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A Random Walk through Eigenspace

SUMMARY It has been over a decade since the “Eigenfaces”
approach to automatic face recognition, and other appearance-
based methods, made an impression on the computer vision re-
search community and helped spur interest in vision systems be-
ing used to support biometrics and human-computer interface.
In this paper I give a personal view of the original motivation for
the work, some of the strengths and limitation of the approach,
and progress in the years since. Appearance-based approaches
to recognition complement feature- or shape-based approaches,
and a practical face recognition system should have elements of
both. Eigenfaces is not a general approach to recognition, but
rather one tool out of many to be applied and evaluated in the
appropriate context.
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1. Introduction

It is often observed that the human ability to recog-
nize faces is remarkable. Faces are complex visual stim-
uli, not easily described by simple shapes or patterns;
yet people have the ability to recognize familiar faces
at a glance after years of separation. Lest we mar-
vel too much at human performance, it should also be
noted that the inability to recognize a face is some-
times remarkable as well. Quite often we strain to see
the resemblance between a picture (e.g., a driver’s li-
cense photo) and the real person, and sometimes we
are greeted in a friendly, familiar manner by someone
we do not remember ever seeing before. Although face
recognition in humans may be impressive, it is far from
perfect. Yet there is something about the perception of
faces that is very fundamental to the human experience.
Early in life we learn to associate faces with pleasure,
fulfillment, and security. As we get older, the subtleties
of facial expression enhance our explicit communication
in myriad ways. The face is our primary focus of at-
tention in social intercourse; this can be observed in
interaction among animals as well as between humans
and animals. The face, more than any other part of
the body, communicates identity, emotion, race, and
age, and is also quite useful for judging gender, size,
and perhaps even character.

The subject of visual processing of human faces
has received attention from philosophers and scientists
such as Aristotle and Darwin for centuries. The ability
of a person to recognize another person (e.g., a mate,
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a child, or an enemy) is important for many reasons.
Recognition is not only visual; it may occur through a
variety of sensory modalities, including sound, touch,
and even smell. For people, however, the most reliable
and accessible modality for recognition is the sense of
sight. Using vision, a person may be recognized by
one’s face, but also by one’s clothing, hairstyle, gait,
silhouette, hands, etc. People often distinguish ani-
mals not by their faces but by characteristic markings
on their bodies. Similarly, the human face is not the
only, and may not even be the primary, visual charac-
teristic used for person identification. For example, in
a home or office setting, the person’s face may be used
merely in verifying identity, after identity has already
been established based on other factors such as cloth-
ing, hairstyle, or a distinctive moustache. Indeed, the
identification of humans may be viewed as a Bayesian
classification system, with prior probabilities on several
relevant random variables. For example, a parent is
predisposed to recognize his child if, immediately prior
to contact, he sees a school bus drive by and then hears
yelling and familiar light footsteps. Nevertheless, be-
cause faces are so important in human interaction, no
other avenue to person identification is as compelling
as face recognition.

There has been a good deal of investigation into
human face recognition performance, seeking to un-
derstand and characterize the representations and pro-
cesses involved. Face-specific cells (cells that appear to
respond selectively to the presence of faces) have been
found in monkeys and sheep [1]-[3]. Prosopagnosia, the
specific inability to recognize faces, has been identified
and studied in human patients. There have been many
interesting studies in experimental and developmental
psychology that have probed the limits of human face
recognition, suggesting models and constraints on rep-
resentation and processing (e.g., [4]-[6]). Nevertheless,
it is still the case that a thorough understanding of
how humans (and animals) represent, process, and rec-
ognize faces remains a distant goal. Although studies of
face recognition in physiology, neurology, and psychol-
ogy provide insight into the problem of face recognition,
they have yet to provide substantial practical guidance
for computer vision systems in this area.

