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Abstract

Within the past decade, major advances have occurred in face recognition. Many
systems have emerged that are capable of achieving recognition rates in excess of 90%
accuracy under controlled conditions. In field settings, face images are subject to a
wide range of variation that includes viewing, illumination, occlusion, facial expres-
sion, time delay between acquisition of gallery and probe images, and individual dif-
ferences. The scalability of face recognition systems to such factors is not well under-
stood. We quantified the influence of these factors, individually and in combination, on
face recognition algorithms that included Eigenfaces, Fisherfaces, and FaceIt. Image
data consisted of over 37,000 images from 3 publicly available databases that system-
atically vary in multiple factors individually and in combination: CMU PIE, Cohn-
Kanade, and AR databases. Our main findings are: 1) pose variations beyond30Æ

head rotation substantially depressed recognition rate, 2) time delay: pictures taken on
different days but under the same pose and lighting condition produced a consistent re-
duction in recognition rate, 3) with some notable exceptions, algorithms were robust to
variation in facial expression, but not to occlusion. We also found small but significant
differences related to gender, which suggests that greater attention be paid to individual
differences in future research. Algorithm performance across a range of conditions was
higher for women than for men.
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1 Introduction

Within the past decade, major advances have occurred in face recognition. A large
number of systems has emerged that are capable of achieving recognition rates of
greater than 90% under controlled conditions. Successful application under real world
conditions remains a challenge though. In field settings, face images are subject to a
wide range of variations. These include pose or view angle, illumination, occlusion, fa-
cial expression, time delay between image acquisition, and individual differences. The
scalability of face recognition systems to such factors is not well understood. Most
research has been limited to frontal views obtained under standardized illumination on
the same day with absence of occlusion and with neutral facial expression or slight
smile. Relatively few studies, e.g., [22] have tested face recognition in the context
of multiple views or explored related problems, e.g., [4]. Individual differences in
subjects, such as whether accuracy is higher for one or another ethnic group, to our
knowledge have not been studied.

Two notable exceptions to the homogeneity of testing conditions are the FERET
competition and related studies [23] and the Facial Recognition Vendor Test [3]. In
the period between August 1993 and July 1996 the FERET program collected 14,126
images from 1,199 individuals. For each subject two frontal views were recorded (sets
fa and fb), where a different facial expression was requested for the fb image. For
a subset of the subjects a third frontal image was taken using a different camera and
under different illumination (setfc). A number of subjects were brought back at later
dates to record “duplicate” images. For theduplicate I set the images were taken
between 0 and 1,031 days after the initial recording (mean= 251 days). A subset of
this set, theduplicate II set, contains images of subjects who returned between 540
and 1,031 days after the initial recording (mean= 627 days). In the final evaluation
in 1996/1997 ten different algorithms, developed mostly by university research labs
were evaluated. The test identified three algorithms as top performers: PCA-difference
space from MIT [19], Fisher linear discriminant from the University of Maryland [33]
and the Dynamic Link Architecture from the University of Southern California [31].
Furthermore the test provided a ranking of the difficulty of the different datasets in the
FERET database. It was found that thefb set was the easiest and the duplicate II set the
hardest, with the performance on thefc and duplicate I sets ranging in between these
two.

One of the main goals of the Facial Recognition Vendor Test was the assessment
of the capabilities of commercially available facial recognition systems. In the end
three vendors, Visionics Corp., Lau Technologies and C-Vis completed the required
tests in the given time. The imagery used in the evaluation spans a wide range of con-
ditions: compression, distance, expression, illumination, media, pose, resolution and
time. Pose was measured by asking subjects to rotate their head which was inexact.
Subjects varied in their compliance and changes in expression often coocurred with
head rotation. The pose variation was limited to a maximum of about60Æ. The most
difficult conditions were temporal (11 to 13 months difference between recordings),
pose and especially distance (change from 1.5m up to 5m). The top performing algo-
rithm had few problems with the categories expression (regular vs. alternate), media
(digital images vs. 35mm film), resolution (decreasing face sizes) and compression (up

1



to a factor of30 : 1). The illumination condition proved to be more difficult, especially
when comparing subjects under indoor mug shot lighting with subjects recorded out-
side. In the majority of the experiments Visionics’ FaceIt outperformed the other two
vendors.

