x) are in general non-linear
functions, the linear combination

∑T
t=1 αtht(x) represents a potentially highly

complex function which can lead to very low margin error L̂θ(fT). Combining
these observations, we obtain the following result, which improves upon the first
bounds of this nature presented in [167].

An Introduction to Boosting and Leveraging 133

Corollary 1. Let the conditions of Theorem 3 hold, and set F = coT (H). Then,
for any integer N , with probability at least 1− δ over samples of length N , every
f ∈ coT (H) satisfies

L(f) ≤ L̂θ(f) +
4RN (H)

θ
+

√
log(2/δ)

2N
. (17)

Had we used a bound of the form of (15) for f ∈ coT (H), we would have obtained
a bound depending on Pdim(coT (H)), which often grows linearly in T , leading to
inferior results. The important observation here is that the complexity penalty
in (17) is independent of T , the number of Boosting iterations.

As a final comment we add that a considerable amount of recent work has
been devoted to the derivation of so-called data-dependent bounds (e.g. [5, 9,
92]), where the second term on the r.h.s. of (16) is made to depend explicitly on
the data. Data-dependent bounds depending explicitly on the weights αt of the
weak learners are given in [130]. In addition, bounds which take into account
the full margin distribution are presented in [180, 45, 181]. Such results are
particularly useful for the purpose of model selection, but are beyond the scope
of this review.

3.5 Consistency

The bounds presented in Theorems 2 and 3, depend explicitly on the data, and
are therefore potentially useful for the purpose of model selection. However,
an interesting question regarding the statistical consistency of these procedures
arises. Consider a generic binary classification problem, characterized by the class
conditional distribution function P (y|x), where τ(x) = P (y = 1|x) is assumed
to belong to some target class of functions T. It is well known [50] that in this
case the optimal classifier is given by the Bayes classifier fB(x) = sign(τ(x)− 1

2),
leading to the minimal error LB = L(fB). We say that an algorithm is strongly
consistent with respect to T if, based on a sample of size N , it generates an
empirical classifier f̂N for which L(f̂N) → LB almost surely for N → ∞, for every
τ ∈ T. While consistency may seem to be mainly of theoretical significance, it
is reassuring to have the guarantee that a given procedure ultimately performs
optimally. However, it turns out that in many cases inconsistent procedures
perform better for finite amounts of data, than consistent ones. A classic example
of this is the so-called James-Stein estimator ([96, 160], Section 2.4.5).

In order to establish consistency one needs to assume (or prove in specific
cases) that as T → ∞ the class of functions coT (H) is dense in T. The consistency
of Boosting algorithms has recently been established in [116, 123], following
related previous work [97]. The work of [123] also includes rates of convergence
for specific weak learners and target classes T. We point out that the full proof
of consistency must tackle at least three issues. First, it must be shown that
the specific algorithm used converges as a function of the number of iterations
- this is essentially an issue of optimization. Furthermore, one must show that
the function to which the algorithm converges itself converges to the optimal

134 R. Meir and G. Rätsch

estimator as the sample size increases - this is a statistical issue. Finally, the
approximation theoretic issue of whether the class of weak learners is sufficiently
powerful to represent the underlying decision boundary must also be addressed.

4 Boosting and Large Margins

In this section we discuss AdaBoost in the context of large margin algorithms.
In particular, we try to shed light on the question of whether, and under what
conditions, boosting yields large margins. In [67] it was shown that AdaBoost
quickly finds a combined hypothesis that is consistent with the training data.
[167] and [27] indicated that AdaBoost computes hypotheses with large margins,
if one continues iterating after reaching zero classification error. It is clear that
the margin should be as large as possible on most training examples in order to
minimize the complexity term in (17). If one assumes that the base learner always
achieves a weighted training error εt ≤ 1/2 − γ/2 with γ > 0, then AdaBoost
generates a hypothesis with margin larger than γ/2 [167, 27]. However, from the
Min-Max theorem of linear programming [193] (see Theorem 4 below) one finds
that the achievable margin ρ∗ is at least γ [69, 27, 72].

We start with a brief review of some standard definitions and results for the
margin of an example and of a hyperplane. Then we analyze the asymptotic
properties of a slightly more general version, called AdaBoost�, which is equiv-
alent to AdaBoost for � = 0, while assuming that the problem is separable.
We show that there will be a subset of examples – the support patterns [153] –
asymptotically having the same smallest margin. All weights d are asymptoti-
cally concentrated on these examples. Furthermore, we find that AdaBoost� is
able to achieve larger margins, if � is chosen appropriately. We briefly discuss
two algorithms for adaptively choosing � to maximize the margin.

4.1 Weak Learning, Edges, and Margins

The assumption made concerning the base learning algorithm in the PAC-
Boosting setting (cf. Section 3.1) is that it returns a hypothesis h from a fixed
set H that is slightly better than the baseline classifier introduced in Definition 1.
This means that for any distribution, the error rate ε is consistently smaller than
1
2 − 1

2γ for some fixed γ > 0.
Recall that the error rate ε of a base hypothesis is defined as the weighted

fraction of points that are misclassified (cf. (8)). The weighting d = (d1, . . . , dN)
of the examples is such that dn ≥ 0 and

∑N
n=1 dn = 1. A more convenient

quantity to measure the quality of the hypothesis h is the edge [27], which is
also applicable and useful for real-valued hypotheses:

γ(h,d) =
N∑

n=1

dnynh(xn). (18)

The edge is an affine transformation of ε(h,d) in the case when h(x) ∈ {−1, +1}:
ε(h,d) = 1

2 − 1
2γ(h,d) [68, 27, 168]. Recall from Section 3.2 that the margin of a

function f for a given example (xn, yn) is defined by ρn(f) = ynf(xn) (cf. (9)).

An Introduction to Boosting and Leveraging 135

Assume for simplicity that H is a finite hypothesis class H = {h̃j | j =
1, . . . , J}, and suppose we combine all possible hypotheses from H. Then the
following well-known theorem establishes the connection between margins and
edges (first noted in connection with Boosting in [68, 27]). Its proof follows
directly from the duality of the two optimization problems.

Theorem 4 (Min-Max-Theorem, [193]).

γ∗ = min
d

max
h̃∈H

{
N∑

n=1

dnynh̃(xn)

}
= max

w
min

1≤n≤N
yn

J∑

j=1

wj h̃j(xn)

 = �∗,

(19)

where d ∈ PN , w ∈ PJ and Pk is the k-dimensional probability simplex.

Thus, the minimal edge γ∗ that can be achieved over all possible weightings d
of the training set is equal to the maximal margin �∗ of a combined hypothesis
from H. We refer to the left hand side of (19) as the edge minimization problem.
This problem can be rewritten as a linear program (LP):

min
γ,0≤d∈RN

γ

s.t.
N∑

n=1

dn = 1 and
N∑

n=1

dnynh̃(xn) ≤ γ ∀h̃ ∈ H.
(20)

For any non-optimal weightings d and w we always have maxh̃∈H γ(h̃,d) ≥ γ∗ =
�∗ ≥ minn=1,... ,N ynfw(xn), where

fw(x) =
J∑

j=1

wj h̃j(x). (21)

If the base learning algorithm is guaranteed to return a hypothesis with edge
at least γ for any weighting, there exists a combined hypothesis with margin
at least γ. If γ = γ∗, i.e. the lower bound γ is as large as possible, then there
exists a combined hypothesis with margin exactly γ = �∗ (only using hypotheses
that are actually returned by the base learner). From this discussion we can
derive a sufficient condition on the base learning algorithm to reach the maximal
margin: If it returns hypotheses whose edges are at least γ∗, there exists a linear
combination of these hypotheses that has margin γ∗ = �∗. This explains the
termination condition in Algorithm 2.1 (step (4)).

Remark 1. Theorem 4 was stated for finite hypothesis sets H. However, the
same result holds also for countable hypothesis classes. For uncountable classes,
one can establish the same results under some regularity conditions on H,
in particular that the real-valued hypotheses h are uniformly bounded (cf.
[93, 149, 157, 147]).

136 R. Meir and G. Rätsch

To avoid confusion, note that the hypotheses indexed as elements of the
hypothesis set H are marked by a tilde, i.e. h̃1, . . . , h̃J , whereas the hypotheses
returned by the base learner are denoted by h1, . . . , hT . The output of AdaBoost
and similar algorithms is a sequence of pairs (αt, ht) and a combined hypothesis
ft(x) =

∑t
r=1 αrhr(x). But how do the α’s relate to the w’s used in Theorem 4?

At every step of AdaBoost, one can compute the weight for each hypothesis h̃j

in the following way:3

wt
j =

t∑

r=1

αrI(hr = h̃j), j = 1, . . . , J. (22)

It is easy to verify that
∑t

r=1 αrhr(x) =
∑J

j=1 wt
j h̃j(x). Also note, if the α’s are

positive (as in Algorithm 2.1), then ‖w‖1 = ‖α‖1 holds.

4.2 Geometric Interpretation of p-Norm Margins

Margins have been used frequently in the context of Support Vector Machines
(SVMs) [22, 41, 190] and Boosting. These so-called large margin algorithms fo-
cus on generating hyperplanes/functions with large margins on most training
examples. Let us therefore study some properties of the maximum margin hy-
perplane and discuss some consequences of using different norms for measuring
the margin (see also Section 6.3).

Suppose we are given N examples in some space F: S = {(xn, yn)}N
n=1, where

(xn, yn) ⊆ F × {−1, 1}. Note that we use x as elements of the feature space F

instead of x as elements of the input space X (details below). We are interested
in the separation of the training set using a hyperplane A through the origin4

A = {x | 〈x,w〉 = 0} in F determined by some vector w, which is assumed to
be normalized with respect to some norm. The �p-norm margin of an example
(xn, yn) with respect to the hyperplane A is defined as

ρp
n(w) :=

yn〈xn,w〉
‖w‖p

,

where the superscript p ∈ [1,∞] specifies the norm with respect to which w is
normalized (the default is p = 1). A positive margin corresponds to a correct
classification. The margin of the hyperplane A is defined as the minimum margin
over all N examples, ρp(w) = minn ρp

n(w).
To maximize the margin of the hyperplane one has to solve the following

convex optimization problem [119, 22]:

max
w

ρp(w) = max
w

min
1≤n≤N

yn〈xn,w〉
‖w‖p

. (23)

3 For simplicity, we have omitted the normalization implicit in Theorem 4.
4 This can easily be generalized to general hyperplanes by introducing a bias term.

An Introduction to Boosting and Leveraging 137

The form of (23) implies that without loss of generality we may take ‖w‖p = 1,
leading to the following convex optimization problem:

max
ρ,w

ρ

s.t. yn〈xn,w〉 ≥ ρ, n = 1, 2, . . . , N
‖w‖p = 1.

(24)

Observe that in the case where p = 1 and wj ≥ 0, we obtain a Linear Program
(LP) (cf. (19)). Moreover, from this formulation it is clear that only a few of
the constraints in (24) will typically be active. These constraints correspond to
the most difficult examples, called the support patterns in boosting and support
vectors in SVMs.5

The following theorem gives a geometric interpretation to (23): Using the �p-
norm to normalize w corresponds to measuring the distance to the hyperplane
with the dual �q-norm, where 1/p + 1/q = 1.

Theorem 5 ([120]). Let x ∈ F be any point which is not on the plane A :=
{x̃ | 〈x̃,w〉 = 0}. Then for p ∈ [1,∞]:

|〈x,w〉|
‖w‖p

= ‖x − A‖q, (25)

where ‖x − A‖q = minx̃∈A ‖x − x̃‖q denotes the distance of x to the plane A
measured with the dual norm �q.

Thus, the �p-margin of xn is the signed �q-distance of the point to the hyperplane.
If the point is on the correct side of the hyperplane, the margin is positive (see
Figure 3 for an illustration of Theorem 5).

−0.5 0 0.5 1 1.5
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

Fig. 3. The maximum margin so-
lution for different norms on a toy
example: �∞-norm (solid) and �2-
norm (dashed). The margin ar-
eas are indicated by the dash-
dotted lines. The examples with la-
bel +1 and −1 are shown as ‘x’
and ‘◦’, respectively. To maximize
the �∞-norm and �2-norm margin,
we solved (23) with p = 1 and
p = 2, respectively. The �∞-norm
often leads to fewer supporting ex-
amples and sparse weight-vectors.

Let us discuss two special cases: p = 1 and p = 2:
5 In Section 4.4 we will discuss the relation of the Lagrange multipliers of these con-

straints and the weights d on the examples.

138 R. Meir and G. Rätsch

Boosting (p = 1). In the case of Boosting, the space F is spanned by the base
hypotheses. One considers the set of base hypotheses that could be generated by
the base learner – the base hypothesis set – and constructs a mapping Φ from
the input space X to the “feature space” F:

Φ(x) =

h̃1(x)
h̃2(x)

...

 : X → F. (26)

In this case the margin of an example is (cf. (22))

ρ1
n(w) =

yn〈xn,w〉
‖w‖1

=
yn

∑
j wj h̃j(xn)

∑J
j=1 wj

=
yn

∑
t αtht(xn)∑

t αt
,

as used before in Algorithm 2.1, where we used the �1-norm for normalization
and without loss of generality assumed that the w’s and α’s are non-negative
(assuming H is closed under negation). By Theorem 5, one therefore maximizes
the �∞-norm distance of the mapped examples to the hyperplane in the feature
space F. Under mild assumptions, one can show that the maximum margin
hyperplane is aligned with most coordinate axes in the feature space, i.e. many
wj ’s are zero (cf. Figure 3 and Section 6.3).

Support Vector Machines (p = 2). Here, the feature space F is implicitly de-
fined by a Mercer kernel k(x,y) [131], which computes the inner product of two
examples in the feature space F [22, 175]. One can show that for every such
kernel there exists a mapping Φ : X → F, such that k(x,y) = 〈Φ(x), Φ(y)〉 for
all x,y ∈ X. Additionally, one uses the �2-norm for normalization and, hence,
the Euclidean distance to measure distances between the mapped examples and
the hyperplane in the feature space F:

ρ2
n(w) =

yn〈Φ(xn),w〉
‖w‖2

=
yn

∑N
i=1 βi k(xn,xi)√∑N

i,j=1 βiβj k(xi,xj)
,

where we used the Representer Theorem [103, 172] that shows that the maximum
margin solution w can be written as a sum of the mapped examples, i.e. w =∑N

n=1 βnΦ(xn).

4.3 AdaBoost and Large Margins

We have seen in Section 3.4 that a large value of the margin is conducive to good
generalization, in the sense that if a large margin can be achieved with respect
to the data, then an upper bound on the generalization error is small (see also
discussion in Section 6). This observation motivates searching for algorithms
which maximize the margin.

An Introduction to Boosting and Leveraging 139

Convergence properties of AdaBoost. We analyze a slightly generalized
version of AdaBoost. One introduces a new parameter, �, in step (3c) of Algo-
rithm 2.1 and chooses the weight of the new hypothesis differently:

αt =
1
2

log
1 + γt

1 − γt
− 1

2
log

1 + �

1 − �
.

This algorithm was first introduced in [27] as unnormalized Arcing with expo-
nential function and in [153] as AdaBoost-type algorithm. Moreover, it is similar
to an algorithm proposed in [71] (see also [177]). Here we will call it AdaBoost�.
Note that the original AdaBoost algorithm corresponds to the choice � = 0.

Let us for the moment assume that we chose � at each iteration differently,
i.e. we consider sequences {�t}T

t=1, which might either be specified before running
the algorithm or computed based on results obtained during the running of the
algorithm. In the following we address the issue of how well this algorithm,
denoted by AdaBoost{�t}, is able to increase the margin, and bound the fraction
of examples with margin smaller than some value θ.

We start with a result generalizing Theorem 1 (cf. Section 3.2) to the case
� �= 0 and a slightly different loss:

Proposition 1 ([153]). Let γt be the edge of ht at the t-th step of AdaBoost�.
Assume −1 ≤ �t ≤ γt for t = 1, . . . , T . Then for all θ ∈ [−1, 1]

L̂θ(fT) ≤ 1
N

N∑

n=1

I(ynfT (xn) ≤ θ) ≤
T∏

t=1

(
1 − γt

1 − �t

) 1−θ
2
(

1 + γt

1 + �t

) 1+θ
2

(27)

The algorithm makes progress, if each of the products on the right hand side of
(27) is smaller than one.

Suppose we would like to reach a margin θ on all training examples, where
we obviously need to assume θ ≤ �∗ (here �∗ is defined in (19)). The question
arises as to which sequence of {�t}T

t=1 one should use to find such a combined
hypothesis in as few iterations as possible (according to (27)). One can show
that the right hand side of (27) is minimized for �t = θ and, hence, one should
always use this choice, independent of how the base learner performs.