What does it mean to recognize a face? There are
several aspects of recognizing human identity and pro-
cessing facial information that make the problem some-
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what ill-defined. As mentioned above, recognition of a
person’s identity is not necessarily (and perhaps rarely)
a function of viewing the person’s face in isolation. In
addition, face recognition is closely related to face (and
head and body) detection, face tracking, and facial ex-
pression analysis. Figure 1 shows a few typical engi-
neering approaches to the overall problem. In the first
example, a face is initially detected, then recognized.
In the second example, detection and recognition are
performed in tandem; detection is merely a successful
recognition. In the third example, facial feature track-
ing is performed and expression analysis occurs before
attempting to recognize the normalized (expressionless)
face. There are, of course, many additional variations
possible.

Just as the human task of face recognition is nei-
ther clearly defined nor clearly differentiated from re-
lated tasks, automatic face recognition by computers is
not a single defined problem. Face recognition systems
may be useful in several contexts, for example:

— Given a database of standard face images (e.g.,
criminal mug shots), determine whether or not
a new mug shot is of one of the people in the
database.

— In the same situation, determine possible iden-
tity when the new image originates from a com-
pletely different source (e.g., a surveillance camera
at a bank), with different (and probably unknown)
imaging conditions.

— Identify the new computer user as one of the reg-
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Fig.1 Typical approaches to face recognition.
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istered users in order to allow login access.

— Determine that a face is present in an image, at a
particular location and scale, in order to correctly
color balance the image, or to compress the image

properly.

For the purposes of this paper, “face recognition” and
“face identification” describe the same task!. That is,
given an image of a human face, classify that face as
one of the individuals whose identity is already known
by the system, or perhaps as an unknown face. “Face
detection” means detecting the presence of any face,
regardless of identity. “Face location” is specifying the
2D position (and perhaps orientation) of a face in the
image. “Face tracking” is updating the (2D or 3D) lo-
cation of the face. “Facial feature tracking” is updating
the (2D or 3D) locations, and perhaps the parameter-
ized descriptions, of individual facial features. “Face
pose estimation” is determining the position and orien-
tation (usually 6 degrees of freedom) of a face. “Facial
expression analysis” is computing parametric, and per-
haps also symbolic, descriptions of facial deformations.

2. Recognition Strategies

Object recognition has long been a primary goal of com-
puter vision, and it has turned out to be a very difficult
endeavor. The primary difficulty in attempting to rec-
ognize objects from imagery comes from the immense
variability of object appearance due to several factors,
which are all confounded in the image data. Shape and
reflectance are intrinsic properties of an object, but an
image of the object is a function of several other factors,
including the illumination, the viewpoint of the camera
(or, equivalently, the pose of the object), and various
imaging parameters such as aperture, exposure time,
lens aberrations and sensor spectral response. Object
recognition in computer vision has been dominated by
attempts to infer from images information about ob-
jects that is relatively invariant to these sources of im-
age variation. In the Marr paradigm [7], the prototype
of this approach, the first stage of processing extracts
intrinsic information from images; i.e., image features
such as edges that are likely to be caused by surface
reflectance changes or discontinuities in surface depth
or orientation. The second stage continues to abstract
away from the particular image values, inferring sur-
face properties such as orientation and depth from the
earlier stage. In the final stage, an object is repre-
sented as a three dimensional shape in its own coor-
dinate frame, completely removed from the intensity
values of the original image.

Tt is often useful to distinguish between classifying as
belonging to the general class of objects (“recognition”)
and labeling as a particular member of the class (“identi-
fication”), but we will follow the common terminology and
use the terms interchangeably, with the precise meaning de-
pending on the context.
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This general approach to recognition can be con-
trasted with appearance-based approaches, such as cor-
relation, which matches image data directly. These ap-
proaches tend to be much easier to implement than
methods based on object shape—correlation only re-
quires a stored image of the object, while a full 3D
shape model is very difficult to compute—but they tend
to be very specific to an imaging condition. If the light-
ing, viewpoint, or anything else of significance changes,
the old image template is likely to be useless for recog-
nition.

