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ABSTRACT

Intra-personal space modeling proposed by Moghaddamet.
al. has been successfully applied in face recognition. In
their work the regular principal subspaces are derived from
the intra-personal space using a principal component analy-
sis and embedded in a probabilistic formulation. In this pa-
per, we derive the principal subspace from the intra-personal
kernel space by developing a probabilistic analysis of kernel
principal components for face recognition. We test this new
algorithm on a subset of the FERET database with illumina-
tion and facial expression variations. The recognition per-
formance demonstrates its advantage over other traditional
subspace approaches.

1. INTRODUCTION

Subspace representations have been widely used for face
recognition task. For a recent review on face recognition,
refer to [4]. Among them, two famous examples are the
’Eigenface’ [18] and ’Fisherface’ [3, 7] approaches. The
’Eigenface’ approach derives its subspace from a princi-
pal component analysis (PCA) while the ’Fisherface’ ap-
proach from a Fisher discriminant analysis (FDA). Both ap-
proaches attained satisfactory performances in the FERET
test as documented in [14].

Recently, there is an increasing trend of applying kernel
subspace representations to face recognition [19, 20, 11],
where kernel methods such as the kernel PCA (KPCA) [15]
and the kernel FDA (KFDA) [2], corresponding to the ’ker-
nelized’ versions of the PCA and the FDA respectively, are
invoked to derive the subspace. By mapping the original
data into a high-dimensional, or even infinite-dimensional
feature space, the kernel methods are able to capture higher-
order statistical dependencies, which typically abound in
human facial images captured under different scenarios with
variations in pose, illumination and facial expression, etc.
However, the computation involved in the kernel methods is
still maintained almost at the same level as that in the non-
kernel methods, as guaranteed by the ‘kernel trick’. This
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feature space is known as the reproducing kernel Hilbert
space (RKHS) [15].

In this paper, we investigate a ‘kernelized’ version of the
intra-personal space (IPS) algorithm, which was originally
proposed by Moghaddamet. al. [12]. An intra-personal
space is constructed by collecting all the difference images
between any two image pairs belonging to the same indi-
vidual, to capture all intra-personal variations. Using the
PCA, the IPS is decomposed into two subspaces, a principal
subspace and an error residual subspace and these two sub-
spaces are embedded in a probabilistic formulation. How-
ever, the PCA only accounts for the second-order statistics
of the IPS and the role of the higher-order statistics of the
IPS is not clear. This paper attempts to address this is-
sue by replacing the PCA with the KPCA. However, this
replacement is nontrivial as the ordinary KPCA does not
accomodate a probabilistic analysis. We propose a proba-
bilistic analysis of the kernel principal components, which
integrates a probabilistic PCA (PPCA) [17] into the KPCA.

This paper is structured as follows. In section 2, we
demonstrate the importance of the intra-personal space by
comparing it with regular subspace algorithms. We review
the relevant theoretical issues regarding the KPCA in sec-
tion 3, and present a probabilistic analysis of the KPC’s in
section 4. Section 5 applies the proposed algorithm to a sub-
set of the FERET database [14] and presents the obtained
experimental results. Section 6 concludes the paper.

1.1. Notations

x is a scalar,x a vector, andX a matrix. XT represents the
matrix transpose andtr(X) the matrix trace.Im denotes
anm × m identity matrix. 1 denotes a vector or matrix of
ones.D[a1, a2, . . . , am] means anm × m diagonal matrix
with diagonal elementsa1, a2, . . . , am. p(.) is a general
probability density function.N(µ,Σ) means a normal den-
sity with a meanµ and a covariance matrixΣ.



2. INTRA-PERSONAL SPACE MODELING

2.1. Intra-Personal Space(IPS)

In this paper, we are only interested in testing the general-
ization capability of our algorithm. It is our hope that the
training stage can learn the intrinsic characteristics of the
target space. We follow [14] to define three sets, namely the
training, gallery and probe sets. There is no overlap between
the training set and the gallery set in terms of the identity.

Assume that in the training set each classc, c = 1, ..., C,
possessesJc observations, indexed byjc = 1, ..., Jc. In to-
tal we haveN =

∑C
c=1 Jc images{xc,jc

} in the training
set. TypicallyN < d whered is the number of pixels in
one image. Note that, when the class information is not im-
portant in a particular context, we simply drop the notation
c and denote the training set byXd×N = [x1, ..., xN ]. The
gallery set is denoted byYd×N = [y1, ..., yM ], where each
individual m, m = 1, ...,M , possess only one observation
ym. The recognition algorithm determines the identity of a
given probe imagez asm̂ among the set{1, ...,M}.

