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Abstract

Face recognition is characteristically different from reg-
ular pattern recognition and, therefore, requires a different
discriminant analysis other than linear discriminant anal-
ysis (LDA). LDA is a single-exemplar method in the sense
that each class during classification is represented by a sin-
gle exemplar, i.e. the sample mean of the class. In this
paper, we present a multiple-exemplar discriminant analy-
sis (MEDA) where each class is represented using several
exemplars or even the whole available sample set. The
proposed approach produces improved classification results
when tested on a subset of FERET database where LDA is
ineffective.

1. Introduction

Fisher linear discriminant analysis (LDA) is a standard
pattern recognition tool. LDA is a single-exemplar method
in the sense that each class during classification is repre-
sented by a single exemplar, i.e. the sample mean of the
class. The single-exemplar property offers a simple classifi-
cation mechanism, which is often very efficient in terms of
classification results. The underlying assumption of LDA is
that each class possesses a normal density with a different
mean vector but a common covariance matrix. Under the
above assumption, LDA coincides with the optimal Bayes
classifier.

Even though LDA has been successfully applied to face
recognition [1, 3, 9], its recognition effectiveness is limited
to controlled scenarios, as documented in [7, 10]. For ex-
ample, when the faces are in a frontal view, under a frontal
illumination, and with a neutral expression, the recognition
performance is quite accurate. However, when the image
conditions of the training, gallery, and probe sets are differ-
ent, the recognition performance drops quickly.

The inconsistency in recognition performance can be ex-
plained by the fact that face recognition is characteristi-

cally different from regular pattern recognition. Generally
speaking, the main hurdle in face recognition is the sample-
deficiency problem, i.e., there is only a small number of
samples per class to represent a complex manifold. There-
fore, all samples should be used as exemplars for a final
classification. This is inconsistent with the single-exemplar
property and causes LDA to be ineffective.

To overcome this drawback, we propose a multiple-
exemplar discriminant analysis (MEDA) where each class is
represented by several exemplars. Rather than minimizing
the within-class distance while maximizing the between-
class distance , the proposed MEDA find the projection
directions along which the within-class exemplar distance
(i.e. the distances between exemplars belonging to the same
class) is minimized while the between-class exemplar dis-
tance (i.e. the distances between exemplars belonging to
different classes) is maximized. To illustrate the effective-
ness of the proposed approach, we test MEDA on a subset
of the FERET database [7] where LDA has been ineffective.

The paper is structured as follows. In Section 2, we list
some characteristics of face recognition that are different
from regular pattern recognition. Then, in Section 3 we
review the principle of LDA. In Section 4, we present the
principle of MEDA, followed by several special examples
of MEDA. We then in Section 5 present the experiment part,
demonstrating the necessity of MEDA in cases where LDA
may be ineffective. We conclude the paper in Section 6.

2. Characterization of Face Recognition

Face recognition possesses several characteristics differ-
ent from regular pattern recognition (especially those ap-
propriate for LDA).

[C1] Due to variations in such as pose, illumination, and
facial expression, the face appearance of an object possess
a complex density (or manifold), severely deviating from
the normal assumption. In other words, the single-exemplar
property of LDA is violated. Consequently, a very large



number of samples are required to sufficiently represent the
complex density (or manifold).

[C2] Because of limitations of image acquisition, prac-
tical face recognition systems store only a small number of
samples per subject. This aggregates the ‘curse of dimen-
sionality’ problem. Typically, each sample represents one
type of variations. For instance, we might have one sample
under a frontal illumination and with a neutral expression,
one sample under a different illumination and with a neu-
tral expression, and one sample under a frontal illumination
and with a different expression. Even so, it is far from suffi-
cient to represent the complex density we are dealing with.
Therefore, every sample matters and should be used as an
exemplar, i.e., we should by all means to use all available
samples during classification rather than using their mean
as in LDA.

[C3] To remedy the sample-deficiency problem to some
extent, one can exploit the strong visual similarity among
face images of different subjects. It is this similarity that in-
spires the popularity of the ‘Eigenface’ approach [8]. How-
ever, again the ‘Eigenface’ approach actually only works
for controlled scenarios. In our context, this similarity can
be interpreted as a similarity among the ‘shapes’ of the face
appearance manifolds belonging to different subjects. To
understand the manifold ‘shape’, we use the analogy of
derivative. The manifold is considered as a multidimen-
sional function and its ‘shape’ as the ‘derivatives’ of the
appearance manifolds.

[C4] Unlike regular pattern recognition where the class
labels involved in training and testing are same, face recog-
nition systems often have no overlap between the training
set and the galley/probe set, according to the FERET pro-
tocol [7]. Thus, generalization from known subjects in the
training set to unknown subjects in the gallery/probe set is
needed. Fortunately, this generalization is possible due to
the above-mentioned similarity. Once we learn the ‘shape’
characteristic of the face manifold, we can apply this knowl-
edge to novel subjects since the ‘shapes’ of all face mani-
folds are similar.

