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Abstract

This paper addresses the relative usefulness of Inde-
pendent Component Analysis (ICA) for Face Recognition.
Comparative assessments are made regarding (i) ICA sen-
sitivity to the dimension of the space where it is carried out,
and (ii) ICA discriminant performance alone or when com-
bined with other discriminant criteria such as Bayesian
framework or Fisher’s Linear Discriminant (FLD). Sensi-
tivity analysis suggests that for enhanced performance ICA
should be carried out in a compressed and whitened Prin-
cipal Component Analysis (PCA) space where the small
trailing eigenvalues are discarded. The reason for this
finding is that during whitening the eigenvalues of the co-
variance matrix appear in the denominator and that the
small trailing eigenvalues mostly encode noise. As a con-
sequence the whitening component, if used in an uncom-
pressed image space, would fit for misleading variations
and thus generalize poorly to new data. Discriminant anal-
ysis shows that the ICA criterion, when carried out in the
properly compressed and whitened space, performs bet-
ter than the eigenfaces and Fisherfaces methods for face
recognition, but its performance deteriorates when aug-
mented by additional criteria such as the Maximum A Pos-
teriori (MAP) rule of the Bayes classifier or the FLD. The
reason for the last finding is that the Mahalanobis distance
embedded in the MAP classifier duplicates to some extent
the whitening component, while using FLD is counter to
the independence criterion intrinsic to ICA.

1. Introduction

Face recognition is important not only because it has a
lot of potential applications in research fields such as Hu-
man Computer Interaction (HCI), biometrics and security,
but also because it is a typical Pattern Recognition (PR)
problem whose solution would help solving other classi-

fication problems. A successful face recognition method-
ology depends heavily on the particular choice of the fea-
tures used by the (pattern) classifier [4], [17], [3]. Feature
selection in pattern recognition involves the derivation of
salient features from the raw input data in order to reduce
the amount of data used for classification and simultane-
ously provide enhanced discriminatory power.

One popular technique for feature selection and di-
mensionality reduction is Principal Component Analysis
(PCA) [8], [6]. PCA is a standard decorrelation technique
and following its application one derives an orthogonal
projection basis which directly leads to dimensionality re-
duction, and possibly to feature selection. PCA was first
applied to reconstruct human faces by Kirby and Sirovich
[10] and to recognize faces by Turk and Pentland [19]. The
recognition method, known as eigenfaces, defines a feature
space, or “face space”, which drastically reduces the di-
mensionality of the original space, and face detection and
identification are then carried out in the reduced space.

Independent Component Analysis (ICA) has emerged
recently as one powerful solution to the problem of blind
source separation [5], [9], [7] while its possible use for
face recognition has been shown by Bartlett and Sejnowski
[1]. ICA searches for a linear transformation to express a
set of random variables as linear combinations of statisti-
cally independent source variables [5]. The search crite-
rion involves the minimization of the mutual information
expressed as a function of high order cumulants. Basically
PCA considers the 2nd order moments only and it uncor-
relates data, while ICA accounts for higher order statistics
and it identifies the independent source components from
their linear mixtures (the observables). ICA thus provides
a more powerful data representation than PCA [9]. As
PCA derives only the most expressive features for face re-
construction rather than face classification, one would usu-
ally use some subsequent discriminant analysis to enhance
PCA performance [18].

This paper makes a comparative assessment on the use



of ICA as a discriminant analysis criterion whose goal is
to enhance PCA stand alone performance. Experiments
in support of our comparative assessment of ICA for face
recognition are carried out using a large data set consisting
of 1,107 images and drawn from the FERET database [16].
The comparative assessment suggests that for enhanced
face recognition performance ICA should be carried out
in a compressed and whitened space, and that ICA per-
formance deteriorate when it is augmented by additional
decision rules such as the Bayes classifier or the Fisher’s
linear discriminant analysis.