Regular subspace algorithms for face recognition proceed
as follows:

• In the training stage, from the training setX, q basis
vectors (q < N ) forming asubspace projectionmatrix
Ud×q = [u1, · · · , uq] in Rd are learned such that the

new representation̂X = UTX satisfies certain proper-
ties. Different properties give rise to different kinds of
analysis methods such as the PCA, the FDA, and the
independent component analysis (ICA) [8].

• In the testing stage, the algorithms usually determine
the identity of the probez as follows:

m̂ = arg min
m=1,...,M

||UT(z − ym)||, (1)

where||.|| is a certain norm metric.

In (1), z − ym plays a crucial role. However, its projec-
tion onto theA matrix is not guaranteed to be small even
when z and ym are two members belonging to the same
class because the learning algorithm is not geared towards
minimizing such distance. This is true even for the FDA
as the minimization in the FDA is with respect to the class
center, not the class member itself. This is a significant dif-
ference between the class center and the class member as
pose/illuminatin/expression variations might severely devi-
ate the class member from the class center.

To efficiently capture the characteristic of the difference
between class members, Moghaddamet. al. [12] introduced
the intra-personal space (IPS). The IPS is constructed by
collecting all the difference images between any two image
pairs belonging to the same individual. The construction of

the IPS is meant to capture all the possible intra-personal
variations introduced during the image acquisition.

Denote the IPS by∆. Its construction proceeds as fol-
lows: From the training set{xc,jc

; c = 1, ..., C}, we can
constructδc,kc

= xc,j1c
− xc,j2c

; j1c 6= j2c. Hence for
the same individualc, we haveKc = Jc(Jc − 1)/2 dif-
ference images. Now, we have reached∆ = {δc,kc

; c =
1, ..., C, kc = 1, ...,Kc}, with eachδc,kc

treated as an i.i.d.
realization. With the availability of the training sample for
the IPS∆, we can learn a probabilistic density function
(PDF) on it, sayp∆(x), wherex is an arbitrary point lying
in the space∆. Now, given the gallery setY and the density
p∆(x), the identitym̂ of the probe imagez is determined
by a maximum likelihood (ML) rule:

m̂ = arg max
m=1,...,C

p∆(z − ym). (2)

Similar to the FDA, an extra-personal space (EPS) can be
constructed to mimic the between-class difference and then
the recognition mechanism follows a maximum a posteriori
(MAP) rule. See [12] for details. Therefore, this study can
be regarded as a ’generalized’ discriminant analysis. How-
ever, as commented in [12], using only the IPS modeling
does not sacrifice the recognition performance.

2.2. Probabilistic subspace density and probabilistic
principal component analysis

In [12], a probabilistic subspace (PS) densityp∆ is used
[13]. The probabilistic subspace (PS) density decomposes
the data space into two subspaces, a principal subspace and
an error residual subspace. Suppose that the covariance ma-
trix of the data space isC, whose eigenpairs are given by
{(λi,ui)}

d
i=1 with d being the dimensionality of the data

space, the PS density is written as:

p∆(x) = {
exp(− 1

2

∑q
i=1

(uT
i

x)2

λi

)

(2π)q/2
∏q

i=1 λ
1/2
i

}{
exp(− ε2(x)

2ρ )

(2πρ)(d−q)/2
}, (3)

whereε2(x) = ‖x‖2 −
∑q

i=1 y2
i is the reconstruction error,

and

ρ =
1

d − q

d∑

i=q+1

λi =
1

d − q
{tr(Σ) −

q∑

i=1

λi}. (4)

In practice, we cannot compute all eigenpairs due to ‘curse
of dimensionality’. However, in the PS density, we are only
interested in the topq eigenpairs.

It is very interesting to note that the probabilistic PCA
(PPCA) [17] is very similar to the PS density. The theory of
PPCA is briefly reviewed in Section 4. The key observation
is that PPCA relates to the ordinary PCA by the fact that the
top q eigenpairs of the covariance matrix are maintained.



We implemented both the PS and PPCA in the experi-
ments and found that their performances were similar. Thus,
in the sequel, we use the PPCA instead due to its probabilis-
tic interpretation.

