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Recognizing Faces with PCA and ICA 
 

Abstract 

This paper compares principal component analysis (PCA) and independent component analysis (ICA) in the 

context of a baseline face recognition system, a comparison motivated by contradictory claims in the literature. This 

paper shows how the relative performance of PCA and ICA depends on the task statement, the ICA architecture, the 

ICA algorithm, and (for PCA) the subspace distance metric.  It then explores the space of PCA/ICA comparisons by 

systematically testing two ICA algorithms and two ICA architectures against PCA with four different distance 

measures on two tasks (facial identity and facial expression).  In the process, this paper verifies the results of many 

of the previous comparisons in the literature, and relates them to each other and to this work.  We are able to show 

that the FastICA algorithm configured according to ICA architecture II yields the highest performance for 

identifying faces, while the InfoMax algorithm configured according to ICA architecture II is better for recognizing 

facial actions.  In both cases, PCA performs well but not as well as ICA.  
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1. Introduction 

Over the last ten years, face recognition has become a specialized applications area within the larger field of 

computer vision.  Sophisticated commercial systems perform face detection, image registration, and image 

matching, all in real time1.  Although the details of most commercial systems are confidential, many of them 

perform image matching as a two-step process of subspace projection followed by classification in the space of 

compressed images. In a simple yet canonical scenario, face matching may be implemented as subspace projection 

followed by a nearest-neighbor classifier [34].  

The sophistication of real-world commercial systems should not be underestimated. Many companies have 

developed innovative methods of face detection and registration.  More importantly for this paper, they have 

enhanced their matching techniques, for example by pre-processing images, selecting and in some cases generating 

training data, generating spatially localized features, and optimizing classifiers for compressed subspaces.  

Sometimes the data being compressed are not face images at all, but differences of face images [33], Gabor jets [12], 

or other high-dimensional data computed from face images.  Face recognition systems also employ a variety of 

techniques for selecting subspaces.  As a result, it can be difficult to assign credit (or blame) to a particular 

component of a face recognition system, even when the details are not proprietary.  The purpose of this paper is to 

compare the performance of two subspace projection techniques on face recognition tasks in the context of a simple 

baseline system.  In particular, we compare principal component analysis (PCA) to independent component analysis 

(ICA), as implemented by the InfoMax [8] and FastICA [21] algorithms. 

Why compare ICA to PCA? One reason is that the literature on the subject is contradictory.  Bartlett, et al [4, 6], 

Liu and Wechsler  [30], and Yuen and Lai [41] claim that ICA outperforms PCA for face recognition, while Baek et 

al [1] claim that PCA outperforms ICA and Moghaddam [32] claims that there is no statistical difference in 

performance between the two.  In a recent study with visible light and infra-red images, Socolinsky and Salinger 

report that ICA outperforms PCA on visible light images, but PCA outperforms ICA on LWIR images [37].  We also 

know of cases where researchers informally compared ICA to PCA while building a face recognition system, only to 

select PCA.  The relative performance of the two techniques is therefore an open question. 

                                                           
1 For examples, see www.viisage.com, www.equinoxsensors.com, or www.identix.com/products/pro_faceit.html  
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Part of the confusion stems from the number of factors that have to be controlled.  The performance of PCA 

depends on the task statement, the subspace distance metric, and the number of subspace dimensions retained.  The 

performance of ICA depends on the task, the algorithm used to approximate ICA, and the number of subspace 

dimensions retained.  Even more confusingly, there are two very different applications of ICA to face recognition.  

ICA can be applied so as to treat images as random variables and pixels as observations, or to treat pixels as random 

variables and images as observations. In keeping with [2, 6], we refer to these two alternatives as ICA architecture I 

and architecture II, respectively.  There is therefore a space of possible PCA/ICA comparisons, depending on at least 

five factors.  This paper explores this space, in order to find the best technique for recognizing (1) subject identity and 

(2) facial actions in face images. 

Another reason to explore the space of PCA/ICA comparisons is to provide data for the current debate over global 

versus local features.  The basis vectors that define any subspace can be thought of as image features.  Viewed this 

way, PCA and ICA architecture II produce global features, in the sense that every image feature is influenced by 

every pixel.  (Equivalently, the basis vectors contain very few zeroes.)  Depending on your preference, this makes 

them either susceptible to occlusions and local distortions, or sensitive to holistic properties.  Alternatively, ICA 

architecture I produces spatially localized features that are only influenced by small parts of the image.  It has been 

argued that this will produce better object recognition, since it implements recognition by parts [27].  If localized 

features are indeed superior, ICA architecture I should outperform PCA and ICA architecture II. 

This paper will show empirically that the choice of subspace projection algorithm depends first and foremost on 

the nature of the task.  Some tasks, such as facial identity recognition, are holistic and do best with global feature 

vectors. Other tasks, such as facial action recognition, are local and do better with localized feature vectors.  For both 

types of tasks, ICA can outperform PCA, but only if the ICA architecture is selected with respect to the task type 

(ICA architecture I for localized tasks, ICA architecture II for holistic tasks).  Furthermore, performance is optimized 

if the ICA algorithm is selected based on the architecture (InfoMax for architecture I, FastICA for architecture II).  