The idea of using pixel values, rather than fea-
tures that are more invariant to changes in lighting and
other variations in imaging conditions, was counter-
intuitive to many. After all, the whole point of the
Marr paradigm [7] of vision was to abstract away from
raw pixel values to higher level, invariant representa-
tions such as 3D shape. Mumford [8] illustrated some
of these objections with a toy example: recognizing a
widget that comprises a one-dimensional black line with
one white dot somewhere on it. He shows that for this
example the eigenspace is no more efficient than the
image space, and a feature-based approach (where the
feature is the position of the white dot) is a much sim-
pler solution. This example, however, misses the point
of the eigenfaces approach, which can be seen in the
following counter-example.

Imagine starting with images of two different faces.
They would typically differ in the precise location of fa-
cial features (eyes, nostrils, mouth corners, etc.) and
in grayscale values throughout. Now warp one image
so that all the extractable features of that face line up
with those of the first face. (Warping consists of ap-
plying a two-dimensional motion vector to every pixel
in the image and interpolating properly to avoid blank
areas and aliasing.) The eyes line up, the noses line
up, the mouth corners line up, etc. The feature-based
description is now identical for both images. Do the
images now look like the same person? Not at all—in
many (perhaps most) cases the warped image is per-
ceived as only slightly different from its original. Here is
a case where an appearance-based approach will surely
outperform a simple feature-based approach.

Soon after this toy example was introduced,
Brunelli and Poggio[9] investigated generic feature-
based and template-based approaches to face recogni-
tion and concluded that the template-based approach
worked better, at least for their particular database of
frontal view face images. Of course, both of these ex-
amples are extreme cases. A face is nothing like a black
line with a white dot. Nor is the variation in facial fea-
ture locations and feature descriptions so small as to be
insignificant. Clearly, both geometric and photometric
information can be useful in recognizing faces.

Both strategies—feature-based methods and appea-
rance-based methods—have more practical versions
than these simple characterizations may indicate. In

IEICE TRANS. INF. & SYST., VOL.E84-D, NO.12 DECEMBER 2001

the feature-based approach it is not necessary to go all
the way from image features to 3D shape. Alterna-
tively, features can be compiled from 3D models of the
known objects, so that the task is reduced to matching
computed features with expected features. This ap-
proach has led to several strategies for selecting good
features and performing efficient feature matching (e.g.,
[10] and [11]). Similarly, appearance-based approaches
are not constrained to matching raw image with a sin-
gle raw image template. Several techniques attempt to
first eliminate some of the expected variation (e.g., in
scale, orientation, and overall brightness level) before
matching occurs, or to use multiple image templates
for a given object.

In the past decade, learning has become a very
significant issue in visual recognition. Rather than con-
structing 3D shape models or expected features man-
ually, it would be a beneficial for a system to learn
the models automatically. And rather than enumer-
ating all the conditions that require new templates, it
would be helpful for the system to analyze the imaging
conditions to decide on optimal correlation templates,
or to learn from a collection of images what attributes
of appearance will be most effective in recognition. It
is likely that no recognition system of any reasonable
complexity—that is, no system that solves a non-trivial
recognition problem—will work without learning as a
central component. For learning to be effective, enough
data must be acquired to allow a system to account for
the various components of the images, those intrinsic
to the object and otherwise.

The concept of robustness, i.e., stability in the
presence of various types of noise and a reasonable
quantity of outliers, has also become very important in
computer vision in the past decade or more. System
performance (e.g., recognition rate) should decrease
gracefully as the amount of noise increases. Noise can
come from many sources: thermal noise in the imaging
process, noise added in transmission and storage, lens
distortion, unexpected markings on an object’s surface,
occlusions, etc. An object recognition algorithm that
requires perfect images will not work in practice, and
the ability to characterize a system’s performance in
the presence of noise is vital.

Learning and robustness must also be balanced
with practical speed requirements. Computational
complexity can also limit the usefulness. Whether
the task is offline, real-time, or the intermediate
“interactive-time” (with a human in the loop), con-
straints on processing time are always an issue in prac-
tice.

