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Abstract

In recent years face recognition has received substantial attention from both research com-

munities and the market, but still remained very challenging in real applications. A lot of face

recognition algorithms, along with their modifications, have been developed during the past

decades. A number of typical algorithms are presented, being categorized into appearance-

based and model-based schemes. For appearance-based methods, three linear subspace analysis

schemes are presented, and several non-linear manifold analysis approaches for face recognition

are briefly described. The model-based approaches are introduced, including Elastic Bunch

Graph matching, Active Appearance Model and 3D Morphable Model methods. A number

of face databases available in the public domain and several published performance evaluation

results are digested. Future research directions based on the current recognition results are

pointed out.

1 Introduction

In recent years face recognition has received substantial attention from researchers in biometrics,

pattern recognition, and computer vision communities [1][2][3][4]. The machine learning and com-

puter graphics communities are also increasingly involved in face recognition. This common interest

among researchers working in diverse fields is motivated by our remarkable ability to recognize peo-

ple and the fact that human activity is a primary concern both in everyday life and in cyberspace.

Besides, there are a large number of commercial, security, and forensic applications requiring the

use of face recognition technologies. These applications include automated crowd surveillance, ac-

cess control, mugshot identification (e.g., for issuing driver licenses), face reconstruction, design of

human computer interface (HCI), multimedia communication (e.g., generation of synthetic faces),
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and content-based image database management. A number of commercial face recognition systems

have been deployed, such as Cognitec [5], Eyematic [6], Viisage [7], and Identix [8].

Facial scan is an effective biometric attribute/indicator. Different biometric indicators are suited

for different kinds of identification applications due to their variations in intrusiveness, accuracy,

cost, and ease of sensing [9] (see Fig. 1(a)). Among the six biometric indicators considered in [10],

facial features scored the highest compatibility, shown in Fig. 1(b), in a machine readable travel

documents (MRTD) system based on a number of evaluation factors [10].

(a) (b)

Figure 1: Comparison of various biometric features: (a) based on zephyr analysis [9]; (b) based on

MRTD compatibility [10].

Global 2002 industry revenues of $601million are expected to reach $4.04billion by 2007 [9], driven

by large-scale public sector biometric deployments, the emergence of transactional revenue models,

and the adoption of standardized biometric infrastructures and data formats. Among emerging

biometric technologies, facial recognition and middleware are projected to reach $200million and

$215million, respectively, in annual revenues in 2005.

Face recognition scenarios can be classified into two types, (i) face verification (or authentication)

and (ii) face identification (or recognition). In the Face Recognition Vendor Test (FRVT) 2002

[11], which was conducted by the National Institute of Standards and Technology (NIST), another

scenario is added, called the ’watch list’.

• Face verification (”Am I who I say I am?”) is a one-to-one match that compares a query
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(a) (b)

Figure 2: Face recognition market [9]. (a) Total biometric revenues 2002 - 2007. (b) Comparative

market share by technology.

face image against a template face image whose identity is being claimed. To evaluate the

verification performance, the verification rate (the rate at which legitimate users are granted

access) vs. false accept rate (the rate at which imposters are granted access) is plotted, called

ROC curve. A good verification system should balance these two rates based on operational

needs.

• Face identification (”Who am I?”) is a one-to-many matching process that compares a query

face image against all the template images in a face database to determine the identity of the

query face (see Fig. 3). The identification of the test image is done by locating the image in

the database who has the highest similarity with the test image. The identification process is

a ”closed” test, which means the sensor takes an observation of an individual that is known to

be in the database. The test subject’s (normalized) features are compared to the other features

in the system’s database and a similarity score is found for each comparison. These similarity

scores are then numerically ranked in a descending order. The percentage of times that the

highest similarity score is the correct match for all individuals is referred to as the ”top match

score.” If any of the top r similarity scores corresponds to the test subject, it is considered

as a correct match in terms of the cumulative match. The percentage of times one of those

r similarity scores is the correct match for all individuals is referred to as the ”Cumulative

Match Score”,. The ”Cumulative Match Score” curve is the rank n versus percentage of correct

identification, where rank n is the number of top similarity scores reported.
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Figure 3: Face identification scenario.

• The watch list(”Are you looking for me?”) method is an open-universe test. The test indi-

vidual may or may not be in the system database. That person is compared to the others in

the system’s database and a similarity score is reported for each comparison. These similarity

scores are then numerically ranked so that the highest similarity score is first. If a similarity

score is higher than a preset threshold, an alarm is raised. If an alarm is raised, the system

thinks that the individual is located in the system’s database. There are two main items of

interest for watch list applications. The first is the percentage of times the system raises the

alarm and it correctly identifies a person on the watchlist. This is called the ”Detection and

Identification Rate.” The second item of interest is the percentage of times the system raises

the alarm for an individual that is not on the watchlist (database). This is called the ”False

Alarm Rate.”

In this report, all the experiments are conducted in the identification scenario.

Human face image appearance has potentially very large intra-subject variations due to

• 3D head pose
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• Illumination (including indoor / outdoor)

• Facial expression

• Occlusion due to other objects or accessories (e.g., sunglasses, scarf, etc.)