Using Proposition 1, we can determine an upper bound on the number of
iterations needed by AdaBoost� for achieving a margin of � on all examples,
given that the maximum margin is �∗ (cf. [167, 157]):

Corollary 2. Assume the base learner always achieves an edge γt ≥ �∗. If 0 ≤
� ≤ �∗ − ν, ν > 0, then AdaBoost� will converge to a solution with margin of at
least � on all examples in at most � 2 log(N)(1−�2)

ν2 � + 1 steps.

Maximal Margins. Using the methodology reviewed so far, we can also analyze
to what value the maximum margin of the original AdaBoost algorithm converges
asymptotically. First, we state a lower bound on the margin that is achieved by
AdaBoost�. We find that the size of the margin is not as large as it could be
theoretically based on Theorem 4. We briefly discuss below two algorithms that
are able to maximize the margin.

140 R. Meir and G. Rätsch

As long as each factor on the r.h.s. of (27) is smaller than 1, the bound
decreases. If it is bounded away from 1, then it converges exponentially fast to
zero. The following corollary considers the asymptotic case and provides a lower
bound on the margin when running AdaBoost� forever.

Corollary 3 ([153]). Assume AdaBoost� generates hypotheses h1, h2, . . . with
edges γ1, γ2, Let γ = inft=1,2,... γt and assume γ > �. Then the smallest
margin ρ of the combined hypothesis is asymptotically (t → ∞) bounded from
below by

ρ ≥ log(1 − �2) − log(1 − γ2)

log
(

1+γ
1−γ

)
− log

(
1+�
1−�

) ≥ γ + �

2
. (28)

From (28) one can understand the interaction between � and γ: if the difference
between γ and � is small, then the middle term of (28) is small. Thus, if � is
large (assuming � ≤ γ), then ρ must be large, i.e. choosing a larger � results in
a larger margin on the training examples.

Remark 2. Under the conditions of Corollary 3, one can compute a lower bound
on the hypothesis coefficients in each iteration. Hence the sum of the hypothesis
coefficients will increase to infinity at least linearly. It can be shown that this
suffices to guarantee that the combined hypothesis has a large margin, i.e. larger
than � (cf. [147], Section 2.3).

However, in Section 4.1 we have shown that the maximal achievable margin
is at least γ. Thus if � is chosen to be too small, then we guarantee only a
suboptimal asymptotic margin. In the original formulation of AdaBoost we have
� = 0 and we guarantee only that AdaBoost0 achieves a margin of at least
γ/2.6 This gap in the theory led to the so-called Arc-GV algorithm [27] and the
Marginal AdaBoost algorithm [157].

Arc-GV. The idea of of Arc-GV [27] is to set � to the margin that is currently
achieved by the combined hypothesis, i.e. depending on the previous performance
of the base learner:7

�t = max
(

�t−1, min
n=1,... ,N

ynft−1(xn)
)

. (29)

There is a very simple proof using Corollary 3 that Arc-GV asymptotically
maximizes the margin [147, 27]. The idea is to show that �t converges to ρ∗ –
the maximum margin. The proof is by contradiction: Since {�t} is monotonically
increasing on a bounded interval, it must converge. Suppose {�t} converges to a
value �∗ smaller than ρ∗, then one can apply Corollary 3 to show that the margin
of the combined hypothesis is asymptotically larger than ρ∗+�∗

2 . This leads to a
contradiction, since �t is chosen to be the margin of the previous iteration. This
shows that Arc-GV asymptotically maximizes the margin.
6 Experimental results in [157] confirm this analysis and illustrate that the bound

given in Corollary 3 is tight.
7 The definition of Arc-GV is slightly modified. The original algorithm did not use the

max.

An Introduction to Boosting and Leveraging 141

Marginal AdaBoost. Unfortunately, it is not known how fast Arc-GV converges
to the maximum margin solution. This problem is solved by Marginal AdaBoost
[157]. Here one also adapts �, but in a different manner. One runs AdaBoost�

repeatedly, and determines � by a line search procedure: If AdaBoost� is able to
achieve a margin of � then it is increased, otherwise decreased. For this algorithm
one can show fast convergence to the maximum margin solution [157].

4.4 Relation to Barrier Optimization

We would like to point out how the discussed algorithms can be seen in the
context of barrier optimization. This illustrates how, from an optimization point
of view, Boosting algorithms are related to linear programming, and provide
further insight as to why they generate combined hypotheses with large margins.

The idea of barrier techniques is to solve a sequence of unconstrained op-
timization problems in order to solve a constrained optimization problem (e.g.
[77, 136, 40, 156, 147]). We show that the exponential function acts as a barrier
function for the constraints in the maximum margin LP (obtained from (24) by
setting p = 1 and restricting wj ≥ 0):

max
ρ,w

ρ

s.t. yn〈xn,w〉 ≥ ρ n = 1, 2, . . . , N
wj ≥ 0,

∑
wj = 1.

(30)

Following the standard methodology and using the exponential barrier func-
tion8 β exp(−z/β) [40], we find the barrier objective for problem (30):

Fβ(w, ρ) = −ρ + β

N∑

n=1

exp

[
1
β

(
ρ − ynfw(xn)∑

j wj

)]
, (31)

which is minimized with respect to ρ and w for some fixed β. We denote the
optimum by wβ and ρβ . One can show that any limit point of (wβ , ρβ) for β → 0
is a solution of (30) [136, 19, 40]. This also holds when one only has a sequence
of approximate minimizers and the approximation becomes better for decreasing
β [40]. Additionally, the quantities d̃n = exp(ρβ

∑
j wj − ynfwβ

(xn))/Z (where
Z is chosen such that

∑
n d̃n = 1) converge for β → 0 to the optimal Lagrange

multipliers d∗
n of the constraints in (30) (under mild assumptions, see [40], Theo-

rem 2, for details). Hence, they are a solution of the edge minimization problem
(20).

To see the connection between Boosting and the barrier approach, we chose

β =
(∑

j wj

)−1
. If the sum of the hypothesis coefficients increases to infinity

(cf. Remark 2 in Section 4.3), then β converges to zero. Plugging in this choice
of β into (31) one obtains: −ρ + (

∑
j wj)−1∑N

n=1 exp
[
ρ
∑

j wj − ynfw(xn)
]
.

Without going into further details [147, 150], one can show that this function
8 Other barrier functions are β log(z) (log-barrier) and βz log(z) (entropic barrier).

142 R. Meir and G. Rätsch

is minimized by the AdaBoost� algorithm. Thus, one essentially obtains the
exponential loss function as used in AdaBoost� for ρ = �.

Seen in this context, AdaBoost� is an algorithm that finds a feasible solution,
i.e. one that has margin at least �. Also, it becomes clear why it is important
that the sum of the hypothesis coefficients goes to infinity, an observation already
made in the previous analysis (cf. Remark 2): otherwise β would not converge
to 0 and the constraints may not be enforced. Arc-GV and Marginal AdaBoost
are extensions, where the parameter ρ is optimized as well. Hence, AdaBoost,
AdaBoost�, Arc-GV and Marginal AdaBoost can be understood as particular
implementations of a barrier optimization approach, asymptotically solving a
linear optimization problem.

5 Leveraging as Stagewise Greedy Optimization

In Section 4 we focused mainly on AdaBoost. We now extend our view to more
general ensemble learning methods which we refer to as leveraging algorithms
[56]. We will relate these methods to numerical optimization techniques. These
techniques served as powerful tools to prove the convergence of leveraging algo-
rithms (cf. Section 5.4).

We demonstrate the convergence of ensemble learning methods such as Ad-
aBoost [70] and Logistic Regression (LR) [74, 39], although the techniques are
much more general. These algorithms have in common that they iteratively call
a base learning algorithm L (a.k.a. weak learner) on a weighted training sam-
ple. The base learner is expected to return at each iteration t a hypothesis ht

from the hypothesis set H that has small weighted training error (see (4)) or
large edge (see (18)). These hypotheses are then linearly combined to form the
final or composite hypothesis fT as in (1). The hypothesis coefficient αt is deter-
mined at iteration t, such that a certain objective is minimized or approximately
minimized, and it is fixed for later iterations.

For AdaBoost and the Logistic Regression algorithm [74] it has been shown
[39] that they generate a composite hypothesis minimizing a loss function G –
in the limit as the number of iterations goes to infinity. The loss depends only
on the output of the combined hypothesis fT on the training sample. However,
the assumed conditions (discussed later in detail) in [39] on the performance of
the base learner are rather strict and can usually not be satisfied in practice.
Although parts of the analysis in [39] hold for any strictly convex cost function
of Legendre-type (cf. [162], p. 258), one needs to demonstrate the existence of a
so-called auxiliary function (cf. [46, 39, 114, 106]) for each cost function other
than the exponential or the logistic loss. This has been done for the general case
in [147] under very mild assumptions on the base learning algorithm and the
loss function.

We present a family of algorithms that are able to generate a combined
hypothesis f converging to the minimum of some loss function G[f] (if it exists).
Special cases are AdaBoost [70], Logistic Regression and LS-Boost [76]. While
assuming rather mild conditions on the base learning algorithm and the loss
function G, linear convergence rates (e.g. [115]) of the type G[ft+1] − G[f∗] ≤

An Introduction to Boosting and Leveraging 143

η(G[ft] − G[f∗]) for some fixed η ∈ [0, 1) has been shown. This means that the
deviation from the minimum loss converges exponentially to zero (in the number
of iterations). Similar convergence rates have been proven for AdaBoost in the
special case of separable data (cf. Section 4.3 and [70]). In the general case these
rates can only be shown when the hypothesis set is finite. However, in practice
one often uses infinite sets (e.g. hypotheses parameterized by some real valued
parameters). Recently, Zhang [199] has shown order one convergence for such
algorithms, i.e. G[ft+1]−G[f∗] ≤ c/t for some fixed c > 0 depending on the loss
function.

5.1 Preliminaries

In this section and the next one we show that AdaBoost, Logistic Regression and
many other leveraging algorithms generate a combined hypothesis f minimizing
a particular loss G on the training sample.

The composite hypothesis fw is a linear combination of the base hypotheses:

fw ∈ lin(H) :=

∑

h̃∈H

wh̃h̃ | h̃ ∈ H, wh̃ ∈ R

 ,

where the w’s are the combination coefficients. Often one would like to find
a combined function with small classification error, hence one would like to
minimize the 0/1-loss:

G0/1(f, S) :=
N∑

n=1

I(yn �= sign(fw(xn))).

However, since this loss is non-convex and not even differentiable, the problem of
finding the best linear combination is a very hard problem. In fact, the problem is
provably intractable [98]. One idea is to use another loss function which bounds
the 0/1-loss from above. For instance, AdaBoost employs the exponential loss

GAB(fw, S) :=
N∑

n=1

exp(−ynfw(xn)),

and the LogitBoost algorithm [74] uses the Logistic loss:

GLR(fw, S) :=
N∑

n=1

log2 (1 + exp(−ynfw(xn))) .

As can be seen in Figure 4, both loss functions bound the classification error
G0/1(f, S) from above. Other loss functions have been proposed in the literature,
e.g. [74, 127, 154, 196].

It can be shown [116, 196, 28] that in the infinite sample limit, where the
sample average converges to the expectation, minimizing either GAB(fw, S) or

144 R. Meir and G. Rätsch

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7
0/1−loss
Squared loss
Logistic loss
Hinge loss

lo
ss

yf(x)

Fig. 4. The exponential (dashed)
and logistic (solid) loss func-
tions,plotted against ρ = yf(x).
Both bound the 0/1-loss from
above.

GLR(fw, S) leads to the same classifier as would be obtained by minimizing
the probability of error. More precisely, let GAB(f) = E{exp(−yf(x))}, and
set G0/1(f) = E{I[y �= sign(f(x))]} = Pr[y �= sign(f(x))]. Denote by f∗ the
function minimizing GAB(f). Then it can be shown that f∗ minimizes Pr[y �=
sign(f(x))], namely achieves the Bayes risk. A similar argument applies to other
loss functions. This observation forms the basis for the consistency proofs in
[116, 123] (cf. Section 3.5).

Note, that the exponential and logistic losses are both convex functions.
Hence, the problem of finding the global optimum of the loss with respect to
the combination coefficients can be solved efficiently. Other loss functions have
been used to approach multi-class problems [70, 3, 164], ranking problems [95],
unsupervised learning [150] and regression [76, 58, 149]. See Section 7 for more
details on some of these approaches.

5.2 A Generic Algorithm

Most Boosting algorithms have in common that they iteratively run a learn-
ing algorithm to greedily select the next hypothesis h ∈ H. In addition, they
use in some way a weighting on the examples to influence the choice of the
base hypothesis. Once the hypothesis is chosen, the algorithm determines the
combination weight for the newly obtained hypothesis. Different algorithms use
different schemes to weight the examples and to determine the new hypothesis
weight.

In this section we discuss a generic method (cf. Algorithm 5.2) and the
connection between the loss function minimized and the particular weighting
schemes. Many of the proposed algorithms can be derived from this scheme.
Let us assume the loss function G(f, S) has the following additive form9

G(f, S) :=
N∑

n=1

g(f(xn), yn), (32)

and we would like to solve the optimization problem
9 More general loss functions are possible and have been used, however, for the sake

of simplicity, we chose this additive form.

An Introduction to Boosting and Leveraging 145

Algorithm 5.2 – A Leveraging algorithm for the loss function G.

1. Input: S = 〈(x1, y1), . . . , (xN , yN)〉, No. of Iterations T
Loss function G : R

N → R

2. Initialize: f0 ≡ 0, d1
n = g′(f0(xn), yn) for all n = 1 . . . N

3. Do for t = 1, . . . , T ,
a) Train classifier on {S,dt} and obtain hypothesis H ∈ ht : X → Y

b) Set αt = argminα∈R
G[ft + αht]

c) Update ft+1 = ft + αtht and d
(t+1)
n = g′(ft+1(xn), yn), n = 1, . . . , N

4. Output: fT

min
f∈lin(H)

G(f, S) = min
w

{
N∑

n=1

g(fw(xn), yn)

}
. (33)

In step (2) of Algorithm 5.2 the example weights are initialized using the deriva-
tive g′ of the loss function g with respect to the first argument at (f0(xn), yn)
(i.e. at (0, yn)).

At each step t of Algorithm 5.2 one can compute the weight wt
j assigned to

each base hypothesis h̃j , such that (cf. (22))

fwt := ft =
∑

h̃∈H

wt
h̃
h̃ =

t∑

r=1

αtht.

In iteration t of Algorithm 5.2 one chooses a hypothesis ht, which corresponds
to a weight (coordinate) wht

. This weight is then updated to minimize the loss
(cf. step (3b)): w

(t+1)
ht

= w
(t)
ht

+ αt. Since one always selects a single variable for
optimization at each time step, such algorithms are called coordinate descent
methods.

Observe that if one uses AdaBoost’s exponential loss in Algorithm 5.2, then
d
(t+1)
n = g′(ft(xn), yn) = yn exp(−ynft(xn)). Hence, in distinction from the

original AdaBoost algorithm (cf. Algorithm 2.1), the d’s are multiplied by the
labels. This is the reason why we will later use a different definition of the edge
(without the label).

Consider what would happen, if one always chooses the same hypothesis
(or coordinate). In this case, one could not hope to prove convergence to the
minimum. Hence, one has to assume the base learning algorithm performs well
in selecting the base hypotheses from H. Let us first assume the base learner
always find the hypothesis with maximal edge (or minimal classification error in
the hard binary case):

ht = argmax
h̃∈H

{
N∑

n=1

dt
nh̃(xn)

}
. (34)

This is a rather restrictive assumption, being one among many that can be made
(cf. [168, 199, 152]). We will later significantly relax this condition (cf. (40)).

146 R. Meir and G. Rätsch

Let us discuss why the choice in (34) is useful. For this we compute the
gradient of the loss function with respect to the weight wh̃ of each hypothesis h̃
in the hypothesis set:

∂ G(fwt , S)
∂wh̃

=
N∑

n=1

g′(ft(xn), yn)h̃(xn) =
N∑

n=1

dt
nh̃(xn). (35)

Hence, ht is the coordinate that has the largest component in the direction of
the gradient vector of G evaluated at wt.10 If one optimizes this coordinate one
would expect to achieve a large reduction in the value of the loss function.

This method of selecting the coordinate with largest absolute gradient com-
ponent is called Gauss-Southwell-method in the field of numerical optimization
(e.g. [115]). It is known to converge under mild assumptions [117] (see details in
[152] and Section 5.4).