2. Background

PCA provides an optimal signal representation tech-
nique in the mean square error sense. The motivation be-
hind using PCA for human face representation and recog-
nition comes from its optimal and robust image compres-
sion and reconstruction capability [10] [15]. PCA yields
projection axes based on the variations from all the training
samples, hence these axes are fairly robust for representing
both training and testing images (not seen during training).
PCA does not distinguish, however, the different roles of
the variations (within- and between-class variations) and
it treats them equally. This leads to poor performance
when the distributions of the face classes are not separated
by the mean-difference but separated by the covariance-
difference [6].

Swets and Weng [18] point out that PCA derives only
the most expressive features which are unrelated to actual
face recognition, and in order to improve performance one
needs additional discriminant analysis. One such discrim-
inant criterion, the Bayes classifier, yields the minimum
classification error when the underlying probability density
functions (pdf) are known. The use of the Bayes classifier
is conditioned on the availability of an adequate amount
of representative training data in order to estimate the pdf.
As an example, Moghaddam and Pentland [13] developed
a Probabilistic Visual Learning (PVL) method which uses
the eigenspace decomposition as an integral part of esti-
mating the pdf in high-dimensional image spaces. To ad-
dress the lack of sufficient training data Liu and Wechsler
[12] introduced the Probabilistic Reasoning Models (PRM)
where the conditional pdf for each class is modeled using
the pooled within-class scatter and the Maximum A Pos-
teriori (MAP) Bayes classification rule is implemented in
the reduced PCA subspace.

The Fisher’s Linear Discriminant (FLD) is yet another
popular discriminant criterion. By applying first PCA
for dimensionality reduction and then FLD for discrimi-
nant analysis, Belhumire, Hespanha, and Kriegman [2] and
Swets and Weng [18] developed similar methods (Fisher-

faces and the Most Discriminant Features (MDF) method)
for face recognition. Methods that combine PCA and the
standard FLD, however, lack in their generalization ability
as they overfit to the training data. To address the overfit-
ting problem Liu and Wechsler [11] introduced Enhanced
FLD Models (EFM) to improve on the generalization ca-
pability of the standard FLD based classifiers such as Fish-
erfaces [2].

3. Independent Component Analysis (ICA)

As PCA considers the 2nd order moments only it lacks
information on higher order statistics. ICA accounts for
higher order statistics and it identifies the independent
source components from their linear mixtures (the observ-
ables). ICA thus provides a more powerful data represen-
tation than PCA [9] as its goal is that of providing an inde-
pendent rather than uncorrelated image decomposition and
representation.

ICA of a random vector searches for a linear trans-
formation which minimizes the statistical dependence be-
tween its components [5]. In particular, let
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random vector representing an image, where � is the di-
mensionality of the image space. The vector is formed by
concatenating the rows or the columns of the image which
may be normalized to have a unit norm and/or an equalized
histogram. The covariance matrix of
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is defined as

�
	������� �������������� ������ �����"!$#
(1)

where
��&% �

is the expectation operator, ' denotes the trans-
pose operation, and

�(	)���*�,+-�
. The ICA of

�
factor-

izes the covariance matrix
�(	

into the following form

� 	 ��.,/0. !
(2)

where
/

is diagonal real positive and
.

transforms the
original data

�
into 1

�2��. 1 (3)

such that the components of the new data 1 are indepen-
dent or “the most independent possible” [5].

To derive the ICA transformation
.

, Comon [5] de-
veloped an algorithm which consists of three operations:
whitening, rotation, and normalization. First, the whiten-
ing operation transforms a random vector

�
into another

one 3 that has a unit covariance matrix.
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where
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is an orthonormal eigenvec-
tor matrix and
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. One notes that whitening, an in-
tegral ICA component, counteracts the fact that the Mean
Square Error (MSE) preferentially weighs low frequencies
[14]. The rotation operations, then, perform source sepa-
ration (to derive independent components) by minimizing
the mutual information approximated using higher order
cumulants. Finally, the normalization operation derives
unique independent components in terms of orientation,
unit norm, and order of projections [5].