3. Linear Discriminant Analysis (LDA)

Consider aC-class problem with each classi consist-
ing of a set ofNi d-dimensional samples{xi

1, xi
2, . . . , xi

Ni
}

where the superscript(.)i represents the class label. For
illustrative purpose, we introduce a grand class which de-
prives the class labels. Denote the total number of samples
by N =

∑C

i=1 Ni, the frequency of occurrence of theith

class bypi = Ni/N , the sample mean for theith class by
µi, and the grand sample mean (regardless of class labels)

by µ. We compute the above-defined quantities as follows:

µi =
1

Ni

Ni∑

j=1

xi
j ; µ =

1

N

C∑

i=1

Ni∑

j=1

xi
j =

C∑

i=1

piµi. (1)

LDA first estimates the within-class and between-class
scatter matrices of sized × d, denoted byΣW andΣB , re-
spectively, given by

ΣW =

C∑

i=1

piΣi
W =

1

N

C∑

i=1

Ni∑

j=1

(xi
j − µi)(xi

j − µi)T, (2)

ΣB =

C∑

i=1

piΣi
B =

1

N

C∑

i=1

Ni

Ni∑

j=1

(µi − µ)(µi −µ)T, (3)

where Σi
W is the covariance matrix estimate for classi

given by

Σi
W =

1

Ni

Ni∑

j=1

(xi
j − µi)(xi

j − µi)T, (4)

and Σi
B is the scatter matrix between the classi and the

‘grand class’ given by

Σi
B = (µi − µ)(µi − µ)T. (5)

In other words,ΣW is estimated by ‘pooling’ together
{Σi

W ; i = 1, ..., C}. Similarly, this holds forΣB .
Then, LDA finds a projection matrixW, say of sizer×d,

that maximizes the criterion function

JW =
det{WTΣBW}

det{WTΣW W}
, (6)

wheredet{.} denotes matrix determinant. The value ofr
can not exceedd − 1. Given a test patterny, its class label
Cy is determined as

Cy = arg min
i=1,2,...,C

{|WT(y − µi)|2 + Di}, (7)

whereDi is used to incorporate prior information1.

4. Multiple-Exemplar Discriminant Analysis
(MEDA) for Face Recognition

The basic principle of LDA is to minimize the within-
class distance while maximizing the between-class dis-
tance, with each class represented by a single exemplar.
Since MEDA uses all the available exemplars per class, the

1In practice, one often ignores the termDi and use theL1 norm instead
of L2 norm. We did this in the experiment reported herein.



within-class distance in LDA becomes the within-class ex-
emplar distance (i.e. the distances between exemplars be-
longing to the same class).

Mathematically, we re-define the matricesΣW andΣB

as follows:

ΣW =
C∑

i=1

1

N2
i

Ni∑

j=1

Ni∑

k=1

(xi
j − xi

k)(xi
j − xi

k)T; (8)

The basic element in (8) is a pairwise difference between
any two exemplars belonging to the same class. Alterna-
tively, we can view these basic elements as samples of a
new space. This construction of such a space is validated
by the propertyC3 to capture the common ‘shape’ of the
face appearance manifold. This space is called the intra-
personal space (IPS) in [5].

Similarly, the between-class distance in LDA becomes
the between-class exemplar distance (i.e. the distances be-
tween exemplars belonging to different classes),

ΣB =

C∑

i=1

C∑

j=1;j 6=i

1

NiNj

Ni∑

k=1

Nj∑

l=1

(xi
k−xj

l )(x
i
k−xj

l )
T, (9)

and a so-called extra-personal space (EPS) can be con-
structed.

The proposed MEDA approach is find the projection ma-
trix Wd×r such as the same cost functionJW defined in (6)
is maximized. But, here the number of projection directions
r can exceedC − 1. Given a test patterny, its class label
Cy is determined as

Cy = arg min
i=1,2,...,C

{ min
j=1,2,...,Ni

{|WT(y − xi
j)|

2 + Di}}.

(10)
Without much difficulty, our MEDA analysis can be ex-

tended to handle the cases where not all samples are used
in classification and only several exemplars are extracted
from the sample set to represent the class. Mathematically,
we represent a classi by Mi exemplars associated with
weights, i.e.,{(µi

k,pi
k); k = 1, 2, . . . ,Mi} where the sam-

ple meanµi for classi is given byµi =
∑Mk

k=1 p
i
kµi

k. Note
that if we takepi

k = N−1
i , it reduces to the proposed anal-

ysis.
Learning exemplar can be achieved by the K-means al-

gorithm [2]. The K-means algorithm is a hard-clustering
technique. A soft-clustering method such as mixture mod-
eling can also be incorporated in the extended MEDA anal-
ysis.