3. KERNEL PRINCIPAL COMPONENT ANALYSIS

3.1. PCA in the feature space

Suppose that{x1, x2, . . . , xN} are the given training sam-
ples in the original data spaceRd. The KPCA operates in
a higher-dimensional feature spaceRf induced by a non-
linear mapping functionφ : Rd → Rf , wheref > d and
f could even be infinite. The training samples inRf are
denoted byΦf×N = [φ1, φ2, ..., φN ], whereφn

.
= φ(xn) ∈

Rf . Denote the sample mean in the feature space as

φ̄0
.
= N−1

N∑

n=1

φ(xn) = Φs, sN×1
.
= N−11. (5)

The covariance matrix in the feature space denoted by
Cf×f is given as

C .
= N−1

N∑

n=1

(φn − φ̄0)(φn − φ̄0)
T = ΦJJTΦT = ΨΨT,

(6)
where

J .
= N−1/2(IN − s1T), Ψ

.
= ΦJ. (7)

The KPCA performs an eigen-decomposition of the co-
variance matrixC in the feature space. Due to the high di-
mensionality of the feature space, we commonly possess in-
sufficient number of samples, i.e., the rank of theC matrix
is maximallyN instead off . However, computing eigen-
system is still possible using the method presented in [18].
Before that, we first show how to avoid the explicit knowl-
edge of the nonlinear feature mapping.

3.2. Kernel trick

Define
K̄ .

= ΨTΨ = JTΦTΦJ = JTKJ, (8)

whereK .
= ΦTΦ is the grand matrix or the dot product

matrix and can be evaluated using the ‘kernel trick’; thus the
explicit knowledge of the mapping functionφ is avoided.
Given a kernel functionk satisfying

k(x, y) = φ(x)Tφ(y); ∀x, y ∈ Rd, (9)

the(i, j)th entry of the grand matrixK can be calculated as
follows:

Kij = φ(xi)
Tφ(xj) = k(xi, xj). (10)

The existence of such kernel functions is guaranteed by
the Mercer’s Theorem [10]. One example is the Gaussian

kernel (or the RBF kernel) which has been widely studied
in the literature and the focus of this paper. It is defined as

k(x, y) = exp(−(2σ2)−1‖x − y‖2) ∀x, y ∈ Rd, (11)

whereσ controls the kernel width. In this case we have
f = ∞.

The use of the ‘kernel trick’ (or kernel embedding) [15]
captures high-order statistical information since theφ func-
tion coming from the nonlinear kernel function is nonlin-
ear. We also note that, as long as the computations of inter-
est can be cast in terms of dot products, we can safely use
the ‘kernel trick’ to embed our operations into the feature
space. This is the essence of all kernel methods including
this work.

3.3. Computing eigensystem for theC matrix

As shown in [9, 18], the eigensystem forC can be de-
rived from K̄. Suppose that the eigenpairs forK̄ are
{(λn, vn)}N

n=1, whereλn’s are sorted in a non-increasing
order. We now have

K̄vn = ΨTΨvn = λnvn; n = 1, ..., N. (12)

Pre-multiplying (12) byΨ gives rises to

ΨΨT(Ψvn) = C(Ψvn) = λn(Ψvn); n = 1, ..., N. (13)

Henceλn is the desired eigenvalue ofC, with its corre-
sponding eigenvectorΨvn. To get the normalized eigen-
vectorun for C, we only need to normalizeΨvn.

(Ψvn)T(Ψvn) = vTn ΨTΨvn = vTn λnvn = λn. (14)

So,

un = (λn)−1/2Ψvn, n = 1, ..., N, (15)

In a matrix form (if only topq eigenvectors are retained),

Uq
.
= [u1, ..., uq] = ΨVqΛ

−1/2
q , (16)

whereVq
.
= [v1, ..., vq] andΛq

.
= D[λ1, ..., λq].

It is clear that we are not operating in the full feature
space, but in a low-dimensional subspace of it, which is
spanned by the training samples. It seems that the mod-
eling capacity is limited by the subspace dimensionality, or
by the number of the samples. In reality, it however turns
out that even in this subspace the smallest eigenvalues are
very close to zero, which means that the full feature space
can be further captured by a subspace with an even-lower
dimensionality. This motivates the use of the latent model.



4. PROBABILISTIC ANALYSIS OF KERNEL
PRINCIPAL COMPONENTS

In this section, we present the theory of probabilistic anal-
ysis of kernel principal components, which unifies the
PPCA and the KPCA in one treatment. We call this anal-
ysis as probabilistic kernel principal component analysis
(PKPCA). We then present how to compute the Maha-
lanobis distance and study its limiting behavior.