For faces to be a useful biometric, facial features used for face recognition should
remain invariant to factors unrelated to person identity that modify face image appear-
ance. While theory and some data suggest that many of these factors are difficult to
handle, it is not clear where exactly the difficulties lie and what their causes may be.
In this paper, we quantify the exact difficulties in face recognition as a function of
variation in factors that influence face image acquisition and individual differences in
subjects. We focus on six factors:

1. Viewing angle. The face has a 3D shape. As the camera pose changes, the
appearance of the face can change due to a) projective deformation, which leads
to stretching and foreshortening of different part of face, and b) self occlusion
and dis-occlusion of parts of the face. If we have seen faces only from one
viewing angle, in general it is difficult to recognize them from disparate angles.
We investigate the functional relation between viewing angle and recognition
and whether some viewing angles afford better or worse generalization to other
viewing angles. To investigate these issues we use the CMU PIE database which
densely samples viewing angles over an arc of180Æ in the horizontal plane (from
full profile left through frontal face to full profile right).

2. Illumination. Just as with pose variation, illumination variation is inevitable.
Ambient lighting changes greatly within and between days and among indoor
and outdoor environments. Due to the 3D shape of the face, direct lighting source
can caste strong shadows and shading that accentuate or diminish certain facial
features. Previous findings in the Facial Recognition Vendor Test suggest that
illumination changes degrade recognition. However this finding is difficult to
interpret. The effect of the illumination change in images can be due to either
of two factors, 1) the inherent amount of light reflected off of the skin and 2)
the non-linear adjustment in internal camera control, such as gamma correction,
contrast, and exposure settings. Both can have major effects on facial appear-
ance. While the latter is less noticeable for humans, it can cause major problems
for computer vision. These factors were confounded in the Facial Recognition
Vendor Test. In our study, we will focus on reflectance from the skin, which we
refer to as illumination, using the well sampled illumination portion of the PIE
database. We evaluate main effects and interactions between illumination and
viewing angle and other factors.

3. Expression. The face is a non-rigid object. Facial expression of emotion and
paralinguistic communication along with speech acts can and do produce large
variation in facial appearance. The number of possible changes in facial ex-
pression is reportedly in the thousands. The influence of facial expression on
recognition is not well understood. Previous research has been limited primarily
to neutral expressions and slight smiles. Because facial expression affects the
apparent geometrical shape and position of the facial features, the influence on
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recognition may be greater for geometry based algorithms than for holistic algo-
rithms. We use the Cohn-Kanade facial expression database to investigate these
issues. This database samples well characterized emotions and expressions. We
will ask the questions: 1) does facial expression pose a problem for most facial
recognition system and 2) if so, what are the challenging expressions? We inves-
tigate the conditions under which facial expression may either impair or improve
face recognition.

4. Occlusion. The face may be occluded by other objects in the scene or by sun-
glasses or other paraphernalia. Occlusion may be unintentional or intentional.
Under some conditions subjects may be motivated to thwart recognition efforts
by covering portions of their face. Since in many situations, our goal is to recog-
nize non- or even un-cooperating subjects, we would like to know how difficult
it is to recognize people given certain quantitative and qualitative changes in oc-
clusion. We examine under which conditions such efforts may or may not be
successful. To investigate occlusion we use the AR database, which has two
different types of facial occlusion, one for the eyes, and one for the lower face.

5. Time delay. Faces change over time. There are changes in hair style, makeup,
muscle tension and appearance of the skin, presence or absence of facial hair,
glasses, or facial jewelry, and over longer periods effects related to aging. We use
the AR database to investigate the effects of time delay and interactions between
time delay and expression, illumination, and occlusion.

6. Individual factors. Algorithms may be more or less sensitive for men or women
or members of different ethnic groups. We focus on the differences between men
and women with respect to algorithm performance. Intuitively, females might be
harder to recognize because of greater use and day-to-day variation in makeup or
in structural facial features. Male and female faces differ in both local features
and in shape [5]. Men’s faces on average have thicker eyebrows and greater tex-
ture in the beard region. In women’s faces, the distance between the eyes and
brows is greater, the protuberance of the nose smaller, and the chin narrower
than in men [5]. People readily distinguish male from female faces using these
and other differences (e.g., hair style), and connectionist modeling has yielded
similar results [6, 17]. Little is known, however, about the sensitivity of face
identification algorithms to differences between men’s and women’s faces. The
relative proportions of men and women in training samples are seldom reported,
and identification results typically fail to mention whether algorithms are more
or less accurate for one sex or the other. Other factors that may influence iden-
tification, such as differences in face shape between individuals of European,
Asian, and African ancestry [5, 8], have similarly been ignored in past research.
To address this issue, we will use both the AR database, which has well balanced
proportions of men and women in the database, and FERET, which has a much
large number of subjects.