Face recognition is an example of object recogni-
tion. As with most recognition tasks, the source images
comprise pixel values that are influenced by several fac-
tors such as shape, reflectance, pose, occlusion, and il-
lumination. The human face is an extremely complex
object, with both rigid and non-rigid components that
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vary over time, sometimes quite rapidly. The object is
covered with skin, a non-uniformly textured material
that is difficult to model either geometrically or photo-
metrically. Skin can change color quickly when one is
embarrassed or becomes warm or cold. The reflectance
properties of the skin can also change rather quickly,
as perspiration level changes. The face is highly de-
formable, and facial expressions reveal a wide variety
of possible configurations. Other time-varying changes
include the growth and removal of facial hair, wrinkles
and sagging of the skin brought about by aging, skin
blemishes, and changes in skin color and texture caused
by exposure to sun. Add to that the many common
artifact-related changes, such as cuts and scrapes, ban-
dages, makeup, jewelry and piercings, and it is quite
clear that the human face is much more difficult to
model (and thus recognize) than most industrial parts.

Partly because of this difficulty, face recognition
has been considered a challenging problem in computer
vision for some time, and the amount of effort in the
research community devoted to this topic has increased
significantly over the years.

3. A Brief History of Automated Face Recog-
nition, Part One

Attempts to automate human face recognition by com-
puters began in the late 1960s and early 1970s. Bled-
soe [12] developed a system to automatically classify
features extracted by human operators from face im-
ages. Kelly[13] and Kanade[14] built probably the
first fully automated face recognition systems, extract-
ing feature measurements from digitized images and
classifying the feature vector. Harmon et al.[15], Gor-
don [16] and others have investigated using facial pro-
files (side views). Yuille et al.[17] and others have
used deformable templates, parameterized models of
features and sets of features with given spatial relations.
Various approaches using neural networks (e.g., [18],
[19]) have attempted to move away from purely feature-
based methods. Moving beyond typical intensity im-
ages, Lapresté [20], Lee and Milios [21], Gordon [22] and
others used range data to build and match models of
faces and face features.

By the late 1980s, there had been several feature-
based approaches to face recognition. For object recog-
nition in general, the most common approach was to
extract features from objects, build some sort of model
from these features, and perform recognition by match-
ing feature sets. Features, and the geometrical rela-
tionships among them, are stable under varying illu-
mination conditions and pose—if they can be reliably
calculated. However, it is often the case that they can-
not, so the problem became more and more complex.
Indexing schemes and other techniques were developed
to cope with the inevitable noisy, spurious, and missing
features.
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In late 1987, as Sandy Pentland and I began to
think about face recognition, we looked at the existing
feature-based approaches and wondered if they were
erring by discarding most of the image data. If ex-
tracting local features was at one extreme, what might
be an effective way of experimenting with the other
extreme, i.e., working with a global, holistic face rep-
resentation? We began to build on work by Sirovich
and Kirby [23] on coding face images using Principal
Components Analysis (PCA). Around the same time,
Burt [24] was developing a system for face recognition
using pyramids, multiresolution face representations.
The era of appearance-based approaches to face recog-
nition had begun.

The “Eigenfaces” approach, based on PCA, was
never intended to be the definitive solution to face
recognition. Rather, it was an attempt to re-introduce
the use of information “between the features”; that is,
it was an attempt to swing back the pendulum some-
what to balance the attention to isolated features.

4. Image Space

Appearance-based approaches to vision often start with
the concept of image space. A two-dimensional image
I(x,y) may be viewed as a point (or vector) in a very
high dimensional space, called image space, where each
coordinate of the space corresponds to a sample (pixel)
of the image. For example, an image with 32 rows and
32 columns describes a point in a 1024-dimensional im-
age space. In general, an image of r rows and ¢ columns
describes a point in N-dimensional image space, where
N = rc. This representation obfuscates the neighbor-
hood relationship (distance in the image plane) inher-
ent in a two-dimensional image. That is, rearranging
the pixels in the image (and changing neighborhood re-
lationships) will have no practical effect on its image
space representation, as long as all other images are
identically rearranged. Spatial operations such as edge
detection, linear filtering, and translation are not local
operations in image space. A 3 x 3 spatial image filter
is not an efficient operation in image space; it is ac-
complished by multiplication with a very large, sparse
N x N matrix. On the other hand, the image space
representation helps to clarify the relationships among
collections of images.