4.1. Theory of PKPCA

Probabilistic analysis assumes that the data in the feature
space follows a special factor analysis model which relates
anf -dimensional dataφ(x) to a latentq-dimensional vari-
ablez as

φ(x) = µ + Wz + ε, (17)

wherez ∼ N(0,Iq), ε ∼ N(0, ρIf ), and W is a f × q
loading matrix. Therefore,φ(x) ∼ N(µ,Σ), whereΣ =

WWT + ρIf . Typically, we haveq << N << f .
The maximum likelihood estimates (MLE’s) forµ andW

are given by

µ = φ̄0 = N−1
N∑

n=1

φ(xn) = Φs, W = Uq(Λq−ρIq)
1/2R,

(18)
whereR is anyq×q orthogonal matrix, andUq andΛq con-
tain the topq eigenvectors and eigenvalues of theC matrix.

Substituting (16) into (18), we obtain the following:

W = ΨVqΛ
−1/2
q (Λq − ρIq)

1/2R = ΨQ = ΦJQ, (19)

where theN × q matrixQ is defined as

Q .
= Vq(Iq − ρΛ−1

q )1/2R. (20)

Since the matrix(Iq − ρΛ−1
q ) in Q is diagonal, additional

savings in computing its square root are realized. Without
loss of generality, we assume thatR = I.

The MLE forρ is given as

ρ = (f − q)
−1

{tr(C) − tr(Λq)}

' (f − q)
−1

{tr(K) − tr(Λq)}. (21)

In (21), the approximation needs the assumption that the re-
maining eigenvalues are zero. This is a reasonable assump-
tion supported by empirical evidences only whenf is finite.
Whenf is infinite, this is doubtful since this always gives
ρ = 0. In such a case, we temporarily set a manual choice
ρ > 0. Later we show that we can actually letρ be zero as a
limiting case. However, even if a fixedρ is used, the optimal
estimate forW is still same as in (20). It is interesting that
(21) is the same as (4).

Now, the covariance matrix is given by

Σ = ΦJQQTJTΦT + ρIf = ΦAΦT + ρIf , (22)

whereA is aN × N matrix given by

A .
= JQQTJT = JVq(Iq − ρΛ−1

q )VTq JT. (23)

This offers a regularized approximation to the covariance
matrix C = ΦJJTΦT. Especially the topq eigenval-
ues/vectors of theΣ andC matrices are equivalent1. An-
other approximation often seen in the literature isΣ = C +
ρIf . However, this approximation changes the eigenvalues
while leaving the eigenvectors unchanged. It is interesting
to note that Tipping [16] used a similar technique to approx-
imate the covariance matrixC asΣ = ΦJDJTΦT + ρIf ,
whereD is a diagonal matrix with many diagonal entries be-
ing zero, i.e.,D is rank deficient. This can be interpreted in
our approach since in our computationD = QQT is also
rank deficient. However, we do not enforceD to be a diag-
onal matrix. Also, Tipping’s approximation might change
both the eigenvalues and eigenvectors.

A useful matrix denoted byMq×q, which can be thought
as a ’reciprocal’ matrix forΣ is defined as

M .
= ρIq + WTW = ρIq + QTKQ. (24)

If (20) is substituted into (24), it is easy to show (refer to the
Appendix) thatM = Λq.

4.2. Mahalanobis distance

Given a vectory ∈ Rd, we are often interested in com-
puting the Mahalanobis distance (see Sec. 5)L(y)

.
=

(φ(y) − φ̄0)
TΣ−1(φ(y) − φ̄0). Firstly, Σ−1 is computed

as

Σ−1 = (ρIf + WWT)−1 = ρ−1(If − WM−1WT)

= ρ−1(If − ΦJQM−1QTJTΦT)

= ρ−1(If − ΦBΦT), (25)

whereB is anN × N matrix given by (refer to Appendix)

B = JQM−1QTJT = JVr(Λ
−1
r − ρΛ−2

r )VTr JT. (26)

Then, the Mahalanobis distance is calculated as follows:

L(y) = (φ(y) − φ̄0)
TΣ−1(φ(y) − φ̄0)

= ρ−1{gy − hTy Bhy}, (27)

wheregy andhy are defined by:

gy
.
= (φ(y)− φ̄0)

T(φ(y)− φ̄0) = k(y, y)− 2kTy s + sTKs,
(28)

1In fact, the remaining eigenvectors are unchanged though those eigen-
values are changed.



hy
.
= ΦT(φ(y) − φ̄0) = ky − Ks, (29)

ky
.
= ΦTφ(y) = [k(x1, y), ..., k(xN , y)]T. (30)

We now observe that whenρ approaches zero, the quan-
tity ρL(y) has a limitL̂(y) given by

L̂(y) = gy − hTy B̂hy, (31)

where

B̂ = JQM−1QTJT = JVrΛ
−1
r VTr JT. (32)

Notice that this limiting Mahalanobis distance does not de-
pend on the choiceρ. Thus, we use this limiting Maha-
lanobis distance in the followup experiments. Also, this also
closes the loop for using a zeroρ.