This paper is organized as follows. In Section 2, we describe the three databases,
containing 37,954 images, that form the basis of our experiments. In Section 3 we
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describe face recognition systems used in this report: (1) Eigenfaces, similar to Turk
and Pentland [29], which provides an essential benchmark, (2) Fisherfaces using Fisher
linear discriminants similar to Belhumeur et al. [2], and (3) FaceIt, a leading commer-
cially available face recognition system from Visionics. Eigen- and Fisherfaces are
widely known and present common benchmarks for evaluating performance of other
face recognition algorithms. FaceIt was the system with the best overall performance
in the Facial Recognition Vendor Test and serves as an example of state-of-the-art
performance in face recognition. In Section 4 we present results of each experiment.
Conclusions and discussion are presented in Section 5.

2 Description of Databases

2.1 Overview

We use images from three publicly available databases in our evaluation. Table 1 gives
an overview of the CMU PIE, Cohn-Kanade and the AR database.

CMU PIE Cohn-Kanade AR DB
Subjects 68 105 116
Poses 13 1 1
Illuminations 43 3 3
Expressions 3 6 3
Occlusion 0 0 2
Sessions 1 1 2
Number of images 41,368 1424 3288

Table 1:Overview of the databases used in the evaluation.

2.2 CMU Pose Illumination Expression (PIE) database

The CMU PIE database contains a total of 41,368 images taken from 68 individuals
[27]. The subjects were imaged in the CMU 3D Room [13] using a set of 13 synchro-
nized high-quality color cameras and 21 flashes. The resulting images are 640x480
in size, with 24-bit color resolution. The setup of the room with the camera and flash
locations is shown in Figure 1. The images of a subject across all 13 poses is shown in
Figure 2.

Each subject was recorded under 4 conditions:

1. Expression: the subjects were asked to display a neutral face, to smile, and to
close their eyes in order to simulate a blink. The images of all 13 cameras are
available in the database.

2. Illumination 1: 21 flashes were individually turned on in a rapid sequence. In
the first setting the images were captured with the room lights on. Each camera
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recorded 24 images, 2 with no flashes, 21 with one flash firing and then a final
image with no flashes. Only the output of three cameras (frontal, three-quarter
and profile view) was kept.

3. Illumination 2: the procedure for theillumination 1was repeated with the room
lights off. The output of all 13 cameras was retained in the database. Combining
the two illumination settings, a total of 43 different illumination conditions were
recorded.

4. Talking: subjects counted starting at 1. 2 seconds (60 frames) of them talking
were recorded using 3 cameras as above (again frontal, three-quarter and profile
view).

Figure 3 shows examples for 12 different illumination conditions across three poses.

10 of 13
cameras

17 of 21
flashes

(a) Camera positions (b) Flash positions

Figure 1:Pictures of the CMU 3D room setup. 10 of the 13 cameras are indicated in (a). (b)
shows 17 of the 21 flash locations.

c07

c27

c22 c02 c37 c05

c25 c09 c31

c29 c11 c14 c34

Figure 2:Pose variation in the PIE database [27]. The pose varies from full left profile (c34)
to full frontal (c27) and on to full right profile (c22). The 9 cameras in the horizontal sweep are
each separated by about22:5

Æ. The 4 other cameras include 1 above (c09) and 1 below (c07) the
central camera, and 2 in the corners of the room (c25 and c31), typical locations for surveillance
cameras.
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f02f04 f18 f10 f06 f08 f11 f12 f21 f13 f16f15

c27

c11

c34

Figure 3:Illumination variation in the PIE database. The figure shows twelve flash conditions
across three head poses.

2.3 Cohn-Kanade AU-Coded Facial Expression Database

This is a publicly available database from Carnegie Mellon University [12]. It contains
image sequences of facial expression from men and women of varying ethnic back-
grounds. The camera orientation is frontal. Small head motion is present. Image size
is 640 by 480 pixels with 8-bit gray scale resolution. There are three variations in light-
ing: ambient lighting, single-high-intensity lamp, and dual high-intensity lamps with
reflective umbrellas. Facial expressions are coded using the Facial Action Coding Sys-
tem [7] and also assigned emotion-specified labels. For the current study, we selected a
total of 1424 images from 105 subjects. Emotion expressions included happy, surprise,
anger, disgust, fear, and sadness. Examples for the different expressions are shown in
Figure 4.