With this image representation, the image becomes
a very high dimensional “feature,” and so one can use
traditional feature-based methods in recognition. So,
merely by considering an image as a vector, feature-
based methods can be used to accomplish appearance-
based recognition; that is, operations typically per-
formed on feature vectors, such as clustering and dis-
tance metrics, can be performed on images directly.
Of course, the high dimensionality of the image space
makes many feature-based operations implausible, so
they cannot be applied without some thought towards
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efficiency. As image resolution increases, so does the
dimensionality of the image space. At the limit, a con-
tinuous image maps to an infinite-dimensional image
space. Fortunately, many key calculations scale with
the number of sample images rather than the dimen-
sionality of the image space, allowing for efficiency even
with relatively high resolution imagery.

If an image of an object is a point in image space,
a collection of M images gives rise to M points in im-
age space; these may be considered as samples of a
probability distribution. One can imagine that all pos-
sible images of the object (under all lighting conditions,
scales, etc.) define a manifold within the image space.
How large is image space, and how large might a mani-
fold be for a given object? To get an intuitive estimate
of the vastness of image space, consider a tiny 8 x 8 bi-
nary (one bit) image. The number of image points (the
number of distinct images) in this image space is 2%4.
If a very fast computer could evaluate one billion im-
ages per second, it would take almost 600years to ex-
haustively evaluate the space. For grayscale and color
images of reasonable sizes, the corresponding numbers
are unfathomably large. It is clear that recognition by
exhaustively enumerating or searching image space is
impossible.

This representation brings up a number of ques-
tions relevant to appearance-based object recognition.
What is the relationship between points in image space
that correspond to all images of a particular object,
such as a human face? Is it possible to efficiently char-
acterize this subset of all possible images? Can this
subset be learned from a set of sample training images?
What is the “shape” of this subset of image space?

Consider an image of an object to be recognized.
This image I(r,c) is a point x in image space, or, equiv-
alently, a feature in a high-dimensional feature space.
The image pixel I(r, ¢) can be mapped to the ith com-
ponent of the image point (z;) by ¢ = r - width + c.
A straightforward pattern classification approach to
recognition involves determining the minimal distance
between a new face image x and pre-existing face classes
Z. That is, given k prototype images of known objects,
find the prototype Z that satisfies

mind(z,Z;), i=1,...,k

A common distance metric is merely the Euclidian dis-
tance in the feature space,

d(r1,22) = |lz1 — 22|

= \/(xl —x2)T (21 — 22) =

This is the L2 norm, the mean squared difference be-
tween the images. Other metrics, such as the L1 norm,
or other versions of the Minkowski metric, may also be
used to define distance. However, these are relatively
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expensive to compute. Correlation is a more efficient
operator, and under certain conditions maximizing cor-
relation is equivalent to minimizing the Euclidian dis-
tance, so it is often used as an approximate similarity
metric.

If all images of an object clustered around a point
(or a small number of points) in image space, and if
this cluster were well separated from other object clus-
ters, object recognition—face recognition, in this case—
would be relatively straightforward. In this case, a
simple metric such as Euclidian distance or correlation
would work just fine. Still, it would not be terribly ef-
ficient, especially with large images and many objects
(known faces). The “Eigenfaces” approach was devel-
oped in an attempt to improve on both performance
and efficiency.

5. PCA and Eigenfaces

Considering the vastness of image space, it seems rea-
sonable to begin with the following presuppositions:

(1) Images of a particular object (such as an individ-
ual’s face), under various transformations, occupy
a relatively small but distinct region of the image
space.

(2) Different objects (different faces) occupy different
regions of image space.

(3) Whole classes of objects (all faces under various
transformations) occupy a still relatively small but
distinct region of the image space.

These lead to the following questions about face images:

(1) What is the shape and dimensionality of an indi-
vidual’s “face space,” and how can it be succinctly
modeled and used in recognition?