Performing the explicit calculation in (35) for the loss functions GAB (see (5))
yields the AdaBoost approach described in detail in Algorithm 2.1. In this case
g(f(x), y) = exp(−yf(x)) implying that d

(t)
n ∝ yn exp(−ynft−1(xn)), which, up

to a normalization constant and the factor yn is the form given in Algorithm 2.1.
The LogitBoost algorithm [74] mentioned in Section 2.2 can be derived in

a similar fashion using the loss function GLR (see (7)). In this case we find
that d

(t)
n ∝ yn/(1 + exp(ynft−1(xn))). Observe that in this case, the weights

assigned to misclassified examples with very negative margins is much smaller
than the exponential weights assigned by AdaBoost. This may help to explain
why LogitBoost tends to be less sensitive to noise and outliers than AdaBoost
[74]. Several extensions of the AdaBoost and LogitBoost algorithms based on
Bregman distances were proposed in [39] following earlier work of [104] and
[110] (cf. Section 5.3).

5.3 The Dual Formulation

AdaBoost was originally derived from results on online-learning algorithms [70],
where one receives at each iteration one example, then predicts its label and
incurs a loss. The important question in this setting relates to the speed at
which the algorithm is able to learn to produce predictions with small loss. In
[35, 106, 105] the total loss was bounded in terms of the loss of the best predic-
tor. To derive these results, Bregman divergences [24] and generalized projections
were extensively used. In the case of boosting, one takes a dual view [70]: Here
the set of examples is fixed, whereas at each iteration the base learning algo-
rithm generates a new hypothesis (the “online example”). Using online-learning
techniques, the convergence in the online learning domain – the dual domain –
has been analyzed and shown to lead to convergence results in the primal do-
main (cf. Section 4.3). In the primal domain the hypothesis coefficients w are
optimized, while the weighting d are optimized in the dual domain.
10 If one assumes the base hypothesis set to be closed under negation (h ∈ H ⇒

−h ∈ H), then this is equivalent to choosing the hypothesis with largest absolute
component in the direction of the gradient.

An Introduction to Boosting and Leveraging 147

In [104, 110] AdaBoost was interpreted as entropy projection in the dual
domain. The key observation is that the weighting d(t+1) on the examples in the
t-th iteration is computed as a generalized projection of d(t) onto a hyperplane
(defined by linear constraints), where one uses a generalized distance ∆(d, d̃)
measure. For AdaBoost the unnormalized relative entropy is used, where

∆(d, d̃) =
N∑

n=1

dn log(dn/d̃n) − dn + d̃n. (36)

The update of the distribution in steps (3c) and (3d) of Algorithm 2.1 is the
solution to the following optimization problem (“generalized projection”):

d(t+1) = argmind∈R
N
+

∆(d,d(t))

with
∑N

n=1 dnynh̃t(xn) = 0,
(37)

Hence, the new weighting d(t+1) is chosen such that the edge of the previous hy-
pothesis becomes zero (as e.g. observed in [70]) and the relative entropy between
the new d(t+1) and the old d(t) distribution is as small as possible [104]. After
the projection the new d lies on the hyperplane defined by the corresponding
constraint (cf. Figure 5).

Fig. 5. Illustration of generalized projec-
tions: one projects a point d(t) onto a plane
H̃ by finding the point d(t+1) on the plane
that has the smallest generalized distance
from d(t). If G(d) = 1

2‖d‖2
2, then the gener-

alized distance is equal to the squared Eu-
clidean distance, hence, the projected point
d(t+1)

E is the closest (in the common sense)
point on the hyperplane. For another Breg-
man function G, one finds another projected
point d(t+1)

B , since closeness is measured dif-
ferently.

The work of [104, 110] and later of [39, 47, 111, 196] lead to a more general
understanding of Boosting methods in the context of Bregman distance opti-
mization and Information Theory. Given an arbitrary strictly convex function
G : R

N
+ → R (of Legendre-type), called a Bregman function, one can define a

Bregman divergence (“generalized distance”):

∆G(x,y) := G(x) − G(y) − 〈∇G(y),x − y〉. (38)

AdaBoost, Logistic regression and many other algorithms can be understood
in this framework as algorithms that iteratively project onto different hyper-

148 R. Meir and G. Rätsch

planes.11 A precursor of such algorithms is the Bregman algorithm [24, 34] and
it is known that the sequence {d(t)} converges to a point on the intersection
of all hyperplanes which minimizes the divergence to the first point d(0) – in
AdaBoost the uniform distribution. Hence they solve the following optimization
problem:12

mind∈R
N
+

∆G(d,d(0))

with
∑N

n=1 dnynh̃(xn) = 0 ∀h̃ ∈ H.
(39)

An interesting questions is how generalized projections relate to coordinate
descent discussed in Section 5.2. It has been shown [147] (see also [117, 107])
that a generalized projection in the dual domain onto a hyperplane (defined by
h; cf. (37)) corresponds to the optimization of the variable corresponding to h in
the primal domain. In particular, if one uses a Bregman function G(d), then this
corresponds to a coordinate-wise descent in the loss function G(

∑J
j=1 wj h̃j(X)+

(∇G)−1(d(0))), where h̃j(X) = (h̃j(x1), . . . , h̃j(xN)) and G : R
N → R is the

convex conjugate of G.13 In the case of AdaBoost one uses G(d) =
∑

n dn log dn,
leading to the relative entropy in (36) and (∇G)−1(d(0)) is zero, if d(0) is uniform.

5.4 Convergence Results

There has recently been a lot of work on establishing the convergence of several
algorithms, which are all very similar to Algorithm 5.2. Since we cannot discuss
all approaches in detail, we only provide an overview of different results which
have been obtained in the past few years (cf. Table 1). In the following few
paragraphs we briefly discuss several aspects which are important for proving
convergence of such algorithms.

Conditions on the Loss Function. In order to prove convergence to a global
minimum one usually has to assume that the loss function is convex (then every
local minimum is a global one). If one allows arbitrary loss functions, one can only
show convergence to a local minimum (i.e. gradient converges to zero, e.g. [127]).
Moreover, to prove convergence one usually assumes the function is reasonably
smooth, where some measure of smoothness often appears in convergence rates.
For some results it is important that the second derivatives are strictly positive,
i.e. the loss function is strictly convex (“function is not flat”) – otherwise, the
algorithm might get stuck.

11 In [48] a linear programming approach (“column generation”) for simultaneously
projection onto a growing set of hyperplanes has been considered. Some details are
described in Section 6.2.

12 These algorithms also work, when the equality constraints in (37) are replaced by
inhomogeneous inequality constraints: Then one only projects to the hyperplane,
when the constraint is not already satisfied.

13 In the case of Bregman functions, the convex conjugate is given by G(o) =
〈(∇G)−1(o),o〉 − G((∇G)−1(o)).

An Introduction to Boosting and Leveraging 149

Relaxing Conditions on the Base learner. In Section 5.2 we made the
assumption that the base learner always returns the hypothesis maximizing the
edge (cf. (34)). In practice, however, it might be difficult to find the hypothesis
that exactly minimizes the training error (i.e. maximizes the edge). Hence, some
relaxations are necessary. One of the simplest approaches is to assume that the
base learner always returns a hypothesis with some edge larger that say γ (“γ-
relaxed”, e.g. [70, 57]). This condition was used to show that AdaBoost’s training
error converges exponentially to zero. However, since the edge of a hypothesis
is equal to the gradient with respect to its weight, this would mean that the
gradient will not converge to zero. In the case of AdaBoost this actually happens
and one converges to the minimum of the loss, but the length of the solution
vector does not converge (cf. Section 3.2). More realistically one might assume
that the base learner returns a hypothesis that approximately maximizes the
edge – compared to the best possible hypothesis. [197] considered an additive
term converging to zero (“α-relaxed”) and [152] used a multiplicative term (“β-
relaxed”). We summarize some senses of approximate edge-maximization (e.g.
[70, 197, 151, 147])14

α-relaxed:
N∑

n=1

dt
nht(xn) ≥ argmax

h∈H

{
N∑

n=1

dt
nh(xn)

}
− α,

γ-relaxed:
N∑

n=1

dt
nht(xn) ≥ γ,

τ -relaxed:
N∑

n=1

dt
nht(xn) ≥ τ

(
argmax

h∈H

{
N∑

n=1

dt
nh(xn)

})
,

β-relaxed:
N∑

n=1

dt
nht(xn) ≥ β argmax

h∈H

{
N∑

n=1

dt
nh(xn)

}
, (40)

for some fixed constants α > 0, β > 0, γ > 0 and some strictly monotone and
continuous function τ : R → R with τ(0) = 0.

Size of the Hypothesis Set. For most convergence results the size of the
hypothesis set does not matter. However, in order to be able to attain the min-
imum, one has to assume that the set is bounded and closed (cf. [149]). In
[39, 48, 151] finite hypothesis sets have been assumed in order to show con-
vergence and rates. In the case of classification, where the base hypotheses are
discrete valued, this holds true. However, in practice, one often wants to use
real valued, parameterized hypotheses. Then the hypothesis set is uncountable.
[197, 199] presents rather general convergence results for an algorithm related
to that in Algorithm 5.2, which do not depend on the size of the hypothesis sets
and is applicable to uncountable hypothesis sets.

14 Note that the label yn may be absorbed into the d’s.

150 R. Meir and G. Rätsch

Regularization Terms on the Hypothesis Coefficients. In Section 6 we
will discuss several regularization approaches for leveraging algorithms. One im-
portant ingredient is a penalty term on the hypothesis coefficients, i.e. one seeks
to optimize

min
w∈RJ

{
N∑

n=1

g(fw(xn), yn) + CP(w)

}
(41)

where C is the regularization constant and P is some regularization operator
(e.g. some �p-norm). We have seen that AdaBoost implicitly penalizes the �1-
norm (cf. Section 4.3); this is also true for the algorithm described by [183, 154,
147, 197, 199]. The use of the �2-norm has been discussed in [56, 57, 183]. Only a
small fraction of the analyses found in the literature allow the introduction of a
regularization term. Note, when using regularized loss functions, the optimality
conditions for the base learner change slightly (there will be one additional term
depending on the regularization constant, cf. [147, 199]). Some regularization
functions will be discussed in Section 6.3.

Convergence Rates. The first convergence result was obtained [70] for Ad-
aBoost and the γ-relaxed condition on the base learner. It showed that the
objective function is reduced at every step by a factor. Hence, it decreases ex-
ponentially. Here, the convergence speed does not directly depend on the size
of the hypothesis class and the number of examples. Later this was generalized
to essentially exponentially decreasing functions (like in Logistic Regression, but
still α-relaxed condition, cf. [59]). Also, for finite hypothesis sets and strictly con-
vex loss one can show the exponential decrease of the loss towards its minimum
[151] (see also [117]) – the constants, however, depend heavily on the size of the
training set and the number of base hypotheses. The best known rate for convex
loss functions and arbitrary hypothesis sets is given in [197]. Here the rate is
O(1/t) and the constants depend only on the smoothness of the loss function.
In this approach it is mandatory to regularize with the �1-norm. Additionally,
the proposed algorithm does not exactly fit into the scheme discussed above (see
[197] for details).

Convexity with respect to parameters. In practical implementations of
Boosting algorithms, the weak learners are parameterized by a finite set of pa-
rameters θ = (θ1, . . . , θs), and the optimization needs to be performed with
respect to θ rather than with respect to the weak hypothesis h directly. Even if
the loss function G is convex with respect to h, it is not necessarily convex with
respect to θ. Although this problem may cause some numerical problems, we do
not dwell upon it in this review.

6 Robustness, Regularization, and Soft-Margins

It has been shown that Boosting rarely overfits in the low noise regime (e.g.
[54, 70, 167]); however, it clearly does so for higher noise levels (e.g. [145, 27, 81,

An Introduction to Boosting and Leveraging 151

Table 1. Summary of Results on the Convergence of Greedy Approximation Methods

Ref. Cost Function Base
Learner

Hypothesis
Set

Convergence Rate Regula-
rization

[70] exponential
loss

γ-relaxed uncountable global minimum,
if loss zero

O(e−t) no

[127]Lipschitz dif-
ferentiable

strict uncountable gradient zero no no

[127]convex, Lips-
chitz differen-
tiable

strict uncountable global minimum no ‖ · ‖1

possible

[27] convex, posi-
tive, differen-
tiable

strict countable global minimum no ‖ · ‖1

mandatory

[56] essentially
exp. decreas-
ing

γ-relaxed uncountable global minimum,
if loss zero

O(t− 1
2),

then
O(e−t)

no

[39] strictly con-
vex, differen-
tiable� � �

strict�� finite global optimum
(dual problem)

no no

[48] linear� strict finite global minimum no ‖ · ‖1

mandatory
[58] squared loss,

ε-loss
γ-relaxed uncountable global minimum ‖ · ‖2

mandatory
[151] strictly con-

vex, differen-
tiable� � �

β-relaxed finite global minimum,
unique dual sol.

O(e−t) ‖ · ‖1

possible

[149] linear� β-relaxed uncountable,
compact

global minimum no ‖ · ‖1

possible
[147] strictly convex τ -relaxed uncountable,

compact
global minimum no ‖ · ‖1

mandatory
[197]convex strict uncountable global infimum O(1/t) ‖ · ‖1

mandatory

� This also includes piecewise linear, convex functions like the soft-margin or
the ε-insensitive loss.

�� Extended to τ -relaxed in [147].
� � � There are a few more technical assumptions. These functions are usually ref-

ereed to as functions of Legendre-type [162, 13].

153, 127, 12, 51]). In this section, we summarize techniques that yield state-of-
the-art results and extend the applicability of boosting to the noisy case.

The margin distribution is central to the understanding of Boosting. We
have shown in Section 4.3 that AdaBoost asymptotically achieves a hard margin
separation, i.e. the algorithm concentrates its resources on a few hard-to-learn
examples. Since a hard margin is clearly a sub-optimal strategy in the case of
noisy data, some kind of regularization must be introduced in the algorithm to

152 R. Meir and G. Rätsch

alleviate the distortions that single difficult examples (e.g. outliers) can cause
the decision boundary.

We will discuss several techniques to approach this problem. We start with
algorithms that implement the intuitive idea of limiting the influence of a single
example. First we present AdaBoostReg [153] which trades off the influence with
the margin, then discuss BrownBoost [65] which gives up on examples for which
one cannot achieve large enough margins within a given number of iterations.
We then discuss SmoothBoost [178] which prevents overfitting by disallowing
overly skewed distributions, and finally briefly discuss some other approaches of
the same flavor.

In Section 6.2 we discuss a second group of approaches which are motivated
by the margin-bounds reviewed in Section 3.4. The important insight is that
it is not the minimal margin which is to be maximized, but that the whole
margin distribution is important: one should accept small amounts of margin-
errors on the training set, if this leads to considerable increments of the margin.
First we describe the DOOM approach [125] that uses a non-convex, monotone
upper bound to the training error motivated from the margin-bounds. Then we
discuss a linear program (LP) implementing a soft-margin [17, 153] and outline
algorithms to iteratively solve the linear programs [154, 48, 146].

The latter techniques are based on modifying the AdaBoost margin loss
function to achieve better noise robustness. However, DOOM as well as the
LP approaches employ �∞-margins, which correspond to a �1-penalized cost
function. In Section 6.3 we will discuss some issues related to other choices of
the penalization term.

6.1 Reducing the Influence of Examples

The weights of examples which are hard to classify are increased at every step
of AdaBoost. This leads to AdaBoost’s tendency to exponentially decrease the
training error and to generate combined hypotheses with large minimal margin.
To discuss the suboptimal performance of such a hard margin classifier in the
presence of outliers and mislabeled examples in a more abstract way, we analyze
Figure 6. Let us first consider the noise free case [left]. Here, we can estimate a
separating hyperplane correctly. In Figure 6 [middle] we have one outlier, which
corrupts the estimation. Hard margin algorithms will concentrate on this outlier
and impair the good estimate obtained in the absence of the outlier. Finally,
let us consider more complex decision boundaries (cf. Figure 6 [right]). Here the
overfitting problem is even more pronounced, if one can generate more and more
complex functions by combining many hypotheses. Then all training examples
(even mislabeled ones or outliers) can be classified correctly, which can result in
poor generalization.

From these cartoons, it is apparent that AdaBoost and any other algorithm
with large hard margins are noise sensitive. Therefore, we need to relax the hard
margin and allow for a possibility of “mistrusting” the data. We present several
algorithms which address this issue.