Figure 4:Cohn-Kanade AU-Coded Facial Expression database. Examples of emotion-specified
expressions from image sequences.

2.4 AR Face Database

The publicly available AR database was collected at the Computer Vision Center in
Barcelona [18]. It contains images of 116 individuals (63 males and 53 females). The
images are 768x576 pixels in size with 24-bit color resolution. The subjects were
recorded twice at a 2-week interval. During each session 13 conditions with varying
facial expressions, illumination, and occlusion were captured. Figure 5 shows an ex-
ample for each condition.
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01 02 03 04 05 06 07

08 09 10 11 12 13

Figure 5:AR database. The conditions are: (1) neutral, (2) smile, (3) anger, (4) scream, (5) left
light on, (6) right light on, (7) both lights on, (8) sun glasses, (9) sun glasses/left light (10) sun
glasses/right light, (11) scarf, (12) scarf/left light, (13) scarf/right light

3 Face Recognition Algorithms

Most of the current face recognition algorithms can be categorized into two classes,
image template based or geometry feature-based. The template based methods [1]
compute the correlation between a face and one or more model templates to estimate
the face identity. Statistical tools such as Support Vector Machines (SVM) [30, 20],
Linear Discriminant Analysis (LDA) [2], Principal Component Analysis (PCA) [28,
29], Kernel Methods [26, 16], and Neural Networks [25, 11, 15] have been used to
construct a suitable set of face templates. While these templates can be viewed as
features, they mostly capture global features of the face images. Facial occlusion is
often difficult to handle in these approaches.

The geometry feature-based methods analyze explicit local facial features, and their
geometric relationships. Cootes et al. have presented an active shape model in [14] ex-
tending the approach by Yuille [32].Wiskott et al. developed an elastic Bunch graph
matching algorithm for face recognition in [31]. Penev et. al [21] developed PCA into
Local Feature Analysis (LFA). This technique is the basis for one of the most success-
ful commercial face recognition systems, FaceIt. The following sections describe the
algorithms that are used in our experiments in more detail.

3.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method for the unsupervised reduction of
dimensionality. Assume that a set ofN sample imagesfx1; x2; : : : ; xNg 2 <n is
given. Each image belongs to one ofm classesfC1; C2; : : : ; Cmg. We define thetotal
scattermatrixST as

ST =

NX

k=1

(xk � �)(xk � �)T

where� is the mean of the data. PCA determines the orthogonal projection� in

yk = �Txk; k = 1; : : : ; N
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that maximizes the determinant of the total scatter matrix of the projected samples
y1; : : : ; yN :

�opt = argmax
�

j �TST� j

This scatter stems frominter-classvariations between the objects, as well as from
intra-classvariation within the object classes. Most of the differences between faces
are due to external factors such as viewing direction and illumination. As PCA does
not differentiate between inter-class and intra-class variation it fails to discriminate
well between object classes.

3.2 Linear Discriminant Analysis

A alternative approach is Fisher’s Linear Discriminant (FLD) [9], also known as Lin-
ear Discriminant Analysis (LDA) [33], which uses the available class information to
compute a projection better suited for discrimination tasks. We define thewithin-class
scatter matrixSW as

SW =

mX

i=1

X

xk2Ci

(xk � �i)(xk � �i)
T

where�i is the mean of classi. Furthermore we define thebetween-classscatter matrix
SB as

SB =

NX

i=1

Ni(�i � �)(�i � �)T

whereNi refers to the number of samples in classi. LDA computes the projection	
that maximizes the ratio

	opt = argmax
	

j 	TSB	 j

j 	TSW	 j

	opt is found by solving the generalized eigenvalue problem

SB	 = �SW	

Due to the structure of the data the within-class scatter matrixSW is always singular.
We can overcome this problem by first using PCA to reduce the dimensionality and
then applying LDA [2]. The overall projection is therefore given byW T

opt = 	Topt�
T
opt.