When PCA is used, the choice of subspace distance measure again depends on the task. 

The rest of this paper is organized as follows.  Section 2 provides the necessary background in terms of a brief 

introduction to face recognition (2.1), and the foundations of principal component analysis (2.2) and independent 

component analysis (2.3).  Section 3 compares PCA with ICA architectures I and II on the task of facial identity 
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recognition.  Section 4 compares PCA and the ICA architectures on the task of recognizing facial expressions.  

Section 5 concludes with practical recommendations. 

2. Background 

2.1 Face Recognition 

Research in automatic face recognition dates back at least until the 1960’s [13].  Most current face recognition 

techniques, however, date back only to the appearance-based recognition work of the late 1980’s and 1990’s.  Kirby 

and Sirovich were among the first to apply principal component analysis (PCA) to face images, and showed that 

PCA is an optimal compression scheme that minimizes the mean squared error between the original images and their 

reconstructions for any given level of compression [26, 36].  Turk and Pentland popularized the use of PCA for face 

recognition [40] (although see also  [16]).  They used PCA to compute a set of subspace basis vectors (which they 

called “eigenfaces”) for a database of face images, and projected the images in the database into the compressed 

subspace.  New test images were then matched to images in the database by projecting them onto the basis vectors 

and finding the nearest compressed image in the subspace (eigenspace). 

The initial success of eigenfaces popularized the idea of matching images in compressed subspaces.  Researchers 

began to search for other subspaces that might improve performance.  One alternative is Fisher’s linear discriminant 

analysis (LDA, a.k.a. “ fisherfaces”) [38].  For any N-class classification problem, the goal of LDA is to find the N-1 

basis vectors that maximize the interclass distances while minimizing the intraclass distances.  At one level, PCA 

and LDA are very different: LDA is a supervised learning technique that relies on class labels, whereas PCA is an 

unsupervised technique.  Nonetheless, in circumstances where class labels are available either technique can be 

used, and LDA has been compared to PCA in several studies [7, 10, 31, 37]. 

One characteristic of both PCA and LDA is that they produce spatially global feature vectors.  In other words, the 

basis vectors produced by PCA and LDA are non-zero for almost all dimensions, implying that a change to a single 

input pixel will alter every dimension of its subspace projection.  There is also a lot of interest in techniques that 

create spatially localized feature vectors, in the hopes that they might be less susceptible to occlusion and would 

implement recognition by parts.  The most common method for generating spatially localized features is to apply 

independent component analysis (ICA) to produce basis vectors that are statistically independent (not just linearly 
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decorrelated, as with PCA) [2].  Non-negative matrix factorization (NMF) is another method for generating 

localized feature vectors [27].  

ICA can also be used to create feature vectors that uniformly distribute data samples in subspace [4, 5].  This 

conceptually very different use of ICA produces feature vectors that are not spatially localized.  Instead, it produces 

feature vectors that draw fine distinctions between similar images in order to spread the samples in subspace.  

Keeping with the terminology introduced in [2, 5], we refer to use of ICA to produce spatially independent basis 

vectors as architecture I, and the use of ICA to produce statistically independent compressed images as architecture 

II. 

Gabor jets represent a substantially different class of subspace projection techniques.  Unlike PCA, LDA, or ICA, 

the Gabor basis vectors are specified a-priori (although their spatial positions might be trained).  Depending on the 

size and spacing of the jets, they also compress images far less than the other techniques; in fact, in extreme cases 

they may expand rather than contract the data.  Nonetheless, there is evidence that subspaces defined by Gabor jets, 

although large, may be good for recognizing faces [12, 23] and facial expressions [17]. 

Finally, there are techniques that apply mixtures of local linear subspaces.  For example, Kambhatla and Leen 

mix local PCA subspaces to compress face data [24], and Frey et al. apply a mixture of factor analyzers to recognize 

faces [19].  Although they have not yet been applied to face recognition, Tipping and Bishop provide an EM 

algorithm for optimizing mixture models of PCA subspaces [39], and Lee et al provide a similar algorithm for 

optimizing mixtures of ICA subspaces [28].  

2.2 PCA 

PCA is probably the most widely used subspace projection technique for face recognition.  PCA basis vectors are 

computed from a set of training images I.  As a first step, the average image in I is computed and subtracted from 

the training images, creating a set of data samples 

IIiii n −∈,,, 21 �  
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XXT is then the sample covariance matrix for the training images, and the principal components of the covariance 

matrix are computed by solving 

( ) Λ=RXXR TT  

where ΛΛΛΛ is the diagonal matrix of eigenvalues and R is the matrix of orthonormal eigenvectors.  Geometrically, R is 

a rotation matrix2 that rotates the original coordinate system onto the eigenvectors, where the eigenvector associated 

with the largest eigenvalue is the axis of maximum variance, the eigenvector associated with the second largest 

eigenvalue is the orthogonal axis with the second largest variance, etc.  Typically, only the N eigenvectors 

associated with the largest eigenvalues are used to define the subspace, where N is the desired subspace 

dimensionality. 