• Facial hair

• Aging [12].

On the other hand, the inter-subject variations are small due to the similarity of individual appear-

ances. Fig. 4 gives examples of appearance variations of one subject. And Fig. 5 illustrates examples

of appearance variations of different subjects. Currently, image-based face recognition techniques

can be mainly categorized into two groups based on the face representation which they use: (i)

appearance-based which uses holistic texture features; (ii) model-based which employ shape and

texture of the face, along with 3D depth information.

Figure 4: Appearance variations of the same subject under different lighting conditions and different

facial expressions [13].

A number of face recognition algorithms, along with their modifications, have been developed

during the past several decades (see Fig. 6). In section 2, three leading linear subspace analysis

schemes are presented, and several non-linear manifold analysis approaches for face recognition are

briefly described. The model-based approaches are introduced in section 3, including Elastic Bunch

Graph matching, Active Appearance Model and 3D Morphable Model methods. A number of face

databases available in the public domain and several published performance evaluation results are

provided in section 4. Concluding remarks and future research directions are summarized in section 5.
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Figure 5: Inter-subject variations versus intra-subject variations. (a) and (b) are images from

different subjects, but their appearance variations represented in the input space can be smaller

than images from the same subject, b, c and d. These images are taken from from Yale database B.

2 Appearance-based (View-based) face recognition

Many approaches to object recognition and to computer graphics are based directly on images

without the use of intermediate 3D models. Most of these techniques depend on a representation of

images that induces a vector space structure and, in principle, requires dense correspondence.

Appearance-based approaches represent an object in terms of several object views (raw intensity

images). An image is considered as a high-dimensional vector, i.e., a point in a high-dimensional

vector space. Many view-based approaches use statistical techniques to analyze the distribution of

the object image vectors in the vector space, and derive an efficient and effective representation

(feature space) according to different applications. Given a test image, the similarity between the

stored prototypes and the test view is then carried out in the feature space.
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Figure 6: Face recognition methods covered in this report.

This image vector representation allows the use of learning techniques for the analysis and for

the synthesis of images. Face recognition can be treated as a space-searching problem combined

with a machine-learning problem.

2.1 Vector representation of images

Image data can be represented as vectors, i.e., as points in a high dimensional vector space. For

example, a p×q 2D image can be mapped to a vector x ∈ Rpq, by lexicographic ordering of the pixel

elements (such as by concatenating each row or column of the image). Despite this high-dimensional

embedding, the natural constraints of the physical world (and the imaging process) dictate that the

data will, in fact, lie in a lower-dimensional (though possibly disjoint) manifold. The primary goal

of the subspace analysis is to identify, represent, and parameterize this manifold in accordance with

some optimality criteria.

Let X = (x1, x2, . . . , xi, . . . , xN ) represent the n×N data matrix, where each xi is a face vector

of dimension n, concatenated from a p× q face image, where n = p× q. Here n represents the total

number of pixels in the face image and N is the number of different face images in the training set.

The mean vector of the training images µ =
∑N

i=1 xi is subtracted from each image vector.
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2.2 Linear (subspace) Analysis

Three classical linear appearance-based classifiers, PCA [14], ICA [15] and LDA [16][17] are intro-

duced in the following. Each classifier has its own representation (basis vectors) of a high dimensional

face vector space based on different statistical viewpoints. By projecting the face vector to the basis

vectors, the projection coefficients are used as the feature representation of each face image. The

matching score between the test face image and the training prototype is calculated (e.g., as the

cosine value of the angle) between their coefficients vectors. The larger the matching score, the

better the match.

All the three representations can be considered as a linear transformation from the original image

vector to a projection feature vector, i.e.

Y = WT X, (1)

where Y is the d×N feature vector matrix, d is the dimension of the feature vector, and W is the

transformation matrix. Note that d << n.

2.2.1 PCA

The Eigenface algorithm uses the Principal Component Analysis (PCA) for dimensionality reduction

to find the vectors which best account for the distribution of face images within the entire image

space [14]. These vectors define the subspace of face images and the subspace is called face space.

All faces in the training set are projected onto the face space to find a set of weights that describes

the contribution of each vector in the face space. To identify a test image, it requires the projection

of the test image onto the face space to obtain the corresponding set of weights. By comparing the

weights of the test image with the set of weights of the faces in the training set, the face in the test

image can be identified.

The key procedure in PCA is based on Karhumen-Loeve transformation [18]. If the image

elements are considered to be random variables, the image may be seen as a sample of a stochastic

process. The Principal Component Analysis basis vectors are defined as the eigenvectors of the

scatter matrix ST ,

ST =
N∑

i=1

(xi − µ)(xi − µ)T . (2)

The transformation matrix WPCA is composed of the eigenvectors corresponding to the d largest

eigenvalues. A 2D example of PCA is demonstrated in Fig. 7. The eigenvectors (a.k.a. eigenface)
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Figure 7: Principal components (PC) of a two-dimensional set of points. The first principal compo-

nent provides an optimal linear dimension reduction from 2D to 1D, in the sense of the mean square

error.

corresponding to the 7 largest eigenvalues, derived from ORL face database [19], are shown in

Fig. 9. The corresponding average face is given in Fig. 8. ORL face samples are provided in Fig. 26.