3.3 The Classification Algorithm

In order to determine the closest gallery vector for each probe vector we perform near-
est neighbor classification using the Mahalanobis distance metric in the PCA and LDA
subspaces. For input vectors� and� the Mahalanobis distance is defined as

dM (�; �) = (�� �)T��1(�� �)

where��1 is the inverse of the data covariance matrix.
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3.4 FaceIt

FaceIt’s recognition module is based on Local Feature Analysis (LFA) [21]. This tech-
nique addresses two major problems of Principal Component Analysis. The application
of PCA to a set of images yields a global representation of the image features that is not
robust to variability due to localized changes in the input [10]. Furthermore the PCA
representation is non topographic, so nearby values in the feature representation do not
necessarily correspond to nearby values in the input. LFA overcomes these problems
by using localized image features in form of multi-scale filters. The feature images
are then encoded using PCA to obtain a compact description. According to Visionics,
FaceIt is robust against variations in lighting, skin tone, eye glasses, facial expression
and hair style. They furthermore claim to be able to handle pose variations of up to 35
degrees in all directions. We systematically evaluated these claims.

4 Evaluation

Following Phillips et. al. [24] we distinguish betweengallery andprobeimages. The
gallery contains the images of known individuals against which unknown images are
matched. The algorithms are tested with the images in the probe sets. All results
reported here are based on non-overlapping gallery and probe sets (with the exception
of the PIE pose test). We use theclosed universemodel for evaluating the performance,
meaning that every individual in the probe set is also present in the gallery.

4.1 Face Localization and Registration

Face recognition is a two step process consisting of face detection and recognition.
First, the face has to be located in the image and registered against an internal model.
The result of this stage is a normalized representation of the face, which the recognition
algorithm can be applied to. While FaceIt has its own face finding module we have to
provide normalized images to PCA and LDA. We manually labeled the x-y positions of
both eyes (pupils) and the tip of the nose in all images used in the experiments. Within
each condition separately the face images are normalized for rotation, translation, and
scale. The face region is then tightly cropped using the normalized feature point dis-
tances. Figure 6 shows the result of face region extraction for two cameras (c27 and
c37) of the PIE database.

4.2 Generic Training Data

For the construction of the PCA and LDA representations we randomly select half of
the subjects in each evaluation condition as generic training data. During this stage
both algorithms are presented with images from all gallery and probe conditions. The
testing is then done on the set of remaining subjects with non-overlapping gallery and
probe sets. As FaceIt is already fully trained we report results over the full dataset with
all subjects for all evaluation conditions.
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c27

c37

(a) Input (b) Scaled

& Rotated

(c) Cropped

Figure 6:Face normalization. The original images from camera views c27 and c37 are shown
together with the normalized and cropped face region.

4.3 Pose with Constant Illumination

Using the CMU PIE database we evaluate the performance of face recognition algo-
rithms with respect to pose variations in great detail. We exhaustively sampled the pose
space by using each pose in turn as gallery with the remaining poses as probes.

Pose
Gallery Each of 13 pose images in PIE, with room lighting.
Probe All 13 pose images in PIE, with room lighting.

Figure 7 visualizes the confusion matrix for PCA, LDA and FaceIt. The numerical
results for FaceIt are listed in Table 2.

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

c34 c31 c14 c11 c29 c09 c27 c07 c05 c37 c25 c02 c22

c34

c31

c14

c11

c29

c09

c27

c07

c05

c37

c25

c02

c22

(a) PCA (b) LDA (c) FaceIt

Figure 7: Comparison of the pose confusion matrix for PCA, LDA and FaceIt. The gallery
poses (see Figure 2) are shown along the x-axis, the probe poses along the y-axis.

Of particular interest is the question how far the algorithm can generalize from
given gallery poses. For a frontal gallery pose, the recognition rate of FaceIt drops
rapidly below 90% for head rotation beyond32Æ (corresponds to camera positions 11
and 37 in Figure 2), and the recognition rate of LDA drops below 80% for head rotation
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� -66 -47 -46 -32 -17 0 0 0 16 31 44 44 62
� 3 13 2 2 2 15 2 1.9 2 2 2 13 3