There are three related arguments for matching images in the subspace of N eigenvectors.  The first is 

compression.  It is computationally more efficient to compare images in subspaces with significantly reduced 

dimensions. For example, image vectors with 65,536 pixels (256x256) might be projected into a subspace with only 

100 to 300 dimensions.  The second argument assumes that the data samples are drawn from a normal distribution.  

In this case, axes of large variance probably correspond to signal, while axes of small variance are probably noise.  

Eliminating these axes therefore improves the accuracy of matching.  The third argument depends on a common 

preprocessing step, in which the mean value is subtracted from every image and the images are scaled to form unit 

vectors.  This projects the images into a subspace where Euclidean distance is inversely proportional to correlation 

between the source images.  As a result, nearest neighbor matching in eigenspace becomes an efficient 

approximation to image correlation.  

                                                           
2 This slightly liberal definition of rotation also includes reflection 
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2.3 ICA 

While PCA decorrelates the input data using second-order statistics and thereby generates compressed data with 

minimum mean-squared reprojection error, ICA minimizes both second-order and higher-order dependencies in the 

input. It is intimately related to the blind source separation (BSS) problem, where the goal is to decompose an 

observed signal into a linear combination of unknown independent signals. Let s be the vector of unknown source 

signals and x be the vector of observed mixtures. If A is the unknown mixing matrix, then the mixing model is 

written as 

Asx =  

It is assumed that the source signals are independent of each other and the mixing matrix A is invertible. Based on 

these assumptions and the observed mixtures, ICA algorithms try to find the mixing matrix A or the separating 

matrix W such that  

WAsWxu ==  

is an estimation of the independent source signals [14] (Figure 1). 

ICA can be viewed as a generalization of PCA. As previously discussed, PCA decorrelates the training data so 

that the sample covariance of the training data is zero.  Whiteness is a stronger constraint that requires both 

decorrelation and unit variance. The whitening transform can be determined as D-1/2RT where D is the diagonal 

matrix of the eigenvalues and R is the matrix of orthogonal eigenvectors of the sample covariance matrix. Applying 

whitening to observed mixtures, however, results in the source signal only up to an orthogonal transformation. ICA 

goes one step further so that it transforms the whitened data into a set of statistically independent signals [22]. 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Blind source separation model. 
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Signals are statistically independent when 

( ) ( )iuiu ufuf
i

Π=  

where fu is the probability density function of u.  (It is equivalent to say that the vectors u are uniformly distributed.) 

Unfortunately, there may not be any matrix W that fully satisfies the independence condition, and there is no closed 

form expression to find W.  Instead, there are several algorithms that iteratively approximate W so as to indirectly 

maximize independence.  

Since it is difficult to maximize the independence condition above directly, all common ICA algorithms recast the 

problem to iteratively optimize a smooth function whose global optima occurs when the output vectors u are 

independent. For example, InfoMax relies on the observation that independence is maximized when the entropy 

H(u) is maximized, where: 

( ) ( ) ( )duufufuH uu�−≡ log  

InfoMax performs gradient ascent on the elements wij so as to maximize H(u) [8].  (It gets its name from the 

observation that maximizing H(u) also maximizes the mutual information I(u,x) between the input and output 

vectors.)   The JADE algorithm minimizes the kurtosis of fu(u) through a joint diagonalization of the fourth order 

cumulants, since minimizing kurtosis will also maximize statistical independence.  FastICA is arguably the most 

general, maximizing  

( ) ( ){ } ( ){ }[ ]2νGEyGEcyJ −≈  

where G is a non-quadratic function, ν is a gaussian random variable, and c is any positive constant, since it can be 

shown that maximizing any function of this form will also maximize independence [21]. 

InfoMax, JADE and FastICA all maximize functions with the same global optima [14, 21].  As a result, all three 

algorithms should converge to the same solution for any given data set.  In practice, the different formulations of the 

independence constraint are designed to enable different approximation techniques, and the algorithms find different 

solutions because of differences among these techniques.  Limited empirical studies suggest that the differences in 

performance between the algorithms are minor and depend on the data set. For example, Zibulevsky and Pearlmutter 

test all three algorithms on a simulated blind-source separation problem, and report only small differences in the 

relative error rate: 7.1% for InfoMax, 8.6% for FastICA, and 8.8% for JADE [42].  On the other hand, Karvanen et 

al report on another simulated blind-source separation problem where JADE slightly outperforms FastICA, with 
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InfoMax performing significantly worse [25].  Ziehe et al. report no significant difference between FastICA and 

JADE at separating noise from signal in MEG data [43].  In studies using images, Moghaddam [32] and Lee et al 

[28] report qualitatively similar results for JADE and FastICA, but do not publish numbers. 