After applying the projection, the input vector (face) in an n-dimensional space is reduced to a

feature vector in a d-dimensional subspace. Also the eigenvectors corresponding to the 7 smallest

eigenvalues are provided in Fig. 10. For most applications, these eigenvectors corresponding to very

small eigenvalues are considered as noise, and not taken into account during identification. Several

extensions of PCA are developed, such as modular eigenspaces [20] and probabilistic subspaces [21].

Figure 8: The average face (derived from the ORL face database [19]).

2.2.2 ICA

Independent Component Analysis (ICA) [22] is similar to PCA except that the distribution of the

components are designed to be non-Gaussian. Maximizing non-Gaussianity promotes statistical
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Figure 9: Eigenvectors corresponding to the 7 largest eigenvalues, shown as p × p images, where

p× p = n (derived from the ORL face database [19]).

Figure 10: Eigenvectors corresponding to the 7 smallest eigenvalues, shown as p× p images, where

p× p = n (derived from the ORL face database [19]).

independence. Figure 11 presents the different feature extraction properties between PCA and ICA.

Bartlett et al. [15] provided two architectures based on Independent Component Analysis, sta-

tistically independent basis images and a factorial code representation, for the face recognition task.

The ICA separates the high-order moments of the input in addition to the second-order moments

utilized in PCA. Both the architectures lead to a similar performance. The obtained basis vectors

based on fast fixed-point algorithm [24] for the ICA factorial code representation are illustrated in

Fig. 12. There is no special order imposed on the ICA basis vectors.

2.2.3 LDA

Both PCA and ICA construct the face space without using the face class (category) information.

The whole face training data is taken as a whole. In LDA the goal is to find an efficient or interesting

way to represent the face vector space. But exploiting the class information can be helpful to the

identification tasks, see Fig. 13 for an example.

The Fisherface algorithm [16] is derived from the Fisher Linear Discriminant (FLD), which uses

class specific information. By defining different classes with different statistics, the images in the

learning set are divided into the corresponding classes. Then, techniques similar to those used

in Eigenface algorithm are applied. The Fisherface algorithm results in a higher accuracy rate in
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Figure 11: Top: Example 3D data distribution and the corresponding principal component and

independent component axes. Each axis is a direction found by PCA or ICA. Note the PC axes are

orthogonal while the IC axes are not. If only 2 components are allowed, ICA chooses a different

subspace than PCA. Bottom left: Distribution of the first PCA coordinate of the data. Bottom

right: distribution of the first ICA coordinate of the data [23]. For this example, ICA tends to

extract more intrinsic structure of the original data clusters.

Figure 12: ICA basis vectors shown as p× p images; there is no special order for ICA basis vectors

(derived from the ORL face database [19], based on the second architechture [23].). The ICA code

package to compute these ICA is downloaded from http://www.cis.hut.fi/projects/ica/fastica/.
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Figure 13: A comparison of principal component analysis (PCA) and Fisher’s linear discriminant

(FLD) for a two class problem where data for each class lies near a linear subspace [16]. It shows

that FLD is better than PCA in the sense of discriminating the two classes.

recognizing faces when compared with Eigenface algorithm.

The Linear Discriminant Analysis finds a transform WLDA, such that

WLDA = arg max
W

WT SBW

WT SW W
, (3)

where SB is the between-class scatter matrix and SW is the within-class scatter matrix, defined as

SB =
c∑

i=1

Ni(µi − µ)(µi − µ)T , (4)
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SW =
c∑

i=1

∑

xk∈Xi

(xk − µi)(xk − µi)T . (5)

In the above expression, Ni is the number of training samples in class i, c is the number of distinct

classes, µi is the mean vector of samples belonging to class i and Xi represents the set of samples

belonging to class i. The LDA basis vectors are demonstrated in Fig. 14.

Figure 14: First seven LDA basis vectors shown as p×p images (derived from the ORL face database

[19]).

2.3 Non-linear (manifold) Analysis

The face manifold is more complicated than linear models. Linear subspace analysis is an approx-

imation of this non-linear manifold. Direct non-linear manifold modeling schemes are explored to

learn this non-linear manifold. In the following subsection, the kernel principal component analysis

(KPCA) is introduced and several other manifold learning algorithms are also listed.

2.4 Kernel PCA

The kernel PCA [25] is to apply a nonlinear mapping from the input space RM to the feature space

RL, denoted by Ψ(x), where L is larger than M . This mapping is made implicit by the use of kernel

functions satisfying the Mercer’s theorem

k(xi, xj) = Ψ(xi) ·Ψ(xj). (6)

where kernel functions k(xi, xj) in the input space correspond to inner-product in the higher di-

mensional feature space. Because computing covariance is based on inner-products, performing a

PCA in the feature space can be formulated with kernels in the input space without the explicit

computation of Ψ(x). Suppose the covariance in the feature space is calculated as

ΣK = < Ψ(xi)Ψ(xi)T > . (7)
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The corresponding eigen-problem is λV = ΣKV . It can be proved [25] that V can be expressed as

V =
∑N

i=1 wiΨ(xi), where N is the total number of training samples. The equivalent eigenvalue

problem can be formulated in terms of kernels in the input space

Nλw = Kw, (8)

where w is a N -dimensional vector, K is a N ×N matrix with Kij = k(xi, xj).