An Introduction to Boosting and Leveraging 153

Fig. 6. The problem of finding a maximum margin “hyperplane” on reliable data [left],
data with outlier [middle] and with a mislabeled example [right]. The solid line shows
the resulting decision boundary, whereas the dashed line marks the margin area. In
the middle and on the left the original decision boundary is plotted with dots. The
hard margin implies noise sensitivity, because only one example can spoil the whole
estimation of the decision boundary. (Figure taken from [153].)

AdaBoostReg. Examples that are mislabeled and usually more difficult to clas-
sify should not be forced to have a positive margin. If one knew beforehand which
examples are “unreliable”, one would simply remove them from the training set
or, alternatively, not require that they have a large margin. Assume one has
defined a non-negative mistrust parameter ζn, which expresses the “mistrust” in
an example (xn, yn). Then one may relax the hard margin constraints (cf. (23)
and (24)) leading to:

max
w,ρ

ρ s.t. ρn(w) ≥ ρ − Cζn, n = 1, . . . , N (42)

where ρn(w) = yn〈xn,w〉/‖w‖1, C is an a priori chosen constant.15 Now one
could maximize the margin using these modified constraints (cf. Section 4).

Two obvious questions arise from this discussion: first, how can one determine
the ζ’s and second, how can one incorporate the modified constraints into a
boosting-like algorithm. In the AdaBoostReg algorithm [153] one tries to solve
both problems simultaneously. One uses the example weights computed at each
iteration to determine which examples are highly influential and hard to classify.
Assuming that the hard examples are “noisy examples”, the algorithm chooses
the mistrust parameter at iteration t, ζ

(t)
n , as the amount by which the example

(xn, yn) influenced the decision in previous iterations:

ζ(t)
n =

∑t
r=1 αrd

(r)
n∑t

r=1 αr

,

15 Note that we use w to mark the parameters of the hyperplane in feature space and
α to denote the coefficients generated by the algorithm (see Section 4.1).

154 R. Meir and G. Rätsch

where the αt’s and d
(t)
n ’s are the weights for the hypotheses and examples, re-

spectively. Moreover, one defines a new quantity, the soft margin ρ̃n(w) :=
ρn(w)+Cζn of an example (xn, yn), which is used as a replacement of the mar-
gin in the AdaBoost algorithm. So, the idea in AdaBoostReg is to find a solution
with large soft margin on all examples, i.e. maximize ρ w.r.t. w and ρ such that
ρ̃n(w) ≥ ρ, n = 1, . . . , N . In this case one expects to observe less overfitting.

One of the problems of AdaBoostReg is that it lacks a convergence proof.
Additionally, it is not clear what the underlying optimization problem is. The
modification is done at an algorithmic level, which makes it difficult to relate
to an optimization problem. Nevertheless, it was one of the first boosting-like
algorithm that achieved state-of-the art generalization results on noisy data (cf.
[146]). In experimental evaluations, it was found that this algorithm is among
the best performing ones (cf. [153]).

BrownBoost. The BrownBoost algorithm [65] is based on the Boosting by
Majority (BBM) algorithm [64]. An important difference between BBM and
AdaBoost is that BBM uses a pre-assigned number of boosting iterations. As
the algorithm approaches its predetermined termination, it becomes less and
less likely that examples which have large negative margins will eventually be-
come correctly labeled. Then, the algorithm “gives up” on those examples and
concentrates its effort on those examples whose margin is, say, a small negative
number [65]. Hence, the influence of the most difficult examples is reduced in
the final iterations of the algorithm. This is similar in spirit to the AdaBoostReg

algorithm, where examples which are difficult to classify are assigned reduced
weights in later iterations.

To use BBM one needs to pre-specify two parameters: (i) an upper bound
on the error of the weak learner ε ≤ 1

2 − 1
2γ (cf. Section 3.1) and (ii) a “target

error” ε > 0. In [65] it was shown that one can get rid of the γ-parameter as in
AdaBoost. The target error ε is interpreted as the training error one wants to
achieve. For noisy problems, one should aim for non-zero training error, while
for noise free and separable data one can set ε to zero. It has been shown that
letting ε in the BrownBoost algorithm approach zero, one recovers the original
AdaBoost algorithm.

To derive BrownBoost, the following “thought experiment” [65] – inspired by
ideas from the theory of Brownian motion – is made: Assume the base learner
returns a hypothesis h with edge larger than γ. Fix some 0 < δ < γ and define
a new hypothesis h′ which is equal to h with probability δ/γ and random oth-
erwise. It is easy to check that the expected edge of h′ is δ. Since the edge is
small, the change of the combined hypothesis and the example weights will be
small as well. Hence, the same hypothesis may have an edge greater than δ for
several iterations (depending on δ) and one does not need to call the base learner
again. The idea in BrownBoost is to let δ approach zero and analyze the above
“dynamics” with differential equations. The resulting BrownBoost algorithm is
very similar to AdaBoost but has some additional terms in the example weight-
ing, which depend on the remaining number of iterations. In addition, in each
iteration one needs to solve a differential equation with boundary conditions to
compute how long a given hypothesis “survives” the above described cycle, which

An Introduction to Boosting and Leveraging 155

determines its weight. More details on this algorithm and theoretical results on
its performance can be found in [65]. Whereas the idea of the algorithm seems
to be very promising, we are not aware of any empirical results illustrating the
efficiency of the approach.

SmoothBoost. The skewness of the distributions generated during the Boost-
ing process suggests that one approach to reducing the effect of overfitting is
to impose limits on this skewness. A promising algorithm along these lines was
recently suggested in [178] following earlier work [53]. The SmoothBoost algo-
rithm was designed to work effectively with malicious noise, and is provably
effective in this scenario, under appropriate conditions. The algorithm is similar
to AdaBoost in maintaining a set of weights d

(t)
n at each boosting iteration, ex-

cept that there is a cutoff of the weight assigned to examples with very negative
margins. The version of SmoothBoost described in [178] requires two parame-
ters as input: (i) κ, which measures the desired error rate of the final classifier,
(ii) and γ which measures the guaranteed edge of the hypothesis returned by
the weak learner. Given these two parameters SmoothBoost can be shown to
converge within a finite number of steps to a composite hypothesis f such that
|{n : ynf(xn) ≤ θ}| < κN , where θ ≤ κ. Moreover, it can be shown that the
weights generated during the process obey d

(t)
n ≤ 1/κN , namely the weights

cannot become too large (compare with the ν-LP in Section 6.2). Although the
convergence time of SmoothBoost is larger than AdaBoost, this is more than
compensated for by the robustness property arising from the smoothness of the
distribution. We observe that SmoothBoost operates with binary or real-valued
hypotheses.

While SmoothBoost seems like a very promising algorithm for dealing with
noisy situations, it should be kept in mind that it is not fully adaptive, in that
both κ and γ need to be supplied in advance (cf. recent work by [30]). We are
not aware of any applications of SmoothBoost to real data.

Other approaches aimed at directly reducing the effect of difficult examples
can be found in [109, 6, 183].

6.2 Optimization of the Margins

Let us return to the analysis of AdaBoost based on margin distributions as
discussed in Section 3.4. Consider a base-class of binary hypotheses H, char-
acterized by VC dimension VCdim(H). From (16) and the fact that RN (H) =
O(
√

VCdim(H)/N) we conclude that with probability at least 1 − δ over the
random draw of a training set S of size N the generalization error of a function
f ∈ co(H) with margins ρ1, . . . , ρN can be bounded by

L(f) ≤ 1
N

N∑

n=1

I(ρn ≤ θ) + O

(√
VCdim(H)

Nθ2 +

√
log(1/δ)

2N

)
(43)

where θ ∈ (0, 1] (cf. Corollary 1). We recall again that, perhaps surprisingly, the
bound in (43) is independent of the number of hypotheses ht that contribute

156 R. Meir and G. Rätsch

to defining f =
∑

t αtht ∈ co(H). It was stated that a reason for the success
of AdaBoost, compared to other ensemble learning methods (e.g. Bagging [25]),
is that it generates combined hypotheses with large margins on the training
examples. It asymptotically finds a linear combination fw of base hypotheses
satisfying

ρn(w) =
ynfw(xn)∑

j wj
≥ ρ n = 1, . . . , N, (44)

for some large margin ρ (cf. Section 4). Then the first term of (43) can be made
zero for θ = ρ and the second term becomes small, if ρ is large. In [27, 81, 157]
algorithms have been proposed that generate combined hypotheses with even
larger margins than AdaBoost. It was shown that as the margin increases, the
generalization performance can become better on data sets with almost no noise
(see also [167, 138, 157]). However, on problems with a large amount of noise,
it has been found that the generalization ability often degrades for hypotheses
with larger margins (see also [145, 27, 153]).

In Section 4 we have discussed connections of boosting to margin maximiza-
tion. The algorithms under consideration approximately solve a linear program-
ming problem, but tend to perform sub-optimally on noisy data. From the margin
bound (43), this is indeed not surprising. The minimum on the right hand side
of (43) is not necessarily achieved with the maximum (hard) margin (largest θ).
In any event, one should keep in mind that (43) is only an upper bound, and
that more sophisticated bounds (e.g. [180, 45, 181]), based on looking at the full
margin distribution as opposed to the single hard margin θ, may lead to different
conclusions.

In this section we discuss algorithms, where the number of margin errors can
be controlled, and hence one is able to control the contribution of both terms in
(43) separately. We first discuss the DOOM approach [125] and then present an
extended linear program – the ν-LP problem – which allows for margin errors.
Additionally, we briefly discuss approaches to solve the resulting linear program
[48, 154, 147].

DOOM. (Direct Optimization Of Margins) The basic idea of [125, 127, 124] is
to replace AdaBoost’s exponential loss function with another loss function with
�1-normalized hypothesis coefficients. In order to do this one defines a class of
B-admissible margin cost functions, parameterized by some integer M .

These loss functions are motivated from the margin bounds of the kind dis-
cussed in Section 3.4, which have a free parameter θ. A large value of M ∼ 1

θ2

corresponds to a “high resolution” and a high effective complexity of the convex
combination (small margin θ), whereas smaller values of M correspond to larger
θ and therefore smaller effective complexity.

The B-admissibility condition ensures that the loss functions appropriately
take care of the trade-off between complexity and empirical error. Following
some motivation (which we omit here), [125, 127, 124] derived an optimal family
of margin loss functions (according to the margin bound). Unfortunately, this
loss function is non-monotone and non-convex (cf. Figure 7, [left]), leading to a
very difficult optimization problem (NP hard).

An Introduction to Boosting and Leveraging 157

The idea proposed in [125] is to replace this loss function with a piece-wise
linear loss function, that is monotone (but non-convex, cf. Figure 7, [right]):

Cθ(z) =

1.1 − 0.1z : −1 ≤ z ≤ 0,
1.1 − z/θ : 0 ≤ z ≤ θ,
0.1(1 − z)/(1 − θ) : θ ≤ z ≤ 1.

The optimization of this margin loss function to a global optimum is still very
difficult, but good heuristics for optimization have been proposed [125, 127, 124].
Theoretically, however, one can only prove convergence to a local minimum (cf.
Section 5.4).

Fig. 7. [left] The “optimal” margin loss functions CM (z), for M = 20, 50 and 200,
compared to the 0/1-loss. [right] Piecewise linear upper bound on the functions CM (z)
and the 0/1-loss (Figure taken from [125].)

Despite the above mentioned problems the DOOM approach seems very
promising. Experimental results have shown that, in noisy situations, one can
considerably improve the performance compared to AdaBoost. However, there
is the additional regularization parameter θ (or M), which needs to be chosen
appropriately (e.g. via cross validation).

Linear Programming Approaches. We now discuss ideas aimed at directly
controlling the number of margin errors. Doing so, one is able to directly control
the contribution of both terms on the r.h.s. of (43) separately. We first discuss
an extended linear program, the ν-LP problem, analyze its solution and review
a few algorithms for solving this optimization problem.

The ν-LP Problem. Let us consider the case where we have given a set H = {hj :
x 	→ [−1, 1], j = 1, . . . , J} of J hypotheses. To find the coefficients w for the
combined hypothesis fw(x) in (21), we extend the linear problem (30) and solve
the following linear optimization problem (see also [17, 154]), which we call the
ν-LP problem:

158 R. Meir and G. Rätsch

max
ρ,w,ξ

{
ρ − 1

νN

N∑

n=1

ξn

}

s.t. ynfw(xn) ≥ ρ − ξn n = 1, . . . , N
ξn, wj ≥ 0 j = 1, . . . , J, n = 1, . . . , N∑J

j=1 wj = 1,

(45)

where ν ∈ (1/N, 1] is a parameter of the algorithm. Here, one does not force all
margins to be large and obtains a soft margin hyperplane.16 The dual optimiza-
tion problem of (45) (cf. (46)) is the same as the edge minimization problem
(20) with one additional constraint: dn ≤ 1

νN . Since dn is the Lagrange multi-
plier associated with the constraint for the n-th example, its size characterizes
how much the example influences the solution of (45). In this sense, the ν-LP
also implements the intuition discussed in Section 6.1. In addition, there seems
to be a direct connection to the SmoothBoost algorithm.

The following proposition shows that ν has an immediate interpretation:

Proposition 2 (ν-Property, e.g. [174, 78, 150]). The solution to the opti-
mization problem (45) possesses the following properties:

1. ν upper-bounds the fraction of margin errors.
2. 1 − ν is greater than the fraction of examples with a margin larger than ρ.

Since the slack variables ξn only enter the cost function linearly, their gra-
dient is constant (once ξn > 0) and the absolute size is not important. Loosely
speaking, this is due to the fact that for the optimum of the primal objective
function, only derivatives w.r.t. the primal variables matter, and the derivative
of a linear function is constant. This can be made more explicit: Any example
outside the margin area, i.e. satisfying ynfw(xn) > ρ, can be shifted arbitrarily,
as long as it does not enter the margin area. Only if the example is exactly on the
edge of the margin area, i.e. ynfw(xn) = ρ, then (almost) no local movement is
possible without changing the solution. If the example (xn, yn) is in the margin
area, i.e. ξn > 0, then it has been shown that almost any local movements are
allowed (cf. [147] for details).

A Column Generation Approach. Recently, an algorithm for solving (45) has
been proposed [48] (see also in the early work of [81]). It uses the Column Gener-
ation (CG) method known since the 1950’s in the field of numerical optimization
(e.g. [136], Section 7.4). The basic idea of column generation is to iteratively con-
struct the optimal ensemble for a restricted subset of the hypothesis set, which is
iteratively extended. To solve (45), one considers its dual optimization problem:

min
d,γ

γ

s.t.
∑N

n=1 yndnhj(xn) ≤ γ j = 1, . . . , J

d ≥ 0,
∑N

n=1 dn = 1
dn ≤ 1

νN n = 1, . . . , N.

(46)

16 See Figure 4 for the soft margin loss, here one uses a scaled version.

An Introduction to Boosting and Leveraging 159

At each iteration t, (46) is solved for a small subset of hypotheses Ht ⊆ H.
Then the base learner is assumed to find a hypothesis ht that violates the first
constraint in (46) (cf. τ -relaxation in Section 5.4). If there exists such an hy-
pothesis, then it is added to the restricted problem and the process is continued.
This corresponds to generating a column in the primal LP (45). If all hypotheses
satisfy their constraint, then the current dual variables and the ensemble (primal
variables) are optimal, as all constraints of the full master problem are fulfilled.

The resulting algorithm is a special case of the set of algorithms known as
exchange methods (cf. [93], Section 7 and references therein). These methods are
known to converge (cf. [48, 149, 93] for finite and infinite hypothesis sets). To the
best of our knowledge, no convergence rates are known, but if the base learner
is able to provide “good” hypotheses/columns, then it is expected to converge
much faster than simply solving the complete linear program. In practice, it
has been found that the column generation algorithm halts at an optimal solu-
tion in a relatively small number of iterations. Experimental results in [48, 149]
show the effectiveness of the approach. Compared to AdaBoost, one can achieve
considerable improvements of the generalization performance [48].