(2) What is the shape and dimensionality of the com-
plete face space, and how can it be succinctly mod-
eled and used in recognition?

(3) Within the larger space, are the individual spaces
separated enough to allow for reliable classification
among individuals?

(4) Is the complete face space distinct enough to allow
for reliable face/non-face classification?

The Eigenfaces framework [25]-[27] provided a conve-
nient start to investigating these and related issues. Let
us review the basic steps in an eigenfaces-based recogni-
tion scheme. Principle Component Analysis (PCA) [28]
provides a method to efficiently represent a collection
of sample points, reducing the dimensionality of the
description by projecting the points onto the principal
axes, an orthonormal set of axes pointing in the direc-
tions of maximum covariance in the data. PCA min-
imizes the mean squared projection error for a given
number of dimensions (axes), and provides a measure
of importance (in terms of total projection error) for
each axis. Transforming a point to the new space is a
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linear transformation.
Let a set of face images {z;} of several people be
represented as a matrix X, where

X =[x122m3 - TM]

and X is of dimension N x M, where N is the number
of pixels in an image, the dimension of the image space
which contains {z;}. The difference from the average
face image (the sample mean) T is the matrix X',

X'=[(z1 —7)(22 —T)(x3 = F) -~ (201 — T)]

_ [xllxglxgl xMI]

Principal Components Analysis seeks a set of M — 1
orthogonal vectors, e;, which best describes the distri-
bution of the input data in a least-squares sense, i.e.,
the Euclidian projection error is minimized. The typi-
cal method of computing the principal components is to
find the eigenvectors of the covariance matrix C, where

M
_ 1 0T I 5T
C—E ey =X'X
=1

is N x N. This will normally be a huge matrix, and a
full eigenvector calculation is impractical. Fortunately,
there are only M — 1 non-zero eigenvalues, and they
can be computed more efficiently with an M x M eigen-
vector calculation. It is easy to show the relationship
between the two. The eigenvectors e; and eigenvalues
A; of C are such that

C’ei = )\1'61'

These are related to the eigenvectors é; and eigenvec-
tors p1; of the matrix D = X’7 X’ in the following way:

Dé; = p;é;

XTX'e; = pié;
XXX = i X'e;
CX'¢; = i X'é;
C(X'é;) = pa(X'es)
Ce; = \e;

showing that the eigenvectors and eigenvalues of C' can
be computed as

€; = (X/él)
Ai = Hi

In other words, the eigenvectors of the (large) matrix
C are equal to the eigenvectors of the much smaller
matrix D, premultiplied by the matrix X’. The non-
zero eigenvalues of C' are equal to the eigenvalues of
D.

Once the eigenvectors of C' are found, they are
sorted according to their corresponding eigenvalues; a
larger eigenvalue mean that more of the variance in the
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data is captured by the eigenvector. Part of the effi-
ciency of the Figenfaces approach comes from the next
step, which is to eliminate all but the “best” k eigenvec-
tors (those with the highest k eigenvalues). From there
on, the “face space,” spanned by the top k eigenvectors,
is the feature space for recognition. The eigenvectors
are merely linear combinations of the images from the
original data set. Because they appear as somewhat
ghostly faces, as shown in Fig. 2, they are called Eigen-
faces.

PCA has been used in pattern recognition and clas-
sification systems for decades. Sirovich and Kirby [23],
[29] used PCA to form eigenpictures to compress face
images, a task for which low mean-squared error re-
production is important. Turk and Pentland [25] used
PCA for representing, detecting, and recognizing faces.
Nayar and Murase [30] used a similar eigenspace in a
parametric representation that encoded pose and illu-
mination variation, as well as identity. Finlayson, et
al. [31] extended grayscale eigenfaces to color images.
Craw, et al. [32], Moghaddam [33], Lanitis et al. [34] and
others have subsequently used eigenfaces as one com-
ponent of a larger system for recognizing faces.