2.3.1. Architecture I: Statistically Independent Basis Images 

Regardless of which algorithm is used to compute ICA, there are two fundamentally different ways to apply ICA 

to face recognition.  In architecture I, the input face images in X are considered to be a linear mixture of statistically 

independent basis images S combined by an unknown mixing matrix A.  The ICA algorithm learns the weight 

matrix W, which is used to recover a set of independent basis images in the rows of U (Figure 2). In this 

architecture, the face images are variables and the pixel values provide observations for the variables. The source 

separation, therefore, is performed in face space.  Projecting the input images onto the learned weight vectors 

produces the independent basis images.  The compressed representation of a face image is a vector of coefficients 

used for linearly combining the independent basis images to generate the image. The middle row of Figure 3 shows 

eight basis images produced in this architecture. They are spatially localized, unlike the PCA basis images (top  row) 

and those produced by ICA architecture II (bottom row). 

In [4, 5], Bartlett and colleagues first apply PCA to project the data into a subspace of dimension m to control the 

number of independent components produced by ICA. The InfoMax algorithm is then applied to the eigenvectors to 

minimize the statistical dependence among the resulting basis images. This use of PCA as a pre-processor in a two-

step process allows ICA to create subspaces of size m for any m. In [30], it is also argued that pre-applying PCA 

enhances ICA performance by (1) discarding small trailing eigenvalues before whitening and (2) reducing 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Finding statistically independent basis images. 
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computational complexity by minimizing pair-wise dependencies.  PCA decorrelates the input data; the remaining 

higher-order dependencies are separated by ICA. 

  

  

 

Figure 3: eight feature vectors for each technique.  The top row contains the 
eight eigenvectors with highest eigenvalues for PCA. The second row shows 
eight localized feature vectors for ICA architecture I.  The third row shows eight 
(non-localized) ICA feature vectors for ICA architecture II. 

 
To describe the mathematical basis for architecture I, let R be a p by m matrix containing the first m eigenvectors 

of a set of n face images, as in Section 2.2. Let p be the number of pixels in a training image. The rows of the input 

matrix to ICA are variables and the columns are observations, therefore, ICA is performed on RT. The m 

independent basis images in the rows of U are computed as U = W*RT.  Then, the n by m ICA coefficients matrix B 

for the linear combination of independent basis images in U is computed as follows: 

Let C be the n by m matrix of PCA coefficients. Then, 

RXC *=    and  TRCX *=  

From TRWU *= and the assumption that W is invertible we get 

UWRT *1−=  

Therefore, 

UBUWCX **)*( 1 == −  

Each row of B contains the coefficients for linearly combining the basis images to comprise the face image in the 

corresponding row of X. Also, X is the reconstruction of the original data with minimum squared error as in PCA. 

2.3.2. Architecture II: Statistically Independent Coefficients 
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While the basis images obtained in architecture I are statistically independent, the coefficients that represent input 

images in the subspace defined by the basis images are not. The goal of ICA in architecture II is to find statistically 

independent coefficients for input data. In this architecture, the input is transposed from architecture I, that is, the 

pixels are variables and the images are observation. The source separation is performed on the pixels, and each row 

of the learned weight matrix W is an image. A, the inverse matrix of W, contains the basis images in its columns. 

The statistically independent source coefficients in S that comprise the input images are recovered in the columns of 

U (Figure 4). This architecture was used in [9] to find image filters that produced statistically independent outputs 

from natural scenes. The eight basis images shown in the bottom row of Figure 3 show more global properties than 

the basis images produced in architecture I (middle row). 

In this work, ICA is performed on the PCA coefficients rather than directly on the input images to reduce the 

dimensionality as in [4, 5]. Following the same notation described above, the statistically independent coefficients 

are computed as U = W*CT and the actual basis images shown in Figure 3 are obtained from the columns of R*A. 

3. Recognizing Facial Identities 

As the preceding discussion should make clear, comparing PCA to ICA in the context of face recognition is not a 

simple task.  First one must refine the task: is the goal to recognize individuals, facial actions, gender or age?  After 

defining the task, there are choices with regard to the ICA architecture, the ICA algorithm, the number of subspace 

dimensions, and the data set.  We will show later that the choice of subspace distance metric is also significant, at 

least for PCA.  This explains much of the confusion in the literature, as researchers have reported on different 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Finding statistically independent coefficients. 
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experiments, each of which can be thought of as one point in the space of PCA/ICA comparisons.  In the paper, we 

try to fill out most of the space of PCA/ICA comparisons, relating previous studies to each other and giving a better 

picture of the relative performance of each algorithm.  The rest of this section compares PCA to ICA on the task of 

recognizing facial identity; section 4 compares PCA to ICA on the task of recognizing facial expressions. 

 

3.1 The Baseline System 

Following the lead of Moon and Phillips [34], we compare PCA and ICA in the context of a baseline face 

recognition system.  The baseline system matches novel probe images against a gallery of stored images.  It does not 

do face detection or image registration; rather, it assumes that all images (probe and gallery) have been pre-

registered.  For every probe image, there is one and only one gallery image of the same subject, so trials are 

binomial.  If the first image retrieved from the gallery is of the same subject as the probe, then the trial is a success, 

otherwise it is a failure.  The images are from the FERET face image data set [35], and have been reduced to 60x50 

pixels.  Examples are shown in Figure 5. 