5. EXPERIMENTAL RESULTS ON FACE
RECOGNITION

We perform face recognition using a subset of the FERET
database [14] with200 subjects only. Each subject has3
images: (a) one taken under controlled lighting condition
with neutral expression; (b) one taken under the same light-
ing condition as above but with different facial expressions
(mostly smiling); and (c) one taken under different light-
ing condition and mostly with a neutral expression. Fig. 1
shows some face examples in this database. All images are
pre-processed using zero-mean-unit-variance operation and
manually registered using the eye positions.

We randomly divide the200 objects into two sets, with
one set for training and the other one for testing. We focus
on the effects of two different variations in facial expression
and illumination. For one particular variation, say illumina-
tion variation, we use200 images belonging to the first100
subjects as the training set for learning and the remaining
200 images as the gallery and probe sets for testing, with
images in the category (a) as the gallery set, and those in
the category (c) as the probe set. This random division is
repeated 20 times and we take their averages as the final
result.

We perform our probabilistic analysis of kernel princi-
pal components on the IPS. This actually derives the intra-
personal kernel subspace as shown in section 4. It turns out
that (2) is equivalent to

m̂ = arg min
m=1,...,C

L̂(z − ym), (33)

whereL(.) is the Mahalanobis distance defined in (27).
For comparison, we have implemented the following

eight methods: the PKPCA and the PPCA [17] with the IPS
modeling, the KFDA [2] and the FDA [6], the KPCA [15]
and the PCA [18], and the kernel ICA (KICA) [1] and the
ICA [8]. For the PKPCA/IPS and the PPCA/IPS, the IPS is

constructed based on the training set and the PKPCA/PPCA
density is fitted on top of that. For the KPCA, the PCA, the
KICA and the ICA, all200 training images are regarded ly-
ing in one face space (FS) and then the learning algorithms
are applied on that FS. For the KFDA and the FDA, the
identity information of the training set is employed.

Table 1 lists the recognition rate, averaging those of 20
simulations, using the top 1 match. The PKPCA/IPS algo-
rithm attains the best performance since it combines the dis-
criminative power of the IPS modeling and the merit of the
PKPCA. As mentioned earlier, using the PS density with the
IPS modeling produces the same results as PPCA/IPS. Also,
using the dual IPS/EPS modeling does not further improve
the results. Compared to the PPCA/IPS, the improvement is
not significant, indicating that second-order statistics might
be enough after the IPS modeling for the face recognition
problem. However, using the PKPCA may be more effec-
tive since it also takes into account the higher-order statis-
tics besides the second-order ones. Another observation is
that variations in illumination are easier to model than facial
expression using subspace methods.

6. CONCLUSION

In this paper, we illustrated the importance of the intra-
personal space for a recognition problem. Then, we pro-
posed a probabilistic analysis of kernel principal compo-
nents and computed the Mahalanobis distance and its limit-
ing distance. Finally, we have applied this proposed prob-
abilistic approach with IPS modeling to a face dataset and
highlighted its advantages. A final note is that our analy-
sis is quite general and is applicable to other learning and
recognition tasks.
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8. APPENDIX – SOME USEFUL COMPUTATIONS

8.1. Computation related toM

We first computeQTK̄Q and thenM.

QTK̄Q
= (Ir − ρΛ−1

r )1/2VTr K̄Vr(Ir − ρΛ−1
r )1/2

= (Ir − ρΛ−1
r )1/2Λr(Ir − ρΛ−1

r )1/2

= Λr − ρIr,

(34)

where the fact thatVTr K̄Vr = VTr JTKJVr = Λr is used.
Therefore,

M = ρIr + QTK̄Q = ρIr + (Λr − ρIr) = Λr. (35)

|M| = |Λr| =

q∏

i=1

λi, M−1 = Λ−1
r . (36)

8.2. Computation related toA and B

A = JQQTJT

= JVr(Ir − ρΛ−1
r )1/2(Ir − ρΛ−1

r )1/2VTr JT

= JVr(Ir − ρΛ−1
r )VTr JT

(37)

B = JQM−1QTJT

= JVr(Ir − ρΛ−1
r )1/2Λ−1

r (Ir − ρΛ−1
r )1/2VTr JT

= JVr(Λ
−1
r − ρΛ−2

r )VTr JT

(38)