The projection of a sample x onto the nth eigenvector V n can be calculated by

pn = (V n ·Ψ(x)) =
N∑

i=1

wn
i k(xi, xj). (9)

Figure 15 gives an example of KPCA.

Figure 15: Contour plots of the first six principal component projections. Each contour contains

the same projection values onto the corresponding eigenvectors. Data is generated by 3 Gaussian

clusters. A RBF kernel is used. The corresponding eigenvalues are given above each subplot. Notice

that the first three components have the potential to extract the individual clusters [25].

Similar to traditional PCA, the projection coefficients are used as features for classification.

Yang [26] explored the use of KPCA for the face recognition problem. Unlike traditional PCA,

KPCA can use more eigenvector projections than the input dimensionality. But a suitable kernel

and correspondent parameters can only be decided empirically.
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Manifold learning has attracted a lot of effort in the machine learning community recently.

ISOMAP [27] and LLE [28] have been proposed to learn the non-linear manifold, where the learned

manifold have been shown for some simple face images. Yang [29] applied LDA to the face recognition

with the feature of the geodesic distance, which is the basis of the ISOMAP. These manifold learning

algorithms are interesting, but further exploration is needed to demonstrate their performance in

the face recognition in real applications.

2.5 Small Sample Size

In real applications, current appearance-based face recognition systems encounter difficulties due to

the small number of available training face images and complex facial variations during the test.

Human face appearances have a lot of variations resulting from varying lighting conditions, different

head poses and facial expressions. In real-world situations, only a small number of samples for

each subject are available for training. If a sufficient amount of enough representative data is not

available, Martinez and Kak [30] have shown that the switch from nondiscriminant techniques (e.g.,

PCA) to discriminant approaches (e.g., LDA) is not always warranted and may sometimes lead to

poor system design when small and nonrepresentative training data sets are used. Figure 16 gives

an example.

Therefore, face synthesis, where additional training samples can be generated, is helpful to en-

hance the face recognition systems [31][32].

3 Model-based face recognition

The model-based face recognition scheme is aimed at constructing a model of the human face,

which is able to capture the facial variations. The prior knowledge of human face is highly utilized

to design the model. For example, feature-based matching derives distance and relative position

features from the placement of internal facial elements (e.g., eyes, etc.). Kanade [33] developed one

of the earliest face recognition algorithms based on automatic feature detection. By localizing the

corners of the eyes, nostrils, etc. in frontal views, his system computed parameters for each face,

which were compared (using a Euclidean metric) against the parameters of known faces. A more

recent feature-based system, based on elastic bunch graph matching, was developed by Wiskott et

al. [34] as an extension to their original graph matching system [35]. By integrating both shape
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Figure 16: Suppose there are two different classes embedded in two different ”Gaussian-like” distri-

butions. However, only two sample per class are supplied to the learning procedure (PCA or LDA).

The classification result of the PCA procedure (using only the first eigenvector) is more desirable

than the result of the LDA. DPCA and DLDA represent the decision thresholds obtained by using

the nearest-neighbor classification [30].

and texture, Cootes et al. [36][37] developed a 2D morphable face model, through which the face

variations are learned. A more advanced 3D morphable face model is explored to capture the true

3D structure of human face surface. Both morphable model methods come under the framework of

’interpretation through synthesis’.

The model-based scheme usually contains three steps: 1) Constructing the model; 2) Fitting the

model to the given face image; 3) Using the parameters of the fitted model as the feature vector to

calculate the similarity between the query face and prototype faces in the database to perform the

recognition.

3.1 Feature-based Elastic Bunch Graph Matching

3.1.1 Bunch Graph

All human faces share a similar topological structure. Wiskott et al. present a general in-class

recognition method for classifying members of a known class of objects. Faces are represented as
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graphs, with nodes positioned at fiducial points (such as the eyes, the tip of the nose, some contour

points, etc.; see Fig. 17), and edges labeled with 2-D distance vectors.

Figure 17: Multiview faces overlaid with labeled graphs [34].

Each node contains a set of 40 complex Gabor wavelet coefficients, including both phase and

magnitude, known as a jet (shown in Fig. 18). Wavelet coefficients are extracted using a family of

Gabor kernels with 5 different spatial frequencies and 8 orientations; all kernels are normalized to

be of zero mean.

Figure 18: Jet [35].

Face recognition is based on labeled graphs. A labeled graph is a set of nodes connected by

edges; nodes are labeled with jets; edges are labeled with distances. Thus, the geometry of an object

is encoded by the edges while the gray value distribution is patch-wise encoded by the nodes (jets).

An example is shown in Fig. 19.
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Figure 19: Labeled graph [35].