 

         

Figure 5: Sample images from the FERET data set. 

 
The baseline system performs histogram normalization as a pre-processing step on all images (probe and gallery) 

using a routine provided by NIST [35].  During training, 500 training images are randomly selected from the gallery.  

This set of training images is provided as input to a subspace projection technique to form a set of basis vectors. The 

gallery images are then projected into these subspaces. During testing, probe images are projected into the same 

subspaces, and nearest neighbor retrieval is used to match compressed probe images to compressed gallery images. 

3.2. The FERET Face Data 

For consistency with other studies, we use the FERET face images, including the data partitions and terminology 

from [35].  As described there, the FERET gallery contains 1,196 face images.  There are four sets of probe images 
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that are compared to this gallery: the fb probe set contains 1,195 images of subjects taken at the same time as the 

gallery images.  The only difference is that the subjects were told to assume a different facial expression than in the 

gallery image.  The duplicate I probe set contains 722 images of subjects taken between one minute and 1,031 days 

after the gallery image was taken.  The duplicate II probe set is a subset of the duplicate I set, containing 234 images 

taken at least 18 months after the gallery image.  Finally, the fc probe set contains 194 images of subjects under 

significantly different lighting3. 

3.3 Comparison: InfoMax vs PCA 

To compare PCA to ICA on the FERET facial identity task, we need to select an ICA algorithm, an ICA 

architecture, the number of subspace dimensions, and a subspace distance metric.  Our first comparison uses 

InfoMax4 to implement ICA.  In keeping with a heuristic developed during the original FERET studies [34], we 

keep 200 subspace dimensions, or 40% of the maximum possible number of non-zero eigenvalues (given a training 

set of 500 images).  This corresponds to keeping an average of 96% of the total variance in the eigenvalues for this 

data set. 

Holding the ICA algorithm and the number of subspace dimensions constant, we test both ICA architectures and 

four possible distance metrics for PCA subspaces: the L1 (city-block) distance metric, the L2 (Euclidean distance) 

metric, cosine distance, and the Mahalanobis (L2 with each dimension scaled by the square root of its eigenvalue) 

distance metric.  Since ICA basis vectors are not mutually orthogonal, the cosine distance measure is often used to 

retrieve images in the ICA subspaces (e.g. []).  We report ICA results using both the cosine and  L2 distance 

measures. Although not systematically presented here, we also tested ICA with the L1 and Mahalanobis distance 

measures.  For ICA architecture II, the cosine measure clearly outperforms all other measures.  For ICA architecture 

I, cosine clearly outperforms L1; there is no significant difference between cosine and Mahalanobis. 

Table 1 shows the recognition rate for PCA, ICA architecture I, and ICA architecture II, broken down according 

to probe set and the distance metric.  The most striking feature of Table 1 is that ICA architecture II with cosine 

distance measure always has the highest recognition rate.  PCA is second, with both the L1 and Mahalanobis 

distance measures performing well. The performance of ICA architecture I and PCA with L2 and cosine distance 

measures are very close, and neither is competitive with architecture II/Cosine or PCA/L1 or PCA/Mahalanobis.   

                                                           
3 The image lists for the four probe sets and the gallery can be found at www.cs.colostate.edu/evalfacerec. 
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Probe 
Set 

ICA (InfoMax) 
Arch. I 

ICA (InfoMax) 
Arch. II 

PCA 

 Cosine L2 Cosine L2 L1 L2 Cosine Mahalanobis 
fafb (1195) 73.72% 75.90% 82.26% 74.90% 80.42% 72.80% 70.71% 75.23% 
fafc (194) 5.67% 5.15% 51.03% 35.57% 20.62% 4.64% 4.64% 39.69% 
dup I (722) 36.15% 32.96% 48.48% 37.81% 40.30% 33.24% 35.32% 39.34% 
dup II (234) 14.53% 14.53% 32.48% 25.64% 22.22% 14.53% 15.38% 24.36% 
Total (2345) 50.62% 50.70% 64.31% 55.31% 57.31% 49.17% 48.83% 56.16% 

 
Table 1: Recognition rates for PCA and both architectures of ICA on the FERET face data set.  The task is to 
match the identity of the probe image. 

 
 

Are the findings that (1) ICA architecture II outperforms PCA/L1 and (2) PCA/L1 outperforms all other options 

statistically significant? To answer this question we must refine it.  Are these results significant with respect to the 

probe set size?  This question asks whether more probe images would have altered the results, and can be answered 

using McNemar’s significance test for paired binomial values.  By this measure, ICA architecture II outperforms 

PCA/L1 at a significance level (p-val) of .97, and PCA/L1 outperforms the other options at significance levels above 

.99. 