4. Sensitivity Analysis of ICA

Eq. 4 can be rearranged to the following form

3 � 6�� 7 9 : 4 ! �
(6)

where
4

and
6

are eigenvector and eigenvalue matrices,
respectively (see Eq. 5). Eq. 6 shows that during whiten-
ing the eigenvalues appear in the denominator. The trailing
eigenvalues, which tend to capture noise as their values are
fairly small, thus cause the whitening step to fit for mis-
leading variations and make the ICA criterion to generalize
poorly when it is exposed to new data. As a consequence, if
the whitening step is preceded by a dimensionality reduc-
tion procedure ICA performance would be enhanced and
computational complexity reduced. Specifically, space di-
mensionality is first reduced to discard the small trailing
eigenvalues and only then the compressed data is normal-
ized (‘sphered’) to unit gain control.

If we assume that the eigenvalues in
6

are sorted in de-
creasing order,
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� % % % � � � , then the first � ( ��� � )
leading eigenvectors define a matrix � � � �,+��
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and the first � eigenvalues specify a diagonal matrix
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The dimensionality reduction whitening transforms the
data

�
into � � ���
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(9)

The question now is how to choose the dimensional-
ity � of the reduced subspace. Note that the goal of us-
ing whitening for dimensionality reduction is two-fold. On
the one hand, we hope to lose as little representative in-
formation of the original data as possible in the transfor-
mation from the high dimensional space to the low dimen-
sional one. On the other hand, in the reduced subspace the

small trailing eigenvalues are excluded so that we can ob-
tain more robust whitening results. Toward that end, dur-
ing the whitening transformation we should keep a balance
between the need that the selected eigenvalues account for
most of the spectral energy of the raw data and the require-
ment that the trailing eigenvalues of the covariance matrix
are not too small. As a result, the eigenvalue spectrum of
the training data supplies useful information for the deci-
sion of the dimensionality � of the subspace.
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The experimental data, consisting of 1,107 facial im-
ages corresponding to 369 subjects, comes from the
FERET database [16]. Some of the face images used are
shown in Fig. 1. 600 out of the 1,107 images correspond to
200 subjects with each subject having three images — two
of them are the first and the second shot, while the third
shot is taken under low illumination. For the remaining
169 subjects there are also three images for each subject,
but two out of the three images are duplicates taken at a
different and much later time. Two images of each subject
are used for training with the remaining one used for test-
ing. The images are cropped to the size of 64 x 96, once
the eye coordinates are manually detected. Fig. 2 shows
the relative magnitude of the eigenvalues derived using the
738 training face images. When the eigenvalue index is
greater than 40, the corresponding eigenvalues have rela-
tively small magnitudes, and if they were included in the
whitening transformation these small eigenvalues will lead
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to decreased ICA performance (see Fig. 3 and Fig. 4) as
they amplify the effects of noise. So we set the dimension
of the reduced space as � � W �

.
In order to assess the sensitivity of ICA in terms of the

dimension of the compressed and whitened space where it
is implemented, we carried out a comparative assessment
for different dimensional ( � ) whitened subspace. Fig. 3
and Fig. 4 show the ICA face recognition performance
when different � is chosen during the whitening transfor-
mation (see Eq. 9) and as the number of features used can
range up to the dimension of the compressed space. The
curve corresponding to � � W �

performs better than all the
other curves obtained for different � values. Fig. 4 shows
that ICA performance deteriorates quite severely as � is
getting larger. The reason for this deterioration is that for
the large values of � , more small trailing eigenvalues (see
Fig. 2 ) are included in the whitening step and this leads
to an unstable transformation. Note that smaller values for
� lead to decreased ICA performance as well because the
whitened space fails to capture enough information on the
original data.
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5. Discrimination Power of ICA