The original eigenface recognition scheme involves
two main parts, creating the eigenspace and recognition
using eigenfaces. The first part (described above) is an
off-line initialization procedure; that is, it is performed
initially and only needs to be recomputed if the training
set changes. The eigenfaces are constructed from an
initial set of face images (the training set) by applying
PCA to the image ensemble, after first subtracting the
mean image. The output is a set of eigenfaces and
their corresponding eigenvalues. Only the eigenfaces
corresponding to the top M eigenvalues are kept—these
define the face space. For each individual in the training
set, the average face image is calculated (if there is more
than one instance of that individual), and this image is
projected into the face space as the individual’s class
prototype.

The second part comprises the ongoing recognition
procedure. When a new image is input to the system,
the mean image is subtracted and the result is pro-
jected into the face space. This produces a value for
each eigenface; together, the values comprise the im-
age’s eigenface descriptors. The Euclidian distance be-
tween the new image and its projection into face space
is called the “distance from face space” (DFFS), the re-
construction error. If the DFFS is above a given thresh-
old, the image is rejected as not a face—in other words,
it is not well enough represented by the eigenfaces to
be deemed a possible face of interest.

If the DFFS is sufficiently small, then the image
is classified as a face. If the projection into face space
is if sufficiently close to one of the known face classes
(by some metric such as Euclidian distance) then it is
recognized as the corresponding individual. Otherwise,
it is considered as an unknown face (and possibly added
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Fig. 2

to the training set).
The basic Eigenfaces technique raises a number of
issues, such as:

— How to select k, the number of Eigenfaces to keep

— How to efficiently update the face space when new
images are added to the data set

— How best to represent classes and perform classifi-
cation within the face space

— How to separate intraclass and interclass variations
in the initial calculation of face space

— How to generalize from a limited set of face images
and imaging conditions

There are obvious shortcomings of the basic Eigen-
faces technique. For example, significant variation in
scale, orientation, translation, and lighting will cause it
to fail. Several appearance-based recognition methods
first scale the input image to match the scale of the
object in a prototype template image. While this is
usually an effective approximation, one must consider
that scaling an image is equivalent to changing a cam-
era’s focal length, or performing an optical zoom, but
it is not equivalent to moving a camera closer to the ob-

The average face image = and a set of eigenface images. The eigenfaces are real-
valued images scaled so that a value of zero displays as a medium gray, negative values
are dark, and positive values are bright.

ject. A translated image has introduce occlusion, while
a zoomed image does not. In addition, the reflectance is
different for a translated image because of a slightly dif-
ferent angle of incidence. For an object with significant
depth and nearby light sources, approximating transla-
tion with an image zoom may not work well. In other
words, an image from the database of a face taken from
one meter away will not perfectly match another image
of the same face taken five meters away and zoomed in
an appropriate amount.

6. A Brief History of Automated Face Recog-
nition, Part Two

Despite its shortcomings, there are a number of attrac-
tive aspects to Eigenface methods, especially including
the progress of the past decade. Since Burt [24], Turk
and Pentland [26], Craw, et al. [32] and others began to
use appearance-based methods in detecting and recog-
nizing faces, there has been a voluminous amount of
work on the topic, motivated by several factors. Appli-
cations of computer vision in human-computer interac-
tion (HCI), biometrics, and image and video database



TURK: A RANDOM WALK THROUGH EIGENSPACE

systems have spurred interest in face recognition (as
well as human gesture recognition and activity analy-
sis). There are currently several companies that market
face recognition systems for a variety of biometric appli-
cations, such as user authentication for ATM machines,
door access to secure areas, and computer login, as well
as a variety of HCI/entertainment applications, such
as computer games, videoconferencing with computer-
generated avatars, and direct control of animated char-
acters (digital puppeteering). Conferences now exist,
which are well attended, devoted to face recognition
and related topics, and several good survey papers are
available that track the various noteworthy results. The
state of the art in face recognition is exemplified both by
the commercial systems, on which much effort is spent
to make them work in realistic imaging situations, and
by various research groups exploring new techniques
and better approaches to old techniques.