A Barrier Algorithm. Another idea is to derive a barrier algorithm for (45) along
the lines of Section 4.4. Problem (45) is reformulated: one removes the constant
1

νN in the objective of (45), fixes ρ = 1 and adds the sum of the hypothesis
coefficients multiplied with another regularization constant C (instead of 1

νN).
One can in fact show that the modified problem has the same solution as (45):
for any given ν one can find a C such that both problems have the same solution
(up to scaling) [48]. The corresponding barrier objective Fβ for this problem
can be derived as in Section 4.4. It has two sets of parameters, the combination
coefficients w and the slack variables ξ ∈ R

N . By setting ∇ξ Fβ = 0, we can
find the minimizing ξ for given β and w, which one plugs in and obtains

Fβ(w) = C

J∑

j=1

wj + β

N∑

n=1

log
[
1 + exp

(
1 − ynfw(xn)

β

)]
+ βN. (47)

If one sets β = 1 and C = 0 (i.e. if we do not regularize), then one obtains a
formulation which is very close to the logistic regression approach as in [74, 39].
The current approach can indeed be understood as a leveraging algorithm as in
Section 5.2 with regularization. Furthermore, if we let β approach zero, then the
scaled logistic loss in (47) converges to the soft-margin loss

∑N
n=1 max(0, 1 −

ynfw(xn)).
Using the techniques discussed in Section 5, one can easily derive algorithms

that optimize (47) for a fixed β up to a certain precision. Here one needs to
take care of the �1-norm regularization, which can be directly incorporated into
a coordinate descent algorithm (e.g. [147]). The idea is to reduce β, when a
certain precision is reached and then the optimization is continued with the
modified loss function. If one chooses the accuracy and the rate of decrease
of β appropriately, one obtains a practical algorithm, for which one can show
asymptotic convergence (for finite hypothesis sets see [147, 149]).

160 R. Meir and G. Rätsch

An earlier realization of the same idea was proposed in [154], and termed
ν-Arc. The idea was to reformulate the linear program with soft margin into a
non-linear program with maximum hard margin, by appropriately redefining the
margin (similar to AdaBoostReg in Section 6.1). Then, as a heuristic, Arc-GV
(cf. Section 4.3) was employed to maximize this newly defined margin.17

The barrier approach and ν-Arc led to considerable improvements compared
to AdaBoost on a large range of benchmark problems [154, 147]. Since they
try to solve a similar optimization problem as the column generation algorithm,
one would expect very minor differences. In practice, the column generation
algorithm often converges faster, however, it has a problem in combination with
some base learners [48]: In the CG approach, most of the example weights will be
zero after a few iterations (since the margin in these examples is larger than ρ and
the margin constraints are not active). Then the base learner may have problems
to generate good hypotheses. Since the barrier approach is much “smoother”,
this effect is reduced considerably.

6.3 Regularization Terms and Sparseness

We will now discuss two main choices of regularizers that have a drastic influence
on the properties of the solution of regularized problems. Let us consider opti-
mization problems as in Section 5 with a regularization term in the objective:18

min
w

{
N∑

n=1
g(fw(xn), yn) + C

J∑
j=1

p(wj)

}

s.t. 0 ≤ w ∈ R
J ,

(48)

where C is a regularization constant, g is a loss function and p : R+ → R+ is a
differentiable and monotonically increasing function with p(0) = 0. For simplicity
of the presentation we assume the hypothesis set is finite, but the statements
below also hold for countable hypothesis sets; in the case of uncountable sets
some further assumptions are required (cf. [93], Theorem 4.2, and [149, 148,
198]).

We say a set of hypothesis coefficients (see (21)) is sparse, if it contains
O(N) non-zero elements. The set is not sparse if it contains e.g. O(J) non-zero
elements, since the feature space is assumed to be much higher dimensional than
N (e.g. infinite dimensional). We are interested in formulations of the form (48)
for which the optimization problem is tractable, and which, at the same time,
lead to sparse solutions. The motivation for the former aspect is clear, while the
motivation for sparsity is that it often leads to superior generalization results
(e.g. [91, 90]) and also to smaller, and therefore computationally more efficient,
ensemble hypotheses. Moreover, in the case of infinite hypothesis spaces, sparsity
leads to a precise representation in terms of a finite number of terms.
17 A Matlab implementation can be downloaded at

http://mlg.anu.edu.au/˜raetsch/software.
18 Here we force the w’s to be non-negative, which can be done without loss of gener-

ality, if the hypothesis set is closed under negation.

An Introduction to Boosting and Leveraging 161

Let us first consider the �1-norm as regularizer, i.e. p(wj) = wj . Assume fur-
ther that w∗ is the optimal solution to (48) for some C ≥ 0. Since the regularizer
is linear, there will be a (J − 1)-dimensional subspace of w’s having the same
�1-norm as w∗. By further restricting fw(xn) = fw∗(xn), n = 1, . . . , N , one
obtains N additional constraints. Hence, one can choose a w from a J − N − 1
dimensional space that leads to the same objective value as w∗. Therefore, there
exists a solution that has at most N +1 non-zero entries and, hence, the solution
is sparse. This observations holds for arbitrary loss functions and any concave
regularizer such as �1-norm [147]. Note that N + 1 is an upper bound on the
number of non-zero elements – in practice much sparser solutions are observed
[37, 48, 23, 8].

In neural networks, SVMs, matching pursuit (e.g. [118]) and many other
algorithms, one uses the �2-norm for regularization. In this case the optimal
solution w∗ can be expressed as a linear combination of the mapped examples
in feature space (cf. (26)),

w∗ =
N∑

n=1

βnΦ(xn).

Hence, if the vectors Φ(xn) are not sparse and the β’s are not all zero, the solution
w∗ is also unlikely to be sparse (since it is a linear combination of non-sparse vec-
tors). Consider, for instance, the case where the J vectors (hj(x1), . . . , hj(xN))
(j = 1, . . . , J), interpreted as points in an N dimensional space are in general
position (any subset of N points span the full N dimensional space. For instance,
this occurs with probability 1 for points drawn independently at random from
a probability density supported over the whole space). If J � N , then one can
show that there is a fraction of at most O

(
N

J−N

)
coefficients that are zero.

Hence, for large J almost all coefficients are non-zero and the solution is not
sparse. This holds not only for the �2-norm regularization, but for any other
strictly convex regularizer [147]. This observation can be intuitively explained
as follows: There is a J − N dimensional subspace leading to the same output
fw(xn) on the training examples. Assume the solution is sparse and one has a
small number of large weights. If the regularizer is strictly convex, then one can
reduce the regularization term by distributing large weights over many other
weights which were previously zero (while keeping the loss term constant).

We can conclude that the type of regularizer determines whether there ex-
ists an optimal hypothesis coefficient vector that is sparse or not. Minimizing a
convex loss function with a strictly concave regularizer will generally lead to non-
convex optimization problems with potentially many local minima. Fortunately,
the �1-norm is concave and convex. By employing the �1-norm regularization,
one can obtain sparse solutions while retaining the computational tractability of
the optimization problem. This observation seems to lend strong support to the
�1-norm regularization.

162 R. Meir and G. Rätsch

7 Extensions

The bulk of the work discussed in this review deals with the case of binary
classification and supervised learning. However, the general Boosting framework
is much more widely applicable. In this section we present a brief survey of
several extensions and generalizations, although many others exist, e.g. [76,
158, 62, 18, 31, 3, 155, 15, 44, 52, 82, 164, 66, 38, 137, 147, 16, 80, 185, 100, 14].

7.1 Single Class

A classical unsupervised learning task is density estimation. Assuming that the
unlabeled observations x1, . . . ,xN were generated independently at random ac-
cording to some unknown distribution P (x), the task is to estimate its related
density function. However, there are several difficulties to this task. First, a den-
sity function need not always exist — there are distributions that do not possess
a density. Second, estimating densities exactly is known to be a hard task. In
many applications it is enough to estimate the support of a data distribution
instead of the full density. In the single-class approach one avoids solving the
harder density estimation problem and concentrate on the simpler task, i.e. es-
timating quantiles of the multivariate distribution.

So far there are two independent algorithms to solve the problem in a
boosting-like manner. They mainly follow the ideas proposed in [184, 173] for
kernel feature spaces, but have the benefit of better interpretability of the gener-
ated combined hypotheses (see discussion in [150]). The algorithms proposed in
[32] and [150] differ in the way they solve very similar optimization problems –
the first uses column generation techniques whereas the latter uses barrier opti-
mization techniques (cf. Section 6.2). For brevity we will focus on the underlying
idea and not the algorithmic details. As in the SVM case [173], one computes
a hyperplane in the feature space (here spanned by the hypothesis set H, cf.
Section 4.2) such that a pre-specified fraction of the training example will lie
beyond that hyperplane, while at the same time demand that the hyperplane
has maximal �∞-distance (margin) to the origin – for an illustration see Figure 8.
This is realized by solving the following linear optimization problem:

min
w∈RJ ,ξ∈RN ,ρ∈R

−νρ + 1
N

N∑
n=1

ξn

s.t.
∑J

j=1 wjhj(xn) ≥ ρ − ξn, n = 1, . . . , N

‖w‖1 = 1, ξn ≥ 0, n = 1, . . . , N

(49)

which is essentially the same as in the two-class soft-margin approach (cf. Sec-
tion 6.2), but with all labels equal to +1. Hence, the derivation appropriate
optimization algorithms is very similar.

7.2 Multi-class

There has been much recent interest in extending Boosting to multi-class prob-
lems, where the number of classes exceeds two. Let S = {(x1,y1), . . . , (xN ,yN)}

An Introduction to Boosting and Leveraging 163

ρ

F

νN outliers

origin

Fig. 8. Illustration of single-class
idea. A hyperplane in the feature
space F is constructed that max-
imizes the distance to the origin
while allowing for ν outliers. (Fig-
ure taken from [134].)

be a data set, where, for a K-class problem, yn is a K-dimensional vector of the
form (0, 0, . . . , 0, 1, 0, . . . , 0) with a 1 in the k-th position if, and only if, xn

belongs to the k-th class. The log-likelihood function can then be constructed as
[20] (see also Page 84)

G =
N∑

n=1

K∑

k=1

{yn,k log p(k|xn) + (1 − yn,k) log(1 − p(k|xn))} , (50)

where yn,k is the k’th component of the vector yn, and p(k|xn) is the model
probability that xn belongs to the k’th class. Using the standard softmax rep-
resentation,

p(k|x) =
eFk(x)

∑K
k′=1 eFk′ (x)

,

and substituting in (50) we obtain a function similar in form to others considered
so far. This function can then be optimized in a stagewise fashion as described
in Section 5.2, yielding a solution to the multi-class problem. This approach was
essentially the one used in [74].

Several other approaches to multi-category classification were suggested in
[168] and applied to text classification in [169]. Recall that in Boosting, the
weights of examples which are poorly classified by previous weak learners be-
come amplified. The basic idea in the methods suggested in [168] was to maintain
a set of weights for both examples and labels. As boosting progresses, training
examples and their corresponding labels that are hard to predict correctly get in-
creasingly higher weights. This idea led to the development of two multi-category
algorithms, titled AdaBoost.MH and AdaBoost.MR. Details of these algorithms
can be found in [168].

In addition to these approaches, there has recently been extensive activity
on recoding multi-class problems as a sequence of binary problems, using the

164 R. Meir and G. Rätsch

idea of error-correcting codes [52]. A detailed description of the approach can
be found in [3] in a general context as well as in the Boosting setup. Two spe-
cial cases of this general approach are the so-called one-against-all and all-pairs
approaches, which were extensively used prior to the development of the error
correcting code approach. In the former case, given a k-class classification prob-
lem, one constructs k (usually soft) binary classifiers each of which learns to
distinguish one class from the rest. The multi-category classifier then uses the
highest ranking soft classifier. In the all-pairs approach, all possible

(
k
2

)
pairs of

classification problems are learned and used to form the multi-category classifier
using some form of majority voting. Using soft classifiers helps in removing pos-
sible redundancies. Connections of multi-class boosting algorithms with column
generations techniques are discussed in [155].

Finally, we comment that an interesting problem relates to situations where
the data is not only multi-class, but is also multi-labeled in the sense that each
input x may belong to several classes [168]. This is particularly important in
the context of text classification, where a single document may be relevant to
several topics, e.g. sports, politics and violence.

7.3 Regression

The learning problem for regression is based on a data set S = {(xn, yn)}N
n=1,

where in contrast to the classification case, the variable y can take on real val-
ues, rather than being restricted to a finite set. Probably the first approach to
addressing regression in the context of Boosting appeared in [70], where the
problem was addressed by translating the regression task into a classification
problem (see also [18]). Most of the Boosting algorithms for binary classifica-
tion described in this review, are based on a greedy stage-wise minimization of a
smooth cost function. It is therefore not surprising that we can directly use such a
smooth cost function in the context of regression where we are trying to estimate
a smooth function. Probably the first work to discuss regression in the context of
stage-wise minimization appeared in [76] (LS-Boost and other algorithms), and
later further extended by others (e.g. [158, 182, 195]). The work in [156] further
addressed regression in connection with barrier optimization (essentially with a
two-sided soft-margin loss – the ε-insensitive loss). This approach is very simi-
lar in spirit to one of the approaches proposed in [57] (see below). Later it was
extended in [149, 147] to arbitrary strictly convex loss functions and discussed
in connection with infinite hypothesis sets and semi-infinite programming. The
resulting algorithms were shown to be very useful in real world problems.

We briefly describe a regression framework recently introduced in [57], where
several Boosting like algorithms were introduced. All these algorithms operate
using the following scheme, where different cost functions are used for each algo-
rithm. (i) At each iteration the algorithm modifies the sample to produce a new
sample S̃ = {(x1, ỹ1), . . . , (xN , ỹN)} where the y’s have been modified, based on
the residual error at each stage. (ii) A distribution d over the modified samples
S̃ is constructed and a base regression algorithm is called. (iii) The base learner
produces a function f ∈ F with some edge on S̃ under d (for a definition of

An Introduction to Boosting and Leveraging 165

an edge in the regression context see [57]). (iv) A new composite regressor of
the form F + αf is formed, where α is selected by solving a one-dimensional
optimization problem.

Theoretical performance guarantees for the regression algorithms introduced
in [57] were analyzed in a similar fashion to that presented in Section 3 for
binary classification. Under the assumption that a strictly positive edge was ob-
tained at each step, it was shown that the training error converges exponentially
fast to zero (this is analogous to Theorem 1 for classification). Significantly, the
optimality of the base learners was not required for this claim, similarly to re-
lated results described in Section 5 for classification. Finally, generalization error
bounds were derived in [57], analogous to Theorem 3. These bounds depend on
the edge achieved by the weak learner.

7.4 Localized Boosting

All of the Boosting approaches discussed in this review construct a composite
ensemble hypothesis of the form

∑
t αtht(x). Observe that the combination pa-

rameters αt do not depend on the input x, and thus contribute equally at each
point in space. An alternative approach to the construction of composite classi-
fiers would be to allow the coefficients αt themselves to depend on x, leading to
a hypothesis of the form

∑
t αt(x)ht(x). The interpretation of this form of func-

tional representation is rather appealing. Assume that each hypothesis ht(x)
represents and expert, while αt(x) assigns a non-negative weight which is at-
tached to the prediction of the t-th expert, where we assume that

∑
t αt(x) = 1.

Given an input x, each of the experts makes a prediction ht(x), where the pre-
diction is weighted by a ‘confidence’ parameter αt(x). Note that if αt(x) are
indicator functions, then for each input x, there is a single hypothesis ht which
is considered. For linear hypotheses we can think of this approach as the rep-
resentation of a general non-linear function by piece-wise linear functions. This
type of representation forms the basis for the so-called mixture of experts models
(e.g. [99]). An important observation concerns the complexity of the functions
αt(x). Clearly, by allowing these functions to be arbitrarily complex (e.g. δ-
functions), we can easily fit any finite data set. This stresses the importance of
regularization in any approach attempting to construct such a mixture of expert
representation.

A Boosting like approach to the construction of mixture of experts represen-
tations was proposed in [129] and termed Localized Boosting. The basic observa-
tions in this work were the relationship to classic mixture models in statistics,
where the EM algorithm has proven very effective, and the applicability of the
general greedy stagewise gradient descent approaches described in Section 5.2.
The algorithm developed in [129], termed LocBoost, can be thought of a stage-
wise EM algorithm, where similarly to Boosting algorithms a single hypothesis
is added on to the ensemble at each stage, and the functions αt(·) are also es-
timated at each step. Regularization was achieved by restricting αt to simple
parametric forms. In addition to the algorithm described in detail in [129], gen-

166 R. Meir and G. Rätsch

eralization bounds similar to Theorem 3 were established. The algorithm has
been applied to many real-world data-sets leading to performance competitive
with other state-of-the-art algorithms.19

7.5 Other Extensions

We briefly mention other extensions of Boosting algorithms. In [140] a method
was introduced for learning multiple models that use different (possibly over-
lapping) sets of features. In this way, more robust learning algorithms can be
constructed. An algorithm combining Bagging and Boosting, aimed at improv-
ing performance in the case of noisy data was introduced in [109]. The procedure
simply generates a set of Bootstrap samples as in Bagging, generates a boosted
classifier for each sample, and combines the results uniformly. An online version
of a Boosting algorithm was presented in [141], which was shown to be compa-
rable in accuracy to Boosting, while much faster in terms of running time. Many
more extensions are listed at the beginning of the present section.