Another question is: are these results significant with respect to the choice of training set? In other words, if we 

chose another set of 500 training images at random, would the results be the same? Beveridge et al present a 

sophisticated resampling technique for answering this question with regard to the choice of gallery [11].  However, 

we are primarily interested in the variation induced by the choice of training set (not gallery), and it is not feasible to 

run InfoMax thousands of times.  Instead, we compared PCA/L1 to ICA architectures I and II on ten randomly 

selected sets of 500 training images, evaluating each on all four probe sets as shown in Table 2.  Significantly, the 

relative ranking of the algorithms never changes.  Across ten trials and four probe sets, InfoMax architecture II 

(shown in the graph with ×’ s, and labeled IM-2) always outperforms PCA/L1 (shown with squares and labeled 

PCA(L1)), which always outperforms InfoMax architecture I (IM-1; shown with triangles).  We therefore believe 

that the relative rankings do not depend on the random choice of training images. 

A third important question is: do the results depend on the number of subspace dimensions?  Figure 6 shows the 

performance results for PCA with all three distance metrics and both architectures of ICA as the number of subspace 

                                                                                                                                                                                           
4 With a block size of 50 and a learning rate starting at 0.001 and annealed over 1,600 iterations to 0.0001. For architecture II, the learning rate 
began at 0.0008. 
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dimensions varies from 50 to 2005.  The relative ordering of the subspace projection techniques does not depend on 

the number of subspace dimensions, since for most techniques the lines never cross.  The one exception is PCA with 

the Mahalonobis distance metric, which performs almost as well as ICA architecture II with small numbers of 

subspace dimensions, but whose performance on probe sets fb and dupI drops off relative to ICA architecture II and 

PCA with L1 as the number of subspace dimensions increases. 

We conclude that for the task of facial identity recognition, ICA architecture II outperforms PCA with the L1 

distance metric, which outperforms the other combinations, at least on the standard FERET probe sets.  For small 

subspaces, the Mahalanobis metric can be used inplace of L1.  Interestingly, this directly contradicts the claim made 

by Lee and Seung [27] (and echoed in [15, 20, 29]) that spatially localized feature vectors are better than 

overlapping (non spatially localized) feature vectors for face recognition, since spatially localized feature vectors 

performed much worse than global features in our study. 

 

Table 2: Trials of PCA/L1, InfoMax Arch I, and InfoMax Arch II on ten sets of randomly selected training images. 

                                                           
5 This data was collected using training set #1. 
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3.4 Comparisons to Previous Results 

Does Tables 1 contradict the previous results in the literature?  In many cases no, if the ICA architecture and 

distance measures are taken into account.  For example, Baek et al. found that PCA with the L1 distance measure 

outperformed ICA architecture I.  This is consistent with Table 1.  Liu and Wechsler compared ICA architecture II 

to PCA with L2, and found that ICA was better [30].  Again this agrees with Table 1.  Similarly, Bartlett et al. report 

that ICA architecture II outperforms PCA with L2 [4, 5], as predicted by Table 1. 

Three papers compared ICA architecture I to PCA with the L2 distance metric, and found that ICA outperformed 

PCA [4, 6, 41] when cosines were used as the ICA subspace distance measure.  Our study also finds that ICA 

architecture I is slightly better than PCA/L2, but it is not clear if this result is statistically significant.  We did not 

pursue this question further, since architecture I is suboptimal for face recognition with ICA, and the L2 distance 

metric is suboptimal for face recognition with PCA. 
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Figure 6: Recognition rates for ICA architecture I (black), ICA architecture II (green), and PCA with the L1 (blue), 
L2 (red) and Mahalanobis (magenta) distance measures as a function of the number of subspace dimensions.  Each 
graph corresponds to a particular probe set (fb, dup I, dup II, or fc). Recognition rates were measured for subspace 
dimensionalities starting at 50 and increasing by 25 dimension up to a total of 200. 
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The one previous result that contradicts ours is the study by Moghaddam [32] which found no statistically 

significant difference between ICA architecture II and PCA with the L2 distance metric.  According to Table 1, ICA 

architecture II should have won this comparison, and the result should not have been in doubt.  From the paper, 

however, it appears that Moghaddam may have used the L2 distance metric for ICA as well as for PCA.  As shown 

in Table 1, this significantly lowers the performance of ICA architecture II relative to the performance using cosines, 

and may explain part of the discrepancy. 

3.5 InfoMax vs. FastICA 

When comparing ICA to PCA above, one of the fixed factors was the ICA algorithm.  Would the results have 

been any different with another ICA algorithm, such as FastICA or JADE?  Unfortunately, it is not feasible to run 

JADE on problems with more than 50 dimensions. We did, however, test the performance of FastICA6 on both 

architectures, for the same ten randomly selected training sets.  The results are shown back in Table 2, where the 

FastICA implementation of architecture I is labeled FICA-1 and marked graphically with a star, and the FastICA 

implementation of architecture II is labeled FICA-2 and marked with a circle.  As shown there, the differences in 

performance between the two algorithms are relatively small, and depend on the architecture: FastICA performs 

better in architecture II, but InfoMax performs better in architecture I.   

The choice of ICA algorithms therefore does not affect the ranking of PCA relative to the two ICA architectures.  

ICA architecture II was already better than PCA using InfoMax; switching to FastICA makes it better still.  

Similarly, PCA was already better than InfoMax in ICA architecture I; switching to FastICA makes the performance 

of ICA architecture I drop even lower.  The relative rankings stay the same, no matter which ICA algorithm is used.  