While individual faces can be represented by simple labeled graphs, a face class requires a more

comprehensive representation in order to account for all kinds of variations within the class. The

Face Bunch Graph has a stack-like structure that combines graphs of individual sample faces, as

demonstrated in Fig. 20. It is crucial that the individual graphs all have the same structure and

that the nodes refer to the same fiducial points. All jets referring to the same fiducial point, e.g., all

left-eye jets, are bundled together in a bunch, from which one can select any jet as an alternative

description. The left-eye bunch might contain a male eye, a female eye, both closed or open, etc.

Each fiducial point is represented by such a set of alternatives and from each bunch any jet can be

selected independently of the jets selected from the other bunches. This provides full combinatorial

power of this representation even if it is constituted only from a few graphs.

3.1.2 Elastic Graph Matching

To identify a new face, the face graph is positioned on the face image using elastic bunch graph

matching. The goal of Elastic graph matching is to find the fiducial points on a query image and

thus to extract from the image a graph which maximizes the graph similarity function. This is

performed automatically if the face bunch graph (FBG) is appropriately initialized. A face bunch

graph (FBG) consists of a collection of individual face model graphs combined into a stack-like
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Figure 20: The left figure shows a sketch of a face bunch graph [34]. Each of the nine

nodes is labeled with a bunch of six jets. From each bunch, one particular jet has been se-

lected, indicated as gray. The actual selection depends on the situation, e.g., the face onto

which the face bunch graph is matched. Though constructed from six sample faces only, this

bunch graph can potentially represent 69 = 10, 077, 696 different faces. The right figure shows

the same concept interpreted slightly differently by Tullio Pericoli (“Unfinished Portrait” 1985)

[http://www.cnl.salk.edu/simwiskott/Projects/BunchGraph.html].

structure, in which each node contains the jets of all previously initialized faces from the database.

To position the grid on a new face, the graph similarity between the image graph and the existing

FBG is maximized. Graph similarity is defined as the average of the best possible match between

the new image and any face stored within the FBG minus a topographical term (see Eq. 11), which

accounts for distortion between the image grid and the FBG. Let Sφ be the similarity between two

jets, defined as

Sφ(J, J ′) =

∑
j aja

′
j cos(φj − φ′j − ~d~kj)√∑

j a2
j

∑
j a′2j

, (10)

where aj and φj are magnitude and phase of the Gabor coefficients in the jth jet, respectively; ~d is

the displacement between locations of the two jets; ~kj determines the wavelength and orientation

of the Gabor wavelet kernels [35]. For an image graph GI with nodes n = 1, . . . , N and edges
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e = 1, . . . , E and an FBG B with model graphs m = 1, . . . , M , the graph similarity is defined as

SB(GI , B) =
1
N

∑
n

maxSφ(JI
n, JBm

n )− λ

E

∑
e

(∆~xI
e −∆~xB

e )2

(∆~xB
e )2

, (11)

where λ determines the relative importance of jets and metric structure, Jn is the jets at nodes n, and

∆~xe is the distance vector used as labels at edges e. After the grid has been positioned on the new

face, the face is identified by comparing the similarity between that face and every face stored in the

FBG. Graphs can be easily translated, rotated, scaled, and elastically deformed, thus compensating

for the variance in face images which is commonly encountered in a recognition process.

3.2 AAM - A 2D Morphable Model

An Active Appearance Model (AAM) is an integrated statistical model which combines a model of

shape variation with a model of the appearance variations in a shape-normalized frame. An AAM

contains a statistical model of the shape and gray-level appearance of the object of interest which

can generalize to almost any valid example. Matching to an image involves finding model parameters

which minimize the difference between the image and a synthesized model example, projected onto

the image. The potentially large number of parameters makes this a difficult problem.

3.2.1 AAM Construction

The AAM is constructed based on a training set of labeled images, where landmark points are

marked on each example face at key positions to outline the main features (shown in Fig. 21).

Figure 21: The training image is split into shape and shape-normalized texture [38].

The shape of a face is represented by a vector consisting of the positions of the landmarks,

s = (x1, y1, . . . , xn, yn)T , where (xj , yj) denotes the 2D image coordinate of the jth landmark
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point. All shape vectors of faces are normalized into a common coordinate system. The principal

component analysis is applied to this set of shape vectors to construct the face shape model, denoted

as: s = s̄ + Psbs, where s is a shape vector, s̄ is the mean shape, Ps is a set of orthogonal modes of

shape variation and bs is a set of shape parameters.

In order to construct the appearance model, the example image is warped to make the control

points match the mean shape. Then the warped image region covered by the mean shape is sampled

to extract the gray level intensity (texture) information. Similar to the shape model construction,

a vector is generated as the representation, g = (I1, . . . , Im)T ,where Ij denotes the intensity of the

sampled pixel in the warped image. PCA is also applied to construct a linear model g = ḡ + Pgbg ,

where ḡ is the mean appearance vector, Pg is a set of orthogonal modes of gray-level variation and

bg is a set of gray-level model parameters.

Thus, all shape and texture of any example face can be summarized by the vectors bs and bg.