8 Evaluation and Applications

8.1 On the Choice of Weak Learners for Boosting

A crucial ingredient for the successful application of Boosting algorithms is the
construction of a good weak learner. As pointed out in Section 3, a weak learner
which is too weak cannot guarantee adequate performance of the composite
hypothesis. On the other hand, an overly complex weak learner may lead to
overfitting, which becomes even more severe as the algorithm proceeds. Thus,
as stressed in Section 6, regularization, in addition to an astute choice of weak
learner, plays a key role in successful applications.

Empirically we often observed that a base learner that already performs quite
well but are slightly too simple for the data at hand, are best suited for use with
boosting. When one uses bagging, then using base learners that are slightly too
complex perform best. Additionally, real-valued (soft) hypotheses often lead to
considerable better results.

We briefly mention some weak learners which have been used successfully in
applications.

Decision trees and stumps. Decision trees have been widely used for many
years in the statistical literature (e.g. [29, 144, 85]) as powerful, effective and
easily interpretable classification algorithms that are able to automatically select
relevant features. Hence, it is not surprising that some of the most successful
initial applications of Boosting algorithms were performed using decision trees
as weak learners. Decision trees are based on the recursive partition of the input
19 A Matlab implementation of the algorithm, as part of an extensive Pattern Recog-

nition toolbox, can be downloaded from
http://tiger.technion.ac.il/˜eladyt/classification/index.htm.

An Introduction to Boosting and Leveraging 167

space into a set of nested regions, usually of rectangular shape. The so-called
decision stump is simply a one-level decision tree, namely a classifier formed
by splitting the input space in an axis-parallel fashion once and then halting. A
systematic approach to the effective utilization of trees in the context of Boosting
is given in [168], while several other approaches based on logistic regression with
decision trees are described in [76]. This work showed that Boosting significantly
enhances the performance of decision trees and stumps.

Neural networks. Neural networks (e.g. [88, 20]) were extensively used during
the 1990’s in many applications. The feed-forward neural network, by far the
most widely used in practice, is essentially a highly non-linear function repre-
sentation formed by repeatedly combining a fixed non-linear transfer function.
It has been shown in [113] that any real-valued continuous function over R

d can
be arbitrarily well approximated by a feed-forward neural network with a single
hidden layer, as long as the transfer function is not a polynomial. Given the po-
tential power of neural networks in representing arbitrary continuous functions,
it would seem that they could easily lead to overfitting and not work effectively
in the context of Boosting. However, careful numerical experiments conducted
by [176] demonstrated that AdaBoost can significantly improve the performance
of neural network classifiers in real world applications such as OCR.

Kernel Functions and Linear combinations. One of the problems of using
neural networks as weak learners is that the optimization problems often be-
come unwieldy. An interesting alternative is forming a weak learner by linearly
combining a set of fixed functions, as in

hγ(x) :=
K∑

k=1

βkGk(x), β ∈ R
K . (51)

The functions Gk could, for example, be kernel functions, i.e. Gk(x) = k(x,xk),
centered around the training examples. The set {hβ} is an infinite hypothesis set
and is unbounded, if β is unbounded. Hence, maximizing the edge as discussed in
Section 5.4, would lead to diverging β’s. Keeping in mind the overfitting issues
discussed in Section 6, we attempt to restrict the complexity of the class of
functions by limiting the norm of β. We discuss two approaches.

�1-norm Penalized Combinations. Here we set H := {hβ | ‖β‖1 ≤ 1,β ∈ R
N}.

Then finding the edge-maximizing β has a closed form solution. Let

k∗ = argmax
k=1,... ,K

{
N∑

n=1

dngk(xn)

}
.

Then hβ with β = (0, . . . , 0, βk∗ , 0, . . . ,0) maximizes the edge, where βk∗ =
sign

(∑N
n=1 dnk(xk∗ ,xn)

)
. This means that we will be adding in exactly one

basis function gk∗(·) per iteration. Hence, this approach reduces to the case of

168 R. Meir and G. Rätsch

using the single functions. A variant of this approach has been used in [183].
A related classification function approach was used for solving a drug discovery
task in [149].

In [149] so-called active kernel functions have been used, where the set of
functions were kernel-like functions hn,p(x) = kp(x,xn), and kp is a SVM kernel
function parameterized by p (e.g. the variance in a RBF kernel). In this case one
has to find the example xn and the parameter p that maximize the edge. This
may lead to a hard non-convex optimization problem, for which quite efficient
heuristics have been proposed in [149].

�2-norm Penalized combinations. Another way is to penalize the �2-norm of the
combination coefficients. In this case H := {hγ | ‖γ‖2 ≤ 1,γ ∈ R

N}, and one
attempts to solve

γ = argmin
γ

{
N∑

n=1

(dn − hγ(xn))2 + C‖γ‖2
2

}
,

The problem has a particularly simple solution: γk = 1
C

∑N
n=1 dngk(xn). A sim-

ilar approach in the form of RBF networks has been used in [153] in connection
with regularized versions of boosting.

8.2 Evaluation on Benchmark Data Sets

Boosting and Leveraging have been applied to many benchmark problems. The
AdaBoost algorithm and many of its early variants were tested on standard
data sets from the UCI repository, and often found to compare favorably with
other state of the art algorithms (see, for example, [68, 168, 51]. However, it
was clear from [146, 168, 51] that AdaBoost tends to overfit if the data is noisy
and no regularization is enforced. More recent experiments, using the regularized
forms of Boosting described in Section 6 lead to superior performance on noisy
real-world data. In fact, these algorithms often do significantly better than the
original versions of Boosting, comparing very favorably with the best classifiers
available (e.g. SVMs). We refer the reader to [153] for results of these benchmark
studies. These results place regularized boosting techniques into the standard
toolbox of data analysis techniques.

8.3 Applications

The list of applications of Boosting and Leveraging methods is growing rapidly.
We discuss three applications in detail and then list a range of other applications.

Non-intrusive Power Monitoring System. One of the regularized ap-
proaches described in Section 6, ν-Arc, was applied to the problem of power
appliances monitoring [139]. The most difficult problem for power companies is
the handling of short-term peak loads for which additional power plants need
to be built to provide security against a peak load instigated power failure. A

An Introduction to Boosting and Leveraging 169

prerequisite for controlling the electric energy demand, however, is the ability
to correctly and non-intrusively detect and classify the operating status of elec-
tric appliances of individual households. The goal in [139] was to develop such
a non-intrusive measuring system for assessing the status of electric appliances.
This is a hard problem, in particular for appliances with inverter systems,20
whereas non-intrusive measuring systems have already been developed for con-
ventional on/off (non-inverter) operating electric equipments (cf. [83, 33]). The
study in [139] presents a first evaluation of machine learning techniques to clas-
sify the operating status of electric appliances (with and without inverter) for the
purpose of constructing a non-intrusive monitoring system. In this study, RBF
networks, K-nearest neighbor classifiers (KNNs) (e.g. [42]), SVMs and ν-Arc (cf.
Section 6.2) were compared.

The data set available for this task is rather small (36 examples), since the
collection and labeling of data is manual and therefore expensive. As a result
of this, one has to be very careful with finding good model parameters. All
model parameters were found using the computationally expensive but generally
reliable leave-one-out method.

The results reported in [139] demonstrate that the ν-Arc algorithm with RBF
networks as base learner performs better on average than all other algorithms
studied, followed closely by the SVM classifier with a RBF kernel. These results
suggest that the goal of a control system to balance load peaks might be a
feasible prospect in the not too distant future.

Tumor Classification with Gene Expression Data. Micro-array experi-
ments generate large datasets with expression values for thousands of genes but
not more than a few dozen of examples. Accurate supervised classification of
tissue samples in such high-dimensional problems is difficult but often crucial
for successful diagnosis and treatment (in typical cases the sample size is in the
range of 20-100 and the number of features varies between 2,000 and 20,000;
clearly here the potential for overfitting is huge). The goal is is to predict the
unknown class label of a new individual on the basis of its gene expression pro-
file. Since this task is of great potential value, there have been many attempts
to develop effective classification procedures to solve it.

Early work applied the AdaBoost algorithm to this data; however, the re-
sults seemed to be rather disappointing. The recent work in [49] applied the
LogitBoost algorithm [74], using decision trees as base learners, together with
several modifications, and achieved state of the art performance on this dif-
ficult task. It turned out that in order to obtain high quality results, it was
necessary to preprocess the data by scoring each individual feature (gene) ac-
cording to its discriminatory power using a non-parametric approach (details
can be found in [49]). Moreover, it was found that the simple one-against-all
approach to multi-category classification led to much better results than the
direct multi-class approach presented in [74] based on the log-likelihood func-
tion (cf. Section 7.2). Interestingly, the authors found that the quality of the
20 An inverter system controls for example the rotation speed of a motor (as in air-

conditioners) by changing the frequency of the electric current.

170 R. Meir and G. Rätsch

results degraded very little as a function of the number of Boosting iterations
(up to 100 steps). This is somewhat surprising given the small amount of data
and the danger of overfitting. The success of the present approach compared to
results achieved by AdaBoost, tends to corroborate the assertions made in [74]
concerning the effectiveness of the LogitBoost approach for noisy problems.

Text Classification. The problem of text classification is playing an increas-
ingly important role due to the vast amount of data available over the web and
within internal company repositories. The problem here is particularly challeng-
ing since the text data is often multi-labeled, namely each text may naturally
fall into several categories simultaneously (e.g. Sports, Politics and Violence). In
addition, the difficulty of finding an appropriate representation for text is still
open.

The work in [169] presented one of the first approaches to using Boosting for
text classification. In particular, the approaches to multi-class multi-label classi-
fication developed in [168], were used for the present task. The weak learner used
was a simple decision stump (single level decision tree), based on terms consist-
ing of single words and word pairs. The text categorization experiments reported
in [169] were applied to several of the standard text classification benchmarks
(Reuters, AP titles and UseNet groups) and demonstrated that the approach
yielded, in general, better results than other methods to which it was compared.
Additionally, it was observed that Boosting algorithms which used real-valued
(soft) weak learners performed better than algorithms using only binary weak
learners. A reported drawback of the approach was the very large time required
for training.

Other applications. We briefly mention several applications of Boosting and
Leveraging methods in other problems.

The group at AT&T has been involved in many applications of Boosting
approaches beyond the text classification task discussed above. For example, the
problems of text filtering [170] and routing [95] were addressed as well as that of
ranking and combining references [66]. More recently the problem of combining
prior knowledge and boosting for call classification in spoken language dialogue
was studied in [161] and applications to the problem of modeling auction price
uncertainty was introduced in [171].

Applications of boosting methods to natural language processing has been
reported in [1, 60, 84, 194], and approaches to Melanoma Diagnosis are presented
in [132]. Some further applications to Pose Invariant Face Recognition [94], Lung
Cancer Cell Identification [200] and Volatility Estimation for Financial Time
Series [7] have also been developed.

A detailed list of currently known applications of Boosting and Lever-
aging methods will be posted on the web at the Boosting homepage
http://www.boosting.org/applications.

An Introduction to Boosting and Leveraging 171

9 Conclusions

We have presented a general overview of ensemble methods in general and the
Boosting and Leveraging family of algorithms in particular. While Boosting was
introduced within a rather theoretical framework in order to transform a poorly
performing learning algorithm into a powerful one, this idea has turned out to
have manifold extensions and applications, as discussed in this survey.

As we have shown, Boosting turns out to belong to a large family of models
which are greedily constructed by adding on a single base learner to a pool of
previously constructed learners using adaptively determined weights. Interest-
ingly, Boosting was shown to be derivable as a stagewise greedy gradient descent
algorithm attempting to minimize a suitable cost function. In this sense Boost-
ing is strongly related to other algorithms that were known within the Statistics
literature for many years, in particular additive models [86] and matching pur-
suit [118]. However, the recent work on Boosting has brought to the fore many
issues which were not studied previously. (i) The important concept of the mar-
gin, and its impact on learning and generalization has been emphasized. (ii)
The derivation of sophisticated finite sample data-dependent bounds has been
possible. (iii) Understanding the relationship between the strength of the weak
learner, and the quality of the composite classifier (in terms of training and gen-
eralization errors). (iv) The establishment of consistency (v) The development
of computationally efficient procedures.

With the emphasis of much of the Boosting work on the notion of the margin,
it became clear that Boosting is strongly related to another very successful cur-
rent algorithm, namely the Support Vector Machine [190]. As was pointed out
in [167, 134, 150], both Boosting and the SVM can be viewed as attempting to
maximize the margin, except that the norm used by each procedure is different.
Moreover, the optimization procedures used in both cases are very different.

While Boosting constructs a complex composite hypothesis, which can in
principle represent highly irregular functions, the generalization bounds for
Boosting turn out to lead to tight bounds in cases where large margins can
be guaranteed. Although initial work seemed to indicate that Boosting does not
overfit, it was soon realized that overfitting does indeed occur under noisy con-
ditions. Following this observation, regularized Boosting algorithms were devel-
oped which are able to achieve the appropriate balance between approximation
and estimation required to achieve excellent performance even under noisy con-
ditions. Regularization is also essential in order to establish consistency under
general conditions.

We conclude with several open questions.

1. While it has been possible to derive Boosting-like algorithms based on many
types of cost functions, there does not seem to be at this point a systematic
approach to the selection of a particular one. Numerical experiments and
some theoretical results indicate that the choice of cost function may have
a significant effect of the performance of Boosting algorithms (e.g. [74, 126,
154]).

2. The selection of the best type of weak learner for a particular task is also not
entirely clear. Some weak learners are unable even in principle to represent

172 R. Meir and G. Rätsch

complex decision boundaries, while overly complex weak learners quickly
lead to overfitting. This problem appears strongly related to the notoriously
difficult problem of feature selection and representation in pattern recog-
nition, and the selection of the kernel in support vector machines. Note,
however, that the single weak learner in Boosting can include multi-scaling
information whereas in SVMs one has to fix a kernel inducing the kernel
Hilbert space. An interesting question relates to the possibility of using very
different types of weak learners at different stages of the Boosting algorithm,
each of which may emphasize different aspects of the data.

3. An issue related to the previous one is the question of the existence of weak
learners with provable performance guarantees. In Section 3.1 we discussed
sufficient conditions for the case of linear classifiers. The extension of these
results to general weak learners is an interesting and difficult open question.

4. A great deal of recent work has been devoted to the derivation of flexible
data-dependent generalization bounds, which depend explicitly on the algo-
rithm used. While these bounds are usually much tighter than classic bounds
based on the VC dimension, there is still ample room for progress here, the
final objective being to develop bounds which can be used for model selec-
tion in actual experiments on real data. Additionally, it would be interesting
to develop bounds or efficient methods to compute the leave-one-out error
as done for SVMs in [36].

5. In the optimization section we discussed many different approaches address-
ing the convergence of boosting-like algorithms. The result presented in [197]
is the most general so far, since it includes many special cases which have
been analyzed by others. However, the convergence rates in [197] do not
seem to be optimal and additional effort needs to be devoted to finding tight
bounds on the performance. In addition, there is the question of whether it is
possible to establish super-linear convergence for some variant of leveraging,
which ultimately would be lead to much more efficient leveraging algorithms.
Finally, since many algorithms use parameterized weak learners, it is often
the case that the cost function minimized by the weak learners is not convex
with respect to the parameters (see Section 5.4). It would be interesting to
see whether this problem could be circumvented (e.g. by designing appro-
priate cost functions as in [89]).

Acknowledgements. We thank Klaus-R. Müller for discussions and his con-
tribution to writing this manuscript. Additionally, we thank Shie Mannor, Se-
bastian Mika, Takashi Onoda, Bernhard Schölkopf, Alex Smola and Tong Zhang
for valuable discussions. R.M. acknowledges partial support from the Ollendorff
Center at the Electrical Engineering department at the Technion and from the
fund for promotion of research at the Technion. G.R. gratefully acknowledge
partial support from DFG (JA 379/9-1, MU 987/1-1), NSF and EU (NeuroColt
II). Furthermore, Gunnar Rätsch would like to thank UC Santa Cruz, CRIEPI
in Tokyo and Fraunhofer FIRST in Berlin for their warm hospitality.

An Introduction to Boosting and Leveraging 173

References

1. S. Abney, R.E. Schapire, and Y. Singer. Boosting applied to tagging and pp
attachment. In Proc. of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora, 1999.