The choice of ICA algorithm does affect performance, however.  Users should use FastICA with architecture II, and 

InfoMax with architecture I, at least in this problem domain. 

                                                           
6 The FastICA implementation is due to Hyvärinen et al, and can be found at www.cis.hut.fi/projects/ica/fastica 
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4. Recognizing Facial Actions 

4.1 Methodology 

The comparisons in Section 3 established an ordering for subspace projection techniques in the task of facial 

identity recognition.  This section, however, will show that this order is highly task dependent.  In fact, the order is 

reversed when recognizing facial actions. 

Expressions are formed by moving localized groups of face muscles.  We hypothesized, therefore, that localized 

features would be better for recognizing facial actions (and therefore emotions) than spatially overlapping features.  

We tested this hypothesis using the same baseline system as described in Section 3.1.  This time, however, the 

images are of subjects performing specific facial actions.  Ekman described a set of 46 human facial actions [18], 

and Ekman and Hager collected data for 20 subjects performing a total of  80 subject/action pairs.  A temporal 

sequence of five images was taken of each subject performing each action, where the first image shows only small 

movements at the beginning of action.  The movements become successively more pronounced in images 2 through 

5.  All five images are then subtracted from the picture of the same subject with a neutral expression, prior to the 

start of the facial action.  The resulting data is composed of difference images, as shown in Figure 7.  (This data is 

further described in [3]).  For the experiments in this paper, only the upper halves of the faces were used. 

 

  

 

Figure 7: Sequences of difference images for Action Unit 1 and Action Unit 2. The frames are arranged 
temporally left to right, with the left most frame being the initial stage of the action, and the right most frame 
being its most extreme form. 

  
One difference between Ekman and Hagar’s facial action data set and the FERET gallery is that the facial action 

data set contains many examples of each facial action.  As a result, the facial action gallery can be divided into 
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categories (one per action), and the class discriminability r can be used to order the ICA basis vectors7 [3].  To 

compute r, each training image is assigned a facial action class label.  Then, for each feature, the between-class 

variability Vbetween, and within-class variability, Vwithin of the corresponding coefficients are computed by: 
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where M is the overall mean of coefficients across the training images, M i is the mean for class i,  bij is coefficient of 

jth training image in class i, and r is the ratio of Vbetween to Vwithin, i.e. r = Vbetween / Vwithin. This allows us to rank the 

ICA features in terms of discriminability and to plot recognition rate as a function of the number of subspace 

dimensions.  We create the same plot for PCA, ordering its features according to class discriminability (Figure 8, 

left) and according to the eigenvalues (Figure 8, right). 

For testing purposes, the subjects were partitioned into four sets.  The four sets were designed to keep the total 

number of actions as even as possible, given that not all subjects performed all actions.  (For anyone who wishes to 

replicate our experiments, the exact partition by subject index is given in appendix A.)  Otherwise, the methodology 

and parameters were the same as described in Section 3.1, except that in this experiment a trial was a success if the 

retrieved gallery image was performing the same facial action as the probe image.  We performed the experiments 

twice, once restricting the probe set to only the third image in each temporal action sequence (as in [3]), and once 

allowing all five images to be used as probes.  Once again, ICA architecture I, ICA architecture II, and PCA with the 

L1, L2 and Mahalanobis distance metrics were compared.   

 

                                                           
7 We did not order ICA basis vectors by relevance for the face recognition task because the FERET data set contains only two head-on images of 
most subjects, and no more than four head-on images of any subject. 
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Figure 8: Recognition rates vs. subspace dimensions. On the left, both ICA and PCA components are ordered 
by the class discriminability while PCA components are ordered according to the eigenvalues in the right plot. 
ICA architecture I is black, ICA architecture II is green, PCA with L1 is blue, PCA with L2 is red, PCA with 
Mahalanobis is magenta. 
 

4.2 Results and Discussion 

The results of this experiment are complex, in part because the recognition rate does not increase monotonically 

with the number of subspace dimensions.  Figure 8 shows the recognition rate as a function of the number of 

dimensions for each of the five techniques, averaged across four test sets.  For every technique, the maximum 

recognition rate occurs at a different number of subspace dimensions on every test set, suggesting that it may not be 

possible to tune the techniques by changing the number of subspace dimensions.  Table 3 therefore presents the 

recognition rates for every technique using 110 basis vectors.  Table 5 in Appendix B gives the same results when 

only the third images from each temporal sequence are used as probes, as in [3, 17] (the results are essentially 

equivalent). 