The combined model is the concatenated version of bs and bg, denoted as follows:

b =


 Wsbs

bg


 =


 WsP

T
s (s− s̄)

PT
g (g − ḡ)


 , (12)

where Ws is a diagonal matrix of weights for each shape parameter, allowing for the difference in

units between the shape and gray scale models. PCA is applied to b also, b = Qc , where c is the

vector of parameters for the combined model.

The model was built based on 400 face images, each with 122 landmark points [37]. A shape

model with 23 parameters, a shape-normalized texture model with 113 parameters and a combined

appearance model with 80 parameters (containing 98% variations of the observation) are generated.

The model used about 10,000 pixel values to make up the face.

3.2.2 AAM Fitting

Given a new image and constructed model, the metric used to measure the match quality between

the model and image is ∆ = |δI|2, where δI is the vector of intensity differences between the given

image and the image generated by the model tuned by the model parameters, called residules. The

AAM fitting seeks the optimal set of model parameters that best describes the given image. Cootes

[36] observed that displacing each model parameter from the correct value induces a particular

pattern in the residuals. In the training phase, the AAM learned a linear model that captured the

relationship between parameter displacements and the induced residuals. During the model fitting,
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it measures the residuals and uses this model to correct the values of current parameters, leading to

a better fit. Figure 22 shows examples of the iterative AAM fitting process.

Initial 3its 8its 11its Converged Original

Figure 22: Examples of the AAM fitting iterations [38].

3.2.3 Face Recognition by AAM

For all the training images, the corresponding model parameter vectors are used as the feature

vectors. The linear discrimination analysis (LDA) is utilized to construct the discriminant subspace

for face identity recognition. Given a query image, the AAM fitting is applied to extract the

corresponding feature vector. The recognition is achieved by finding the best match between the

query feature vector and stored prototype feature vectors, both of which are projected onto the

discriminant subspace.

3.3 3D Morphable Model

Human face is a surface lying in the 3D space intrinsically. Therefore, in principle, the 3D model

is better for representing faces, especially to handle facial variations, such as pose, illumination.

Blanz et al. [39][40] proposed a method based on a 3D morphable face model that encodes shape

and texture in terms of model parameters, and an algorithm that recovers these parameters from a
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single image of a face. For face identification, we use the shape and texture parameters of the model

that are separated from imaging parameters, such as pose and illumination. Fig. 23 illustrates the

scheme. To handle the extreme image variations induced by these parameters, one common approach

taken by various groups is to use generative image models. For image analysis, the general strategy

of all these techniques is to fit the generative model to a novel image, thereby parameterizing it in

terms of the model. In order to make identification independent of imaging conditions, the goal is to

separate intrinsic model parameters of the face from extrinsic imaging parameters. The separation of

intrinsic and extrinsic parameters is achieved explicitly by simulating the process of image formation

using 3D computer graphics technology.

Figure 23: The three-dimensional morphable face model derived from a database of laser scans is

used to encode gallery and probe images. For identification, the model coefficients of the probe

image are compared with the coefficients of all gallery images [40].

23



3.3.1 Model Construction

Generalizing the well-known morphing process between pairs of three-dimensional objects, the mor-

phable face model is based on a vector space representation of faces [31]. The database of laser

scans used in this study contains scans of 100 males and 100 females recorded with a CyberwareTM

3030PS scanner. Scans are stored in cylindrical coordinates relative to a vertical axis. The coordi-

nates and texture values of all the n vertices of the reference face (n = 75, 972) are concatenated to

form shape and texture vectors

S0 = (x1, y1, z1, . . . , xn, yn, zn)T , (13)

T0 = (R1, G1, B1, . . . , Rn, Gn, Bn)T . (14)

Vectors Si and Ti of the examples i = 1 . . .m in the database are formed in a common coordinate

system. Convex combinations of the examples produce novel shape and texture vectors S and T .

Previous results [39] indicate that the shape and texture can be combined independently:

S =
m∑

i=1

aiSi, T =
m∑

i=1

biTi. (15)

S and T can also be represented as:

S = s̄ +
m−1∑

i=1

αisi, T = t̄ +
m∑

i=1

βiTi, s̄ =
1
m

m∑

i=1

Si, t̄ =
1
m

m∑

i=1

Ti, (16)

where s̄ is the mean shape and t̄ is the mean texture.

3.3.2 Model Fitting

The image synthesis is to render the new projected positions of vertices of the 3D model, along with

illumination and color. During the process of fitting the model to a novel image, not only the shape

and texture coefficients αi and βi are optimized, but also the following rendering parameters, which

are concatenated into a vector ρ: the head orientation angles φ, θ and γ, the head position (Px, Py)

in the image plane, size s, color and intensity of the light sources L, as well as color constant, and

gain and offset of colors, shown in Fig. 24.

The primary goal in analyzing a face is to minimize the sum of square differences over all color

channels and all pixels in the input image and the symmetric reconstruction,

EI =
∑
x,y

‖Iinput(x, y)− Imodel(x, y)‖2. (17)
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Figure 24: The goal of the fitting process is to find shape and texture coefficients α and β such that

rendering Rρ produces an image Imodel that is as similar as possible to Iinput [40].