The Eigenface approach, as originally articulated,
intentionally threw away all feature-based information
in order to explore the boundaries of an appearance-
based approach to recognition. Subsequent work by
Moghaddam [33], Lanitis et al.[35] and others have
moved toward merging the two approaches, with pre-
dictably better results than either approach alone. The
original Eigenface framework did not explicitly account
for variations in lighting, scale, viewing angle, facial
expressions, or any of the other many ways facial im-
ages of an individual may change. The expectation
was that the training set would contain enough vari-
ation so that it would be modeled in the Eigenfaces.
Subsequent work has make progress in characterizing
and accounting for these variations (e.g., [36] and [37])
while merging the best aspects of both feature-based
and appearance-based approaches.

A few approaches in particular are significant in
terms of their timing and impact. Craw et al. [32] were
among the first to combine processing face shape (two
dimensional shape, as defined by feature locations) with
eigenface-based recognition. They normalized the face
images geometrically based on 34 face landmarks in
an attempt to isolate the photometric (intensity) pro-
cessing from geometric factors. Von der Malsburg and
his colleagues [38], [39] introduced several systems based
on elastic graph matching, which utilizes a hybrid ap-
proach where local grayscale information is combined
with global feature structure. Cootes and Taylor and
colleagues [40] presented a unified approach to combin-
ing local and global information, using flexible shape
models to explicitly model both shape and intensity.

Recent results in appearance-based recognition ap-
plied to face recognition and other tasks include more
sophisticated learning methods (e.g., [41]), warping and
morphing face images [42], [43] to accommodate a wider
range of face poses, including previously unseen poses,
explicitly dealing with issues of robustness [44], and bet-
ter methods of modeling interclass and intraclass vari-
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ations and performing classification [45]. Independent
Component Analysis (ICA), for example, is a general-
ization of PCA that separates the high-order dependen-
cies in the input, in addition to the second-order depen-
dencies that PCA encodes [46]. The original eigenface
method used a single representation and transforma-
tion for all face images, whether they originated from
one individual or many; it also used the simplest tech-
niques possible, nearest-neighbor Euclidian distance,
for classification in the face space. Subsequent work
has improved significantly on these first steps. Moghad-
dam et al.[33] developed a probabilistic matching al-
gorithm that uses a Bayesian approach to separately
model both interclass and intraclass distributions. This
improves on the implicit assumption that the images
of all individuals have a similar distribution. Penev
and Sirovich [47] investigated the dimensionality of face
space, concluding that for very large databases, at least
200 eigenfaces are needed to sufficiently capture global
variations such as lighting, small scale and pose vari-
ations, race, and sex. In addition, at least twice that
many are necessary for minor, identity-distinguishing
details such as exact eyebrow, nose, or eye shape.

7. Conclusions

Appearance-based approaches to recognition have
made a comeback from the early days of computer
vision research, and the Eigenfaces approach to face
recognition may have helped this come about. Clearly,
though, face recognition is far from being a solved prob-
lem, whether by Eigenfaces or any other technique. The
progress during the past decade on face recognition has
been encouraging, although one must still refrain from
assuming that the excellent recognition rates from any
given experiment can be repeated in different circum-
stances. They usually cannot.

Eigenface (and other appearance-based) ap-
proaches must be coupled with feature- or shape-based
approaches to recognition in order to build systems that
will be robust and will scale to real-world environments.
Because many imaging variations (lighting, scale, orien-
tation, etc.) have an approximately linear effect when
they are small, linear methods can work, but in very
limited domains. Eigenfaces are not a general approach
to recognition, but one tool out of many to be applied
and evaluated in context. The ongoing challenge is to
find the right set of tools to be applied at the appropri-
ate times.

In addition to face recognition, significant progress
is being made in related areas such as face detection,
face tracking, face pose estimation, facial expression
analysis, and facial animation. The “holy grail” of face
processing is a system that can detect, track, model,
recognize, analyze, and animate faces. Although we are
not there yet, current progress gives us much reason
to be optimistic. The future of face processing looks
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promising.
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