When recognizing facial actions, it is ICA architecture I that outperforms the other four techniques.  PCA/L2 is 

second best, followed by PCA/L1, ICA architecture II, and PCA/Mahalanobis.  This is consistent with the 

hypothesis that spatially localized basis vectors outperform spatially overlapping basis vectors for recognizing facial 

actions, and underscores the point that the analysis technique must be selected based on the recognition task.  It is 

also consistent with the data in [3, 17] 

 

110 Basis Vectors Test 
Set ICA I ICA II PCA(L1) PCA(L2) Mahalanobis 
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1  87.37 % 74.73 % 83.16 % 83.16 % 52.63 % 
2 95.79 % 84.21 % 84.21 % 92.63 % 70.53 % 
3 82.50 % 69.00 % 80.00 % 83.00 % 53.00 % 
4 87.27 % 75.91 % 70.00 % 81.82 % 58.18 % 

Avg. 88.12 % 75.87 % 79.00 % 85.00 % 58.50 % 
 
Table 3: Average recognition rates for facial actions using ICA and PCA.  The images were divided into four 
sets according to Appendix B and evaluated using 4-fold cross validation.  Techniques were evaluated by 
testing from 1 to 110 subspace dimensions and taking the average. 

 

5. Conclusion 

Comparisons between PCA and ICA are complex, because differences in tasks, architectures, ICA algorithms, 

and distance metrics must be taken into account.  This is the first paper to explore the space of PCA/ICA 

comparisons, by systematically testing two ICA architectures, two ICA algorithms, and three PCA distance 

measures on two tasks (facial identity and facial expression).  In the process, we were able to verify the results of 

previous comparisons in the literature, and to relate them to each other and to this work.  

In general, we find that the most important factor is the nature of the task.  Some tasks, like facial identity 

recognition, are holistic and require spatially overlapping feature vectors.  Other tasks, like facial action recognition, 

are more localized, and perform better with spatially disjoint feature vectors.  

For the facial identity task, we find that ICA architecture II provides the best results, followed by PCA with the 

L1 or Mahalanobis distance metrics.  The difference between PCA and ICA in this context is not large, but it is 

significant.  ICA architecture I and PCA with the L2 or cosine metrics  are poorer choices for this task.  If ICA 

architecture II is used, we recommend using the FastICA algorithm, although the difference between FastICA and 

InfoMax is not large.  For the more localized task of recognizing facial actions, the recommendation is reversed: we 

found the best results using InfoMax to implement ICA architecture I. PCA with the L2 metric was the second most 

effective technique.  

As with any comparative study, there are limitations.  We did not test the effects of registration errors or image 

pre-processing schemes.  We tested only two ICA algorithms.  We evaluated PCA and ICA according to only one 

criterion, recognition rate, even though other criteria such as computational cost may also apply.  Most significantly, 

although we measured the effects of different ICA algorithms and PCA distance metrics, we can not explain these 

differences in terms of the underlying data distributions.  As a result, it is difficult to predict the best technique for a 



Revised copy 

 23 

novel domain.  We consider understanding this relationship to be future work both for the authors and for others in 

the field of appearance-based object recognition. 
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Appendix A. Partition of Facial Action Data Set 

As discussed in Section 4.1, not all 20 subjects were capable of performing all six facial actions in isolation.  As a 

result, there are 80 subject/action pairs, not 120.  Therefore when dividing subjects into four partitions, we had to 

ensure that all four partitions had roughly the same number of subject/action pairs, and that every action was equally 

represented in each partition.  We partitioned subjects as follows: 

 

Partition (subject #)  
AU # 1 (0,2,4,5,14) 2 (1,7,8,9,16) 3 (3,10,11,12,13) 4 (6,17,18,19,20) 

1 2 2 2 3 
2 2 3 2 3 
4 5 4 4 5 
5 5 5 5 5 
6 1 1 2 1 
7 4 4 5 5 

Total 19 actions 19 actions 20 actions 22 actions 
 
Table 4: Subject partition for experiments in Section 4. Each row corresponds to a facial action, each 
column to a set of subjects.  Table entries correspond to the number of subject/action pairs in a partition for 
the corresponding facial action. 

 

Appendix B. More Recognition Results for Facial Action Sequences 

Previous studies with Ekman and Hager’s facial action data set have classified the third image in each sequence 

[3, 17].  In so doing, they avoided testing on the smaller facial actions in the first image and the largest facial actions 

in the fifth image.  For this main body of this paper, we used images from all five stages as probe images.  To 

compare our results to previous papers, however, we also tested just the third image from each sequence.  The 
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results are shown in the table below.  Readers can verify that there is little significant difference between this table 

and Table 3. 

 

110 Basis Vectors Test 
Set ICA I ICA II PCA(L1) PCA(L2) PCA (Mh) 
1 94.73 % 86.84 % 84.21 % 84.21 % 52.63 % 
2 100.0 % 94.74 % 84.21 % 94.74 % 73.68 % 
3 85.00 % 70.00 % 85.00 % 85.00 % 55.00 % 
4 86.36 % 75.00 % 72.73 % 81.82 % 59.09 % 

Avg 91.25 % 81.25 % 81.25 % 86.25 % 60.00 % 
 

Table 5: Performance of ICA architecture I (ICA I), ICA architecture II (ICA II), and PCA with the 
L1, L2 and Mahalanobis distance functions (PCA(L1), PCA(L2), and PCA(Mh), respectively), when 
classifying just the third frame of each action unit sequence, as in [3, 17].  The results are 
qualitatively equivalent to those in Table 3. 
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