4.1. Smoothing

As pointed out in the LDA literature [2] and its applica-
tions to face recognition [1, 3, 9], the projection directions

(a)

(b)
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Figure 1. (a) Neutral faces. (b) Faces with facial expres-
sions. (c) Faces under a different illumination. The image
size is 24 by 21 in pixels.

themselves are very noisy and wiggly, which is an indica-
tion of over-fitting. Fig. 2 (a) also shows this phenomenon.

The over-fitting can be remedied by adding a penalty ma-
trix Ω to the matrixΣW , as suggested by [4]. This penalty
matrix penalizes the roughness of the projection vectors
(they are actually images as shown in Fig. 2) to encour-
age smooth solutions. Alternatively, a pre-smoothing step
which filters out the high-frequency components from the
original images can be used. For example, used in [9] is
an eigen-smoothing technique which is essentially the PCA
approach (by retaining the topq components). In this pa-
per, we adopt the former approach, i.e., adding an matrix
Ω = ρI to ΣW , with I being an identity matrix. The typi-
cal range ofρ is [10, 50].

4.2. Discussion

Our analysis is different from the Bayesian face recog-
nition approach [5]. In [5], after constructing the intra-
personal space (IPS) and extra-personal space (EPS), multi-
variate densities are fitted on top of them. The probabilistic
subspace [6], which possesses some smoothing capability,
is used. However, fitting the probabilistic subspace density
on the IPS/EPS is not guaranteed to be optimal. Our dis-
criminant analysis is based only on second-order statistics
and no density fitting is needed.

5. Experimental Results

We perform face recognition using a subset of the
FERET database [7] with200 subjects only. Each subject
has3 images: (a) one taken under controlled lighting condi-
tion with a neutral expression; (b) one taken under the same
lighting condition as above but with different facial expres-
sions (mostly smiling); and (c) one taken under different
lighting condition and mostly with a neutral expression.
Fig. 1 shows some face examples in this database. All im-
ages are pre-processed using zero-mean-unit-variance oper-
ation and manually registered using the eye positions.
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Figure 2. (a) The top 10 discriminant component [1, 3].
(b) The top 10 discriminant component obtain in [9] (with
a pre-smoothing). (c) The top 10 principal components of
the IPS [5]. (d) The top 10 principal components of the EPS
[5]. (e) The top 10 discriminant components of the MEDA
approach.

Expression Illumination
MEDA 66% 72%

IPS 64% 69%
BayesFR 50% 50%
subLDA 55% 59%

LDA 44% 43%

Table 1. A summary of recognition rates obtained by dif-
ferent approaches.

We randomly divide the200 objects into two sets, with
one set for training and the other one for testing. The train-
ing set consists of300 images, with three images belonging
to the100 training subjects. Because we focus on the effects
of two different variations in facial expression and illumina-
tion, for one particular variation, say expression variation,
we use the remaining200 images as the gallery and probe
sets for testing, with the100 images in the category (a) as
the gallery set, and the100 images in the category (b) as the
probe set.

For comparison, we implement the following three dis-
criminant methods besides the proposed MEDA approach:
the LDA approach [1, 3], the ‘subLDA’ approach approach
[9] (PCA followed by LDA), and the Bayesian face recogni-
tion (‘BayesFR’) approach [5]. In addition, we also imple-
ment the ‘IPS’ approach in which the projection vectors are
eigenvectors of the IPS. For each of the tested approaches,
we tune the parameters (e.g. the number of components) to
maximize the recognition performance. Fig. 2 shows the
projection directions obtained in the tested approaches. See
the figure caption for detailed description.

Table 1 lists the recognition rates obtained by all tested
approaches, using the top one match. It is not surprising
that the LDA approach records the worst performance since

the underlying assumptions of LDA are severely violated.
The ‘subLDA’ approach overperforms the LDA approach
which highlights the virtue of eigen-smoothing as a pre-
processing method. The ‘BayesFR’ approach is also better
than the LDA approach, however the improvement is not
very significant possibly because the fitted density is mis-
specified. The ‘IPS’ approach is very competitive, which
confirms the face characteristicsC3, i.e., the IPS character-
izes the ‘shape’ of the face manifold. The proposed MEDA
approach yields the best performance since it performs a
discriminant analysis of the IPS and EPS, with multiple-
exemplar modeling embedded.

6. Conclusion

In this paper, we illustrated the characteristics of face
recognition other than those of regular pattern recogni-
tion. These characteristics inspires the propose multiple-
exemplar discriminant analysis in lieu of regular linear dis-
criminant analysis. The preliminary results are very promis-
ing and we still need to investigate the recognition perfor-
mance on a large-scale database. Finally, even though we
use face recognition as an application, our analysis is quite
general and is applicable to other recognition tasks, espe-
cially those involving very high dimensional patterns.
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