2. H. Akaike. A new look at the statistical model identification. IEEE Trans. Au-
tomat. Control, 19(6):716–723, 1974.

3. E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A
unifying approach for margin classifiers. Journal of Machine Learning Research,
1:113–141, 2000.

4. M. Anthony and P.L. Bartlett. Neural Network Learning: Theoretical Founda-
tions. Cambridge University Press, 1999.

5. A. Antos, B. Kégl, T. Linder, and G. Lugosi. Data-dependent margin-based
generalization bounds for classification. JMLR, 3:73–98, 2002.

6. J.A. Aslam. Improving algorithms for boosting. In Proc. COLT, San Francisco,
2000. Morgan Kaufmann.

7. F. Audrino and P. Bühlmann. Volatility estimation with functional gradient
descent for very high-dimensional financial time series. Journal of Computational
Finance., 2002. To appear. See http://stat.ethz.ch/˜buhlmann/bibliog.html.

8. J.P. Barnes. Capacity control in boosting using a p-convex hull. Master’s thesis,
Australian National University, 1999. supervised by R.C. Williamson.

9. P. Bartlett, P. Boucheron, and G. Lugosi. Model selction and error estimation.
Machine Learning, 48:85–2002, 2002.

10. P.L. Bartlett, O. Bousquet, and S. Mendelson. Localized rademacher averages. In
Procedings COLT’02, volume 2375 of LNAI, pages 44–58, Sydney, 2002. Springer.

11. P.L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 2002. to
appear 10/02.

12. E. Bauer and R. Kohavi. An empirical comparison of voting classification algo-
rithm: Bagging, boosting and variants. Machine Learning, 36:105–142, 1999.

13. H.H. Bauschke and J.M. Borwein. Legendre functions and the method of random
Bregman projections. Journal of Convex Analysis, 4:27–67, 1997.

14. S. Ben-David, P. Long, and Y. Mansour. Agnostic boosting. In Proceedings
of the Fourteenth Annual Conference on Computational Learning Theory, pages
507–516, 2001.

15. K. P. Bennett and O. L. Mangasarian. Multicategory separation via linear pro-
gramming. Optimization Methods and Software, 3:27–39, 1993.

16. K.P. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensemble
methods. In Proc. ICML, 2002.

17. K.P. Bennett and O.L. Mangasarian. Robust linear programming discrimination
of two linearly inseparable sets. Optimization Methods and Software, 1:23–34,
1992.

18. A. Bertoni, P. Campadelli, and M. Parodi. A boosting algorithm for regression.
In W.Gerstner, A.Germond, M.Hasler, and J.-D. Nicoud, editors, Proceedings
ICANN’97, Int. Conf. on Artificial Neural Networks, volume V of LNCS, pages
343–348, Berlin, 1997. Springer.

19. D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.
20. C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

174 R. Meir and G. Rätsch

21. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s razor. In-
formation Processing Letters, 24:377–380, 1987.

22. B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144–152, 1992.

23. P.S. Bradley and O.L. Mangasarian. Feature selection via concave minimization
and support vector machines. In Proc. 15th International Conf. on Machine
Learning, pages 82–90. Morgan Kaufmann, San Francisco, CA, 1998.

24. L.M. Bregman. The relaxation method for finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR
Computational Math. and Math. Physics, 7:200–127, 1967.

25. L. Breiman. Bagging predictors. Machine Learning, 26(2):123–140, 1996.
26. L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics

Department, University of California, July 1997.
27. L. Breiman. Prediction games and arcing algorithms. Neural Computation,

11(7):1493–1518, 1999. Also Technical Report 504, Statistics Department, Uni-
versity of California Berkeley.

28. L. Breiman. Some infinity theory for predictor ensembles. Technical Report 577,
Berkeley, August 2000.

29. L. Breiman, J. Friedman, J. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth, 1984.

30. N. Bshouty and D. Gavinsky. On boosting with polynomially bounded distribu-
tions. JMLR, pages 107–111, 2002. Accepted.

31. P. Buhlmann and B. Yu. Boosting with the l2 loss: Regression and classification.
J. Amer. Statist. Assoc., 2002. revised, also Technical Report 605, Stat Dept, UC
Berkeley August, 2001.

32. C. Campbell and K.P. Bennett. A linear programming approach to novelty de-
tection. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems, volume 13, pages 395–401. MIT Press, 2001.

33. J. Carmichael. Non-intrusive appliance load monitoring system. Epri journal,
Electric Power Research Institute, 1990.

34. Y. Censor and S.A. Zenios. Parallel Optimization: Theory, Algorithms and Ap-
plication. Numerical Mathematics and Scientific Computation. Oxford University
Press, 1997.

35. N. Cesa-Bianchi, A. Krogh, and M. Warmuth. Bounds on approximate steepest
descent for likelihood maximization in exponential families. IEEE Transaction
on Information Theory, 40(4):1215–1220, July 1994.

36. O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple
parameters for support vector machines. Machine Learning, 46(1):131–159, 2002.

37. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.
Technical Report 479, Department of Statistics, Stanford University, 1995.

38. W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to order things. In Michael I.
Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Infor-
mation Processing Systems, volume 10. The MIT Press, 1998.

39. M. Collins, R.E. Schapire, and Y. Singer. Logistic Regression, AdaBoost and
Bregman distances. Machine Learning, 48(1-3):253–285, 2002. Special Issue on
New Methods for Model Selection and Model Combination.

40. R. Cominetti and J.-P. Dussault. A stable exponential penalty algorithm with
superlinear convergence. J.O.T.A., 83(2), Nov 1994.

41. C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:273–
297, 1995.

An Introduction to Boosting and Leveraging 175

42. T.M. Cover and P.E. Hart. Nearest neighbor pattern classifications. IEEE trans-
action on information theory, 13(1):21–27, 1967.

43. D.D. Cox and F. O’Sullivan. Asymptotic analysis of penalized likelihood and
related estimates. The Annals of Statistics, 18(4):1676–1695, 1990.

44. K. Crammer and Y. Singer. On the learnability and design of output codes for
multiclass problems. In N. Cesa-Bianchi and S. Goldberg, editors, Proc. Colt,
pages 35–46, San Francisco, 2000. Morgan Kaufmann.

45. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, UK, 2000.

46. S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393,
April 1997.

47. S. Della Pietra, V. Della Pietra, and J. Lafferty. Duality and auxiliary functions
for Bregman distances. Technical Report CMU-CS-01-109, School of Computer
Science, Carnegie Mellon University, 2001.

48. A. Demiriz, K.P. Bennett, and J. Shawe-Taylor. Linear programming boosting
via column generation. Journal of Machine Learning Research, 46:225–254, 2002.

49. M. Dettling and P. Bühlmann. How to use boosting for tumor classification with
gene expression data. Preprint. See http://stat.ethz.ch/˜dettling/boosting,
2002.

50. L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recog-
nition. Number 31 in Applications of Mathematics. Springer, New York, 1996.

51. T.G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning, 40(2):139–157, 1999.

52. T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Aritifical Intelligence Research, 2:263–286,
1995.

53. C. Domingo and O. Watanabe. A modification of AdaBoost. In Proc. COLT, San
Francisco, 2000. Morgan Kaufmann.

54. H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, and V. Vapnik. Boosting and other
ensemble methods. Neural Computation, 6, 1994.

55. H. Drucker, R.E. Schapire, and P.Y. Simard. Boosting performance in neural
networks. International Journal of Pattern Recognition and Artificial Intelligence,
7:705–719, 1993.

56. N. Duffy and D.P. Helmbold. A geometric approach to leveraging weak learners.
In P. Fischer and H. U. Simon, editors, Computational Learning Theory: 4th
European Conference (EuroCOLT ’99), pages 18–33, March 1999. Long version
to appear in TCS.

57. N. Duffy and D.P. Helmbold. Boosting methods for regression. Technical report,
Department of Computer Science, University of Santa Cruz, 2000.

58. N. Duffy and D.P. Helmbold. Leveraging for regression. In Proc. COLT, pages
208–219, San Francisco, 2000. Morgan Kaufmann.

59. N. Duffy and D.P. Helmbold. Potential boosters? In S.A. Solla, T.K. Leen,
and K.-R. Müller, editors, Advances in Neural Information Processing Systems,
volume 12, pages 258–264. MIT Press, 2000.

60. G. Escudero, L. Màrquez, and G. Rigau. Boosting applied to word sense dis-
ambiguation. In LNAI 1810: Proceedings of the 12th European Conference on
Machine Learning, ECML, pages 129–141, Barcelona, Spain, 2000.

61. W. Feller. An Introduction to Probability Theory and its Applications. Wiley,
Chichester, third edition, 1968.

176 R. Meir and G. Rätsch

62. D.H. Fisher, Jr., editor. Improving regressors using boosting techniques, 1997.
63. M. Frean and T. Downs. A simple cost function for boosting. Technical report,

Dep. of Computer Science and Electrical Engineering, University of Queensland,
1998.

64. Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, September 1995.

65. Y. Freund. An adaptive version of the boost by majority algorithm. Machine
Learning, 43(3):293–318, 2001.

66. Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting algorithm
for combining preferences. In Proc. ICML, 1998.

67. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. In EuroCOLT: European Conference on Com-
putational Learning Theory. LNCS, 1994.

68. Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In
Proc. 13th International Conference on Machine Learning, pages 148–146. Mor-
gan Kaufmann, 1996.

69. Y. Freund and R.E. Schapire. Game theory, on-line prediction and boosting. In
Proc. COLT, pages 325–332, New York, NY, 1996. ACM Press.

70. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119–139, 1997.

71. Y. Freund and R.E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29:79–103, 1999.

72. Y. Freund and R.E. Schapire. A short introduction to boosting. Journal of
Japanese Society for Artificial Intelligence, 14(5):771–780, September 1999. Ap-
peared in Japanese, translation by Naoki Abe.

73. J. Friedman. Stochastic gradient boosting. Technical report, Stanford University,
March 1999.

74. J. Friedman, T. Hastie, and R.J. Tibshirani. Additive logistic regression: a sta-
tistical view of boosting. Annals of Statistics, 2:337–374, 2000. with discus-
sion pp.375–407, also Technical Report at Department of Statistics, Sequoia Hall,
Stanford University.

75. J.H. Friedman. On bias, variance, 0/1–loss, and the corse of dimensionality. In
Data Mining and Knowledge Discovery, volume I, pages 55–77. Kluwer Academic
Publishers, 1997.

76. J.H. Friedman. Greedy function approximation. Technical report, Department of
Statistics, Stanford University, February 1999.

77. K.R. Frisch. The logarithmic potential method of convex programming. Memo-
randum, University Institute of Economics, Oslo, May 13 1955.

78. T. Graepel, R. Herbrich, B. Schölkopf, A.J. Smola, P.L. Bartlett, K.-R. Müller,
K. Obermayer, and R.C. Williamson. Classification on proximity data with LP-
machines. In D. Willshaw and A. Murray, editors, Proceedings of ICANN’99,
volume 1, pages 304–309. IEE Press, 1999.

79. Y. Grandvalet. Bagging can stabilize without reducing variance. In ICANN’01,
Lecture Notes in Computer Science. Springer, 2001.

80. Y. Grandvalet, F. D’alché-Buc, and C. Ambroise. Boosting mixture models for
semi-supervised tasks. In Proc. ICANN, Vienna, Austria, 2001.

81. A.J. Grove and D. Schuurmans. Boosting in the limit: Maximizing the margin
of learned ensembles. In Proceedings of the Fifteenth National Conference on
Artifical Intelligence, 1998.

An Introduction to Boosting and Leveraging 177

82. V. Guruswami and A. Sahai. Multiclass learning, boosing, and error-correcting
codes. In Proc. of the twelfth annual conference on Computational learning theory,
pages 145–155, New York, USA, 1999. ACM Press.

83. W. Hart. Non-intrusive appliance load monitoring. Proceedings of the IEEE,
80(12), 1992.

84. M. Haruno, S. Shirai, and Y. Ooyama. Using decision trees to construct a practical
parser. Machine Learning, 34:131–149, 1999.

85. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
data mining, inference and prediction. Springer series in statistics. Springer, New
York, N.Y., 2001.

86. T.J. Hastie and R.J. Tibshirani. Generalized Additive Models, volume 43 of Mono-
graphs on Statistics and Applied Probability. Chapman & Hall, London, 1990.

87. D. Haussler. Decision Theoretic Generalizations of the PAC Model for Neural
Net and Other Learning Applications. Information and Computation, 100:78–
150, 1992.

88. S.S. Haykin. Neural Networks : A Comprehensive Foundation. Prentice-Hall,
second edition, 1998.

89. D.P. Helmbold, K. Kivinen, and M.K. Warmuth. Relative loss bounds for single
neurons. IEEE Transactions on Neural Networks, 10(6):1291–1304, 1999.

90. R. Herbrich. Learning Linear Classifiers: Theory and Algorithms, volume 7 of
Adaptive Computation and Machine Learning. MIT Press, 2002.

91. R. Herbrich, T. Graepel, and J. Shawe-Taylor. Sparsity vs. large margins for
linear classifiers. In Proc. COLT, pages 304–308, San Francisco, 2000. Morgan
Kaufmann.

92. R. Herbrich and R. Williamson. Algorithmic luckiness. JMLR, 3:175–212, 2002.
93. R. Hettich and K.O. Kortanek. Semi-infinite programming: Theory, methods and

applications. SIAM Review, 3:380–429, September 1993.
94. F.J. Huang, Z.-H. Zhou, H.-J. Zhang, and T. Chen. Pose invariant face recogni-

tion. In Proceedings of the 4th IEEE International Conference on Automatic Face
and Gesture Recognition, pages 245–250, Grenoble, France, 2000.

95. R.D. Iyer, D.D. Lewis, R.E. Schapire, Y. Singer, and A. Singhal. Boosting for doc-
ument routing. In A. Agah, J. Callan, and E. Rundensteiner, editors, Proceedings
of CIKM-00, 9th ACM International Conference on Information and Knowledge
Management, pages 70–77, McLean, US, 2000. ACM Press, New York, US.

96. W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the
Fourth Berkeley Symposium on Mathematics, Statistics and Probability, volume 1,
pages 361–380, Berkeley, 1960. University of California Press.

97. W. Jiang. Some theoretical aspects of boosting in the presence of noisy data.
In Proceedings of the Eighteenth International Conference on Machine Learning,
2001.

98. D.S. Johnson and F.P. Preparata. The densest hemisphere problem. Theoretical
Computer Science, 6:93–107, 1978.

99. M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the em algo-
rithm. Neural Computation, 6(2):181–214, 1994.

100. M. Kearns and Y. Mansour. On the boosting ability og top-down decision tree
learning algorithms. In Proc. 28th ACM Symposium on the Theory of Computing,,
pages 459–468. ACM Press, 1996.

101. M. Kearns and L. Valiant. Cryptographic limitations on learning Boolean formu-
lae and finite automata. Journal of the ACM, 41(1):67–95, January 1994.

102. M.J. Kearns and U.V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, 1994.

178 R. Meir and G. Rätsch

103. G.S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82–95, 1971.

104. J. Kivinen and M. Warmuth. Boosting as entropy projection. In Proc. 12th Annu.
Conference on Comput. Learning Theory, pages 134–144. ACM Press, New York,
NY, 1999.

105. J. Kivinen, M. Warmuth, and P. Auer. The perceptron algorithm vs. winnow:
Linear vs. logarithmic mistake bounds when few input variables are relevant.
Special issue of Artificial Intelligence, 97(1–2):325–343, 1997.

106. J. Kivinen and M.K. Warmuth. Additive versus exponentiated gradient updates
for linear prediction. Information and Computation, 132(1):1–64, 1997.

107. K.C. Kiwiel. Relaxation methods for strictly convex regularizations of piecewise
linear programs. Applied Mathematics and Optimization, 38:239–259, 1998.

108. V. Koltchinksii and D. Panchenko. Empirical margin distributions and bounding
the generalization error of combined classifiers. Ann. Statis., 30(1), 2002.

109. A. Krieger, A. Wyner, and C. Long. Boosting noisy data. In Proceedings, 18th
ICML. Morgan Kaufmann, 2001.

110. J. Lafferty. Additive models, boosting, and inference for generalized divergences.
In Proc. 12th Annu. Conf. on Comput. Learning Theory, pages 125–133, New
York, NY, 1999. ACM Press.

111. G. Lebanon and J. Lafferty. Boosting and maximum likelihood for exponential
models. In Advances in Neural information processings systems, volume 14, 2002.
to appear. Longer version also NeuroCOLT Technical Report NC-TR-2001-098.