Under a probabilistic framework, the overall cost function to be minimized is derived as [40]:

E =
1

σ2
N

EI +
∑

i

α2
i

σ2
S,i

+
∑

i

β2
i

σ2
T,i

+
∑

i

(ρi − ρ̄i)2

σ2
R,i

. (18)

A modification of stochastic gradient descent algorithm is used to optimize the cost function. The

optimization is achieved globally, resulting in a set of global parameters αglobal and βglobal. The

face model is divided into four regions – eyes, nose, mouth and the surrounding face segment.

The optimization is also applied separately for each region to obtain the local parameters for each

segment, i.e., αr1, βr1, . . . , αr4 and βr4. The fitting process is demonstrated in Fig. 25.

3.3.3 Recognition

The similarity between two faces is defined as:

S =
∑

global,r1,r2,r3,r4

( 〈α, α′〉M
‖α‖M · ‖α′‖M

+
〈α, α′〉M

‖α‖M · ‖α′‖M

)
, (19)

where 〈α, α′〉 =
∑

i
α·α′
σ2

S,i
, 〈β, β′〉 =

∑
i

β·β′
σ2

T,i
, ‖α‖2M = 〈α, α〉M . The query image will be assigned the

identity with which the similarity between the query and the corresponding prototype is maximized.

Besides the above-mentioned techniques, a number of interesting approaches have been explored

from different perspectives, such as local feature analysis [41] and statistical model based face recog-

nition methods. Examples of the statistical model based scheme are 1D Hidden Markov Model

(HMM) [42] and pseudo-2D HMM [43].
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Figure 25: Examples of model fitting [40]. Top row: initial parameters, Middle row: Results of

fitting, rendered on top of the input images. Bottom row: Input images. The fifth column is an

example of a poor fit.

4 Databases and Performance Evaluation

A number of face databases have been collected for different face recognition tasks. Table 1 lists

a selection of those available in the public domain. The AR database contains occlusions due to

eye glasses and scarf. The CMU PIE database is collected with well-constrained pose, illumination

and expression. FERET [44] and XM2VTS databases are the two most comprehensive databases,

which can be used as a benchmark for detailed testing or comparison. The XM2VTS is especially

designed for multi-modal biometrics, including audio and video cues. To continue the facial recog-

nition technology evaluation with the state-of-the-art advances, the Face Recognition Vendor Test
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(FRVT) [45] followed the original FERET, and was conducted in the year 2000 and 2002 (namely

FRVT2000 and FRVT2002). The database used in FRVT was significantly extended between 2000

and 2002, including more than 120, 000 face images from more than 30, 000 subjects. More facial

appearance variations were also considered in FRVT, such as indoor/outdoor difference.

Table 1: Selected face databases available in the public domain. 1XM2VTS database

is not available free of charge. 2FERET database is complicated, for details, see

http://www.itl.nist.gov/iad/humanid/feret/feret master.html. *For each subject, it collects

video+audio+3D model. for details, see http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/;

**e: expression; i: illumination; o: occlusion; p: pose; s: scale; t: time interval, images for the same

subject are taken between a short period (e.g., a couple of days), or a long period (e.g., years).

Face database No. of subjects No. of images Variations included **

ORL [19] 40 400 p, e

Yale [13] 15 165 i, e

AR [46] >120 >3,000 i, e, o, t

MIT [47] 16 432 i, p, s

UMIST [48] 20 564 p

CMU PIE [49] 68 41,368 p, i, e

XM2VTS1 [50] 295 * *

FERET2 [51] >1,000 >10,000 p, i, e, t

Some examples from the ORL database are shown in Fig. 26.

Based on the published experimental results, it is very difficult to put all the face recognition

algorithms together for comparison in a rather fair protocol. There is no common benchmark

database on which all the algorithms have been tested, although FERET is a excellent attempt

in this direction. Researchers have their own choices on databases when doing the performance

evaluation for publications. Also, for the same algorithm, the recognition accuracy may vary due to

different evaluation protocols (leave-one-out, cross-validation etc.), different normalization schemes

(e.g., facial area cropping styles), different image resolutions, different parameter settings (e.g.,

dimensionality of the subspace), etc. As a result, the reported performance in this section is a

selection from several major publications, showing the results which are obtained by a subset of

algorithms being applied on the same database.

27



Figure 26: Face samples from the ORL face database.

1) Table 2 presents the comparison results between PCA and LDA based on Yale Database. It

shows that LDA is able to use a smaller size of the subspace to achieve a higher recognition accuracy.

Table 2: Leave-one-out evaluation of PCA and LDA on the Yale face database [16]. ”Close crop”

means the face area is cropped to contain only internal structures such as the eyebrows, eyes, nose

and mouth, while ”full face” cropping contains the entire face area.