To assess the performance of ICA as a discriminant
criterion, we implemented the eigenfaces [19] and Fish-
erfaces [2] methods for comparison purposes. Note that
Fisherfaces apply first PCA for dimensionality reduction
and then FLD for discriminant analysis. Relevant ques-
tions concerning PCA are usually related to the range of
principal components used and how it affects performance.
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Regarding discriminant analysis one has to understand the
reasons for overfitting and how to avoid it. One can actu-
ally show that using more principal components may lead
to decreased performance (for recognition). The explana-
tion for this behavior is that the trailing eigenvalues corre-
spond to high-frequency components and usually encode
noise. As a result, when these trailing but small valued
eigenvalues are used to define the reduced PCA subspace,
the FLD procedure has to fit for noise as well and as a
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consequence overfitting takes place. To improve the gen-
eralization ability of Fisherfaces, we implemented it in the
� � * �)� PCA subspace. The comparative performance
of eigenfaces, Fisherfaces and ICA is plotted in Fig. 5
when ICA was implemented in the � � W �

PCA subspace.
Fig. 5 shows that ICA criterion performs better than both
eigenfaces and Fisherfaces.

We also assessed the ICA discriminant criterion against
two other popular discriminant criteria: the MAP rule of
the Bayes classifier and the Fisher’s linear discriminant
as they are embedded within the Probabilistic Reasoning
Models (PRM) [12] and the Enhanced FLD Models (EFM)
[11]. Fig. 6 plots the comparative performances of PRM-1
and EFM-1 against the ICA method with � again being set
to 40. ICA is shown to have comparable face recognition
performance with the MAP rule of the Bayes classifier and
the Fisher’s linear discriminant as embedded within PRM
and EFM, respectively.
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We next augmented the ICA criterion by additional cri-
teria such as the MAP rule of the Bayes classifier or the
FLD. In the ICA space, the Bayes classifier uses the pooled
within-class scatter to estimate the covariance matrix for
each class in order to approximate the conditional pdf, and
then applies the MAP rule as the classification criterion
(see [12] for detail). The FLD also use the pooled within-
class scatter to estimate the within-class covariance matrix
in the ICA space [11]. The first augmented criterion (ICA +
Bayes classifier) does not improve the face recognition rate
as it displays a similar performance curve to that of ICA as
plotted in Fig. 7. Note that when ICA is combined with the
Bayes classifier, the MAP rule specifies a quadratic classi-
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fier characterized by Mahalanobis distance. The whitening
transformation to standardize the data is applied first and
it precedes MAP. As a result, the Mahalanobis distance
embedded in the MAP classifier duplicates to some ex-
tent the whitening component of ICA and can not improve
the overall performance. The second augmented criterion
(ICA + FLD), whose performance is shown in Fig. 8, sig-
nificantly deteriorates the recognition performance. This
deterioration is caused by the additional FLD transforma-
tion which cancels to a large extent the independence cri-
terion intrinsic to ICA.
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6. Conclusions

This paper addresses the relative usefulness of the inde-
pendent component analysis for Face Recognition. Com-
parative assessments are made regarding (i) ICA sensitiv-
ity to the dimension of the space where it is carried out,
and (ii) ICA discriminant performance alone or when com-
bined with other discriminant criteria such as the MAP cri-
teria of the Bayes classifier or the Fisher’s linear discrim-
inant. The sensitivity analysis suggests that for enhanced
performance ICA should be carried out in a compressed
and whitened space where most of the representative in-
formation of the original data is preserved and the small
trailing eigenvalues discarded. The dimensionality of the
compressed subspace is decided based on the eigenvalue
spectrum from the training data. The discriminant analysis
shows that the ICA criterion, when carried out in the prop-
erly compressed and whitened space, performs better than
the eigenfaces and Fisherfaces methods for face recogni-
tion, but its performance deteriorates significantly when
augmented by an additional discriminant criteria such as
the FLD.
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