112. Y.A. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C. Cortes, J.S. Denker,
H. Drucker, I. Guyon, U.A. Müller, E. Säckinger, P.Y. Simard, and V.N. Vap-
nik. Comparison of learning algorithms for handwritten digit recognition. In
F. Fogelman-Soulié and P. Gallinari, editors, Proceedings ICANN’95 — Interna-
tional Conference on Artificial Neural Networks, volume II, pages 53–60, Nanterre,
France, 1995. EC2.

113. M. Leshno, V. Lin, A. Pinkus, and S. Schocken. Multilayer Feedforward Networks
with a Nonpolynomial Activation Function Can Approximate any Function. Neu-
ral Networks, 6:861–867, 1993.

114. N. Littlestone, P.M. Long, and M.K. Warmuth. On-line learning of linear func-
tions. Journal of Computational Complexity, 5:1–23, 1995. Earlier version is
Technical Report CRL-91-29 at UC Santa Cruz.

115. D.G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publish-
ing Co., Reading, second edition, May 1984. Reprinted with corrections in May,
1989.

116. Gábor Lugosi and Nicolas Vayatis. A consistent strategy for boosting algorithms.
In Proceedings of the Annual Conference on Computational Learning Theory, vol-
ume 2375 of LNAI, pages 303–318, Sydney, February 2002. Springer.

117. Z.-Q. Luo and P. Tseng. On the convergence of coordinate descent method for
convex differentiable minimization. Journal of Optimization Theory and Applica-
tions, 72(1):7–35, 1992.

118. S. Mallat and Z. Zhang. Matching Pursuits with time-frequency dictionaries.
IEEE Transactions on Signal Processing, 41(12):3397–3415, December 1993.

119. O.L. Mangasarian. Linear and nonlinear separation of patterns by linear pro-
gramming. Operations Research, 13:444–452, 1965.

120. O.L. Mangasarian. Arbitrary-norm separating plane. Operation Research Letters,
24(1):15–23, 1999.

An Introduction to Boosting and Leveraging 179

121. S. Mannor and R. Meir. Geometric bounds for generlization in boosting. In Pro-
ceedings of the Fourteenth Annual Conference on Computational Learning Theory,
pages 461–472, 2001.

122. S. Mannor and R. Meir. On the existence of weak learners and applications to
boosting. Machine Learning, 48(1-3):219–251, 2002.

123. S. Mannor, R. Meir, and T. Zhang. The consistency of greedy algorithms for
classification. In Procedings COLT’02, volume 2375 of LNAI, pages 319–333,
Sydney, 2002. Springer.

124. L. Mason. Margins and Combined Classifiers. PhD thesis, Australian National
University, September 1999.

125. L. Mason, P.L. Bartlett, and J. Baxter. Improved generalization through explicit
optimization of margins. Technical report, Department of Systems Engineering,
Australian National University, 1998.

126. L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Functional gradient tech-
niques for combining hypotheses. In A. J. Smola, P.L. Bartlett, B. Schölkopf,
and C. Schuurmans, editors, Advances in Large Margin Classifiers. MIT Press,
Cambridge, MA, 1999.

127. L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Functional gradient tech-
niques for combining hypotheses. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 221–247.
MIT Press, Cambridge, MA, 2000.

128. J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Springer Verlag, 1999.
129. R. Meir, R. El-Yaniv, and Shai Ben-David. Localized boosting. In Proc. COLT,

pages 190–199, San Francisco, 2000. Morgan Kaufmann.
130. R. Meir and T. Zhang. Data-dependent bounds for bayesian mixture models.

unpublished manuscript, 2002.
131. J. Mercer. Functions of positive and negative type and their connection with the

theory of integral equations. Philos. Trans. Roy. Soc. London, A 209:415–446,
1909.

132. S. Merler, C. Furlanello, B. Larcher, and A. Sboner. Tuning cost-sensitive boost-
ing and its application to melanoma diagnosis. In J. Kittler and F. Roli, edi-
tors, Proceedings of the 2nd Internationa Workshop on Multiple Classifier Systems
MCS2001, volume 2096 of LNCS, pages 32–42. Springer, 2001.

133. J. Moody. The effective number of parameters: An analysis of generalization and
regularization in non-linear learning systems. In S. J. Hanson J. Moody and R. P.
Lippman, editors, Advances in Neural information processings systems, volume 4,
pages 847–854, San Mateo, CA, 1992. Morgan Kaufman.

134. K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction
to kernel-based learning algorithms. IEEE Transactions on Neural Networks,
12(2):181–201, 2001.

135. N. Murata, S. Amari, and S. Yoshizawa. Network information criterion — deter-
mining the number of hidden units for an artificial neural network model. IEEE
Transactions on Neural Networks, 5:865–872, 1994.

136. S. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, New
York, NY, 1996.

137. Richard Nock and Patrice Lefaucheur. A robust boosting algorithm. In Proc.
13th European Conference on Machine Learning, volume LNAI 2430, Helsinki,
2002. Springer Verlag.

180 R. Meir and G. Rätsch

138. T. Onoda, G. Rätsch, and K.-R. Müller. An asymptotic analysis of AdaBoost in
the binary classification case. In L. Niklasson, M. Bodén, and T. Ziemke, editors,
Proc. of the Int. Conf. on Artificial Neural Networks (ICANN’98), pages 195–200,
March 1998.

139. T. Onoda, G. Rätsch, and K.-R. Müller. A non-intrusive monitoring system for
household electric appliances with inverters. In H. Bothe and R. Rojas, editors,
Proc. of NC’2000, Berlin, 2000. ICSC Academic Press Canada/Switzerland.

140. J. O’Sullivan, J. Langford, R. Caruana, and A. Blum. Featureboost: A meta-
learning algorithm that improves model robustness. In Proceedings, 17th ICML.
Morgan Kaufmann, 2000.

141. N. Oza and S. Russell. Experimental comparisons of online and batch versions of
bagging and boosting. In Proc. KDD-01, 2001.

142. R. El-Yaniv P. Derbeko and R. Meir. Variance optimized bagging. In Proc. 13th
European Conference on Machine Learning, 2002.

143. T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent
to multilayer networks. Science, 247:978–982, 1990.

144. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1992.
145. J.R. Quinlan. Boosting first-order learning. Lecture Notes in Computer Science,

1160:143, 1996.
146. G. Rätsch. Ensemble learning methods for classification. Master’s thesis, Dep. of

Computer Science, University of Potsdam, April 1998. In German.
147. G. Rätsch. Robust Boosting via Convex Optimization. PhD thesis, University of

Potsdam, Computer Science Dept., August-Bebel-Str. 89, 14482 Potsdam, Ger-
many, October 2001.

148. G. Rätsch. Robustes boosting durch konvexe optimierung. In D. Wagner et al.,
editor, Ausgezeichnete Informatikdissertationen 2001, volume D-2 of GI-Edition
– Lecture Notes in Informatics (LNI), pages 125–136. Bonner Köllen, 2002.

149. G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite and
finite hypothesis spaces. Machine Learning, 48(1-3):193–221, 2002. Special Issue
on New Methods for Model Selection and Model Combination. Also NeuroCOLT2
Technical Report NC-TR-2000-085.

150. G. Rätsch, S. Mika, B. Schölkopf, and K.-R. Müller. Constructing boosting algo-
rithms from SVMs: an application to one-class classification. IEEE PAMI, 24(9),
September 2002. In press. Earlier version is GMD TechReport No. 119, 2000.

151. G. Rätsch, S. Mika, and M.K. Warmuth. On the convergence of leveraging. Neu-
roCOLT2 Technical Report 98, Royal Holloway College, London, August 2001. A
short version appeared in NIPS 14, MIT Press, 2002.

152. G. Rätsch, S. Mika, and M.K. Warmuth. On the convergence of leveraging.
In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
information processings systems, volume 14, 2002. In press. Longer version also
NeuroCOLT Technical Report NC-TR-2001-098.

153. G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, March 2001. also NeuroCOLT Technical Report NC-
TR-1998-021.

154. G. Rätsch, B. Schölkopf, A.J. Smola, S. Mika, T. Onoda, and K.-R. Müller. Ro-
bust ensemble learning. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schu-
urmans, editors, Advances in Large Margin Classifiers, pages 207–219. MIT Press,
Cambridge, MA, 2000.

155. G. Rätsch, A.J. Smola, and S. Mika. Adapting codes and embeddings for poly-
chotomies. In NIPS, volume 15. MIT Press, 2003. accepted.

An Introduction to Boosting and Leveraging 181

156. G. Rätsch, M. Warmuth, S. Mika, T. Onoda, S. Lemm, and K.-R. Müller. Barrier
boosting. In Proc. COLT, pages 170–179, San Francisco, 2000. Morgan Kaufmann.

157. G. Rätsch and M.K. Warmuth. Maximizing the margin with boosting. In Proc.
COLT, volume 2375 of LNAI, pages 319–333, Sydney, 2002. Springer.

158. G. Ridgeway, D. Madigan, and T. Richardson. Boosting methodology for re-
gression problems. In D. Heckerman and J. Whittaker, editors, Proceedings of
Artificial Intelligence and Statistics ’99, pages 152–161, 1999.

159. J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471,
1978.

160. C. P. Robert. The Bayesian Choice: A Decision Theoretic Motivation. Springer
Verlag, New York, 1994.

161. M. Rochery, R. Schapire, M. Rahim, N. Gupta, G. Riccardi, S. Bangalore, H. Al-
shawi, and S. Douglas. Combining prior knowledge and boosting for call classi-
fication in spoken language dialogue. In International Conference on Accoustics,
Speech and Signal Processing, 2002.

162. R.T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathemathics.
Princeton University Press, New Jersey, 1970.

163. R.E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
227, 1990.

164. R.E. Schapire. Using output codes to boost multiclass learning problems. In
Machine Learning: Proceedings of the 14th International Conference, pages 313–
321, 1997.

165. R.E. Schapire. A brief introduction to boosting. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, 1999.

166. R.E. Schapire. The boosting approach to machine learning: An overview. In
Workshop on Nonlinear Estimation and Classification. MSRI, 2002.

167. R.E. Schapire, Y. Freund, P.L. Bartlett, and W. S. Lee. Boosting the margin: A
new explanation for the effectiveness of voting methods. The Annals of Statistics,
26(5):1651–1686, October 1998.

168. R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated
predictions. Machine Learning, 37(3):297–336, December 1999. also Proceedings
of the 14th Workshop on Computational Learning Theory 1998, pages 80–91.

169. R.E. Schapire and Y. Singer. Boostexter: A boosting-based system for text cate-
gorization. Machine Learning, 39(2/3):135–168, 2000.

170. R.E. Schapire, Y. Singer, and A. Singhal. Boosting and rocchio applied to text
filtering. In Proc. 21st Annual International Conference on Research and Devel-
opment in Information Retrieval, 1998.

171. R.E. Schapire, P. Stone, D. McAllester, M.L. Littman, and J.A. Csirik. Modeling
auction price uncertainty using boosting-based conditional density estimations
noise. In Proceedings of the Proceedings of the Nineteenth International Confer-
ence on Machine Learning, 2002.

172. B. Schölkopf, R. Herbrich, and A.J. Smola. A generalized representer theorem.
In D.P. Helmbold and R.C. Williamson, editors, COLT/EuroCOLT, volume 2111
of LNAI, pages 416–426. Springer, 2001.

173. B. Schölkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson. Esti-
mating the support of a high-dimensional distribution. TR 87, Microsoft Research,
Redmond, WA, 1999.

174. B. Schölkopf, A. Smola, R.C. Williamson, and P.L. Bartlett. New support vector
algorithms. Neural Computation, 12:1207–1245, 2000. also NeuroCOLT Technical
Report NC-TR-1998-031.

182 R. Meir and G. Rätsch

175. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

176. H. Schwenk and Y. Bengio. Boosting neural networks. Neural Computation,
12(8):1869–1887, 2000.

177. R.A. Servedio. PAC analogoues of perceptron and winnow via boosting the mar-
gin. In Proc. COLT, pages 148–157, San Francisco, 2000. Morgan Kaufmann.

178. R.A. Servedio. Smooth boosting and learning with malicious noise. In Proceedings
of the Fourteenth Annual Conference on Computational Learning Theory, pages
473–489, 2001.

179. J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. Anthony. Structural
risk minimization over data-dependent hierarchies. IEEE Trans. Inf. Theory,
44(5):1926–1940, September 1998.

180. J. Shawe-Taylor and N. Cristianini. Further results on the margin distribution. In
Proceedings of the twelfth Conference on Computational Learning Theory, pages
278–285, 1999.

181. J. Shawe-Taylor and N. Cristianini. On the genralization of soft margin algo-
rithms. Technical Report NC-TR-2000-082, NeuroCOLT2, June 2001.

182. J. Shawe-Taylor and G. Karakoulas. Towards a strategy for boosting regressors.
In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances
in Large Margin Classifiers, pages 247–258, Cambridge, MA, 2000. MIT Press.

183. Y. Singer. Leveraged vector machines. In S.A. Solla, T.K. Leen, and K.-R.
Müller, editors, Advances in Neural Information Processing Systems, volume 12,
pages 610–616. MIT Press, 2000.

184. D. Tax and R. Duin. Data domain description by support vectors. In M. Verleysen,
editor, Proc. ESANN, pages 251–256, Brussels, 1999. D. Facto Press.

185. F. Thollard, M. Sebban, and P. Ezequel. Boosting density function estimators. In
Proc. 13th European Conference on Machine Learning, volume LNAI 2430, pages
431–443, Helsinki, 2002. Springer Verlag.

186. A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-posed Problems. W.H. Winston,
Washington, D.C., 1977.

187. K. Tsuda, M. Sugiyama, and K.-R. Müller. Subspace information criterion for
non-quadratic regularizers – model selection for sparse regressors. IEEE Trans-
actions on Neural Networks, 13(1):70–80, 2002.

188. L.G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, November 1984.

189. A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical Pro-
cesses. Springer Verlag, New York, 1996.

190. V.N. Vapnik. The nature of statistical learning theory. Springer Verlag, New
York, 1995.

191. V.N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
192. V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probab. and its Applications,
16(2):264–280, 1971.

193. J. von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100:295–320,
1928.

194. M.A. Walker, O. Rambow, and M. Rogati. Spot: A trainable sentence planner.
In Proc. 2nd Annual Meeting of the North American Chapter of the Assiciation
for Computational Linguistics, 2001.

An Introduction to Boosting and Leveraging 183

195. R. Zemel and T. Pitassi. A gradient-based boosting algorithm for regression
problems. In T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in
Neural Information Processing Systems, volume 13, pages 696–702. MIT Press,
2001.

196. T. Zhang. Statistical behavior and consistency of classification methods based on
convex risk minimization. Technical Report RC22155, IBM Research, Yorktown
Heights, NY, 2001.

197. T. Zhang. A general greedy approximation algorithm with applications. In Ad-
vances in Neural Information Processing Systems, volume 14. MIT Press, 2002.

198. T. Zhang. On the dual formulation of regularized linear systems with convex
risks. Machine Learning, 46:91–129, 2002.

199. T. Zhang. Sequential greedy approximation for certain convex optimization prob-
lems. Technical report, IBM T.J. Watson Research Center, 2002.

200. Z.-H. Zhou, Y. Jiang, Y.-B. Yang, and S.-F. Chen. Lung cancer cell identification
based on artificial neural network ensembles. Artificial Intelligence in Medicine,
24(1):25–36, 2002.

	A Brief History of Boosting
	An Introduction to Boosting and Ensemble Methods
	Learning from Data and the PAC Property
	Ensemble Learning, Boosting, and Leveraging

	Learning Theoretical Foundations of Boosting
	The Existence of Weak Learners
	Convergence of the Training Error to Zero
	Generalization Error Bounds
	Margin Based Generalization Bounds
	Consistency

	Boosting and Large Margins
	Weak Learning, Edges, and Margins
	Geometric Interpretation of p-Norm Margins
	AdaBoost and Large Margins
	Relation to Barrier Optimization

	Leveraging as Stagewise Greedy Optimization
	Preliminaries
	A Generic Algorithm
	The Dual Formulation
	Convergence Results

	Robustness, Regularization, and Soft-Margins
	Reducing the Influence of Examples
	Optimization of the Margins
	Regularization Terms and Sparseness

	Extensions
	Single Class
	Multi-class
	Regression
	Localized Boosting
	Other Extensions

	Evaluation and Applications
	On the Choice of Weak Learners for Boosting
	Evaluation on Benchmark Data Sets
	Applications

	Conclusions