Approach Dim. of the subspace Error rate (close crop) Error rate (full face)

Eigenface (PCA) 30 24.4 19.4

Fisherface (LDA) 15 7.3 0.6

2) Figure 27 and Table 3 give the experimental results provided in [21], which compared PCA,

ICA, KPCA and Probabilistic Subspace methods [21]. The experimental data consisted of a training

set of 706 individual FERET faces and 1,123 ”probe” images containing one or more views of every

person in the gallery. All images are aligned and normalized [52]. Face images are downsampled to

21-by-12 pixels, thereby reducing the dimensionality of the input space to 21× 12 = 252.

3) Performance of Elastic Bunch Graph Matching. The experiments are conducted on the FERET

database. Results are given in table 4. The recognition results of this system are good on identical

poses, e.g., frontal views against frontal views. However, across different poses, e.g., frontal views
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Figure 27: Recognition accuracy w.r.t. the dimensionality (d) of the subspace by 5-fold cross-

validation. Data used is part of the FERET database, 1,829 images for 706 subjects [21].

Table 3: Comparison of subspace algorithms (d = 20) by 5-fold cross-validation [21]., where d is the

dimensionality of the subspace. Data is part of FERET database, 1,829 images for 706 subjects.

PCA ICA KPCA Bayes [21]

Accuracy 77% 77% 87% 95%

Computation (floating-point operations) 108 109 109 108

Uniqueness Yes No Yes Yes

Projections Linear Linear Nonlinear Linear

against half profiles, the system performs rather poorly.

4) Performance of AAM-based face recognition. Totally 400 faces of 20 individuals were collected,

with 200 images used for training and 200 for testing. The AAM is used to fit both training and

test images, given the initial eye positions. The recognition accuracy is 88% [37]. No comparison

with other face recognition algorithms is provided.

5) Performance of 3D Morphable Model. The database contains 68 subjects, each with 3 poses
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Table 4: Recognition results of Elastic Bunch Graph Matching [34]. It shows two types of accuracies,

(i) how often the correct model is identified as rank one, and (ii) how often it was among the top

10 (4%). fa: neutral frontal view; fb: frontal view with expression; hr: half-profile right (rotated by

around 40-70◦); hl: half-profile left; pr: profile right (rotated by around 90◦); pl: profile left.

Model gallery Probe images First rank Top 10

# (%) # (%)

250 fa 250 fb 245 (98) 248 (99)

250 hr 181 hl 103 (57) 147 (81)

250 pr 250 pl 210 (84) 236 (94)

249 fa + 1fb 171 hl + 79 hr 44 (18) 111 (44)

171 hl + 79 hr 249 fa + 1 fb 42 (17) 95 (38)

170 hl + 80 hr 217 pl + 33 pr 22 (9) 67 (27)

217 pl + 33 pr 170 hl + 80 hr 31 (12) 80 (32)

and 22 different illumination directions, for a total of 68×3×22 = 4, 488 images. The training gallery

contains a single image for each of 68 subjects. All images have the same illumination direction. The

remaining images (4488− 68 = 4, 420 images) are used as the test (probe) set. Recognition results

are shown with different training pose and probe pose combinations in table 5. The performance of

this method across pose is better than Elastic Graph Matching method.

Table 5: Recognition results of 3D morphable model [40].

testview

frontal (%) side (%) profile (%)

training frontal mean 94 85 65

view std 6.3 20.7 18.2

side mean 89 90 70

std 6.4 9.2 18.9

profile mean 71 71 84

std 9.2 12.2 16.4

6) FRVT2002. FRVT is an independently administered technology evaluation of mature face
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recognition systems by NIST. In 2002, ten commercial products participated in FRVT2002. The

task designed for FRVT is very close to the real application scenarios. On March 2003, NIST

issued the evaluation report for FRVT2002, which indicates the current state-of-the-art of the face

recognition techniques [53].

Figure 28 plots identification performance of the top three commercial face recognition products,

namely Cognitec, Eyematic and Identix. The database consists of 37,437 individuals. Figure 29

demonstrates that 3D morphable model [40] significantly improves the identification performance

on non-frontal face recognition tasks.

FRVT2002 also shows that identification performance is dependent on the size of the database.

For every doubling of the database size, performance decreases by 2% to 3% points.

Figure 28: Identification results for the three best face recognition systems [11].

5 Summary

Image-based face recognition is still a very challenging topic after decades of exploration. A num-

ber of typical algorithms are presented, being categorized into appearance-based and model-based

schemes. Table 6. provides the pros and cons of these two types of face recognition methods.

Sensitivity to variations in pose and different lighting conditions is still a challenging problem.

Georghiades et al. [54] extensively explored the illumination change and synthesis for facial analysis

using appearance-based approaches to achieve an illumination-invariant face recognition system.
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Figure 29: Evaluation of effectiveness of morphable model for non-frontal face identification tasks

[11]. Performance is on a database consisting of 87 subjects.

Basri and Jacobs [55] proved that the set of all reflectance functions (the mapping from surface

normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to

a 9D linear subspace. Their analysis was based on using spherical harmonics to represent lighting

functions. The proposed algorithm was utilized for face recognition across illumination changes.

Although a number of efforts have been made on pose-invariant face recognition, the performance

of current face recognition system are still not satisfactory [11][56].
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