Probe Pose c34 c31 c14 c11 c29 c09 c27 c07 c05 c37 c25 c02 c22
Gallery Pose

c34 1.00 0.03 0.01 0.00 0.00 0.03 0.04 0.00 0.01 0.03 0.01 0.00 0.01
c31 0.01 1.00 0.12 0.16 0.15 0.09 0.04 0.06 0.04 0.03 0.06 0.00 0.01
c14 0.04 0.16 1.00 0.28 0.26 0.16 0.19 0.10 0.16 0.04 0.03 0.03 0.01
c11 0.00 0.15 0.29 1.00 0.78 0.63 0.73 0.50 0.57 0.40 0.09 0.01 0.03
c29 0.00 0.13 0.22 0.87 1.00 0.75 0.91 0.73 0.68 0.44 0.03 0.01 0.03
c09 0.03 0.01 0.09 0.68 0.79 1.00 0.95 0.62 0.87 0.57 0.09 0.01 0.01
c27 0.03 0.07 0.13 0.75 0.93 0.94 1.00 0.93 0.93 0.62 0.06 0.03 0.03
c07 0.01 0.07 0.12 0.38 0.70 0.57 0.87 1.00 0.73 0.35 0.03 0.03 0.00
c05 0.01 0.03 0.13 0.54 0.65 0.75 0.91 0.75 1.00 0.66 0.09 0.01 0.03
c37 0.00 0.03 0.04 0.37 0.35 0.43 0.53 0.23 0.60 1.00 0.10 0.04 0.00
c25 0.00 0.01 0.01 0.06 0.04 0.07 0.04 0.03 0.06 0.07 0.98 0.04 0.04
c02 0.00 0.01 0.03 0.03 0.01 0.01 0.01 0.04 0.01 0.01 0.04 1.00 0.03
c22 0.00 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03 0.04 0.03 0.00 1.00

Table 2:Confusion table for pose variation. Each row of the confusion table shows the recog-
nition rate on each of the probe poses given a particular gallery pose.

beyond17Æ. Furthermore, for most non-frontal poses, face generalizability goes down
drastically, even for close-by poses. This can be seen in more detail in Figure 8.
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(a) Frontal pose as gallery (b) Profile pose as gallery

Figure 8: Generalizability varies with gallery pose. The frontal pose has good generalizabil-
ity up to 32

Æ for FaceIt and up to17Æ for LDA. For the profile view the performance is low
everywhere outside the gallery pose.

We then asked the question, if we can improve the performance by providing mul-
tiple face poses in the gallery set? Intuitively, given multiple face poses, with corre-
spondence between the facial features, one can have a better chance of predicting novel
face poses. In our experiments with FaceIt we did not find any evidence of an addi-
tional gain through multiple face gallery poses. This suggests that 3D face recognition
approaches could have an advantage over naive integration of multiple face poses, such
as in the proposed 2D statistical SVM or related non-linear Kernel methods.
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4.4 Illumination with Frontal Pose

For this test, the PIE and AR databases are used. As described in Section 2.2 the PIE
database contains two illumination sets. InIllumination 1, images were taken with the
room lights on, whereas for theIllumination 2set the images were captured with the
room lights turned off.

PIE Illumination 1
Gallery Frontal pose, room illumination without flash
Probe Frontal pose, room illumination with 21 flash conditions

PIE Illumination 2
Gallery: Frontal pose, frontal flash illumination, no room light
Probe: Frontal pose, all 21 flash conditions, no room light

AR database
Gallery: Frontal pose, room illumination
Probe: Frontal pose, illumination from left, right and from both directions

Table 3 shows the recognition accuracies of the algorithms in each of the experiments.
The results on the PIE database are consistent with the outcome of the experiments on
the AR database. Overall, the performance of FaceIt and Fisherfaces are acceptable
in most of the illumination conditions. The overall trend is that the PIE Illumination
1 experiment is the easiest, the AR experiments are slightly more difficult, and PIE
Illumination 2 is the most difficult. The result is understandable as in a large number
of Illumination 2 images, significant portions of the faces are invisible, see Figure 3.

PIE 1 PIE 2 ARDB 05 ARDB 06 ARDB 07
PCA 0.89 0.61 0.81 0.79 0.82
LDA 0.96 0.69 0.87 0.82 0.86
FaceIt 1.0 0.91 0.96 0.93 0.86

Table 3:Illumination results. PIE 1 and 2 refer to the two illumination conditions described in
Section 2.2. AR05, AR06, AR07 are the left, right, both light on conditions in the AR database
as shown in Figure 5.

While these results may lead one to conclude that face recognition under illumina-
tion is a solved problem, we would like to caution that the illumination change may
still cause a major problem when it is coupled with other changes (expression, pose,
etc.).
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4.5 Pose and Illumination Combined

To test this we evaluated the combined effect of pose and illumination changes on the
performance of FaceIt.

Pose and Illumination
Three PIE poses 05,27,29 (frontal),

Gallery: 12 flash conditions from the Illumination 2 set.
PIE poses 02 (right profile) and 07 (lower frontal),

Probe: 12 flash conditions from the Illumination 2 set.

Figure 9 shows the illumination confusion matrices for FaceIt. We see in Figure 9(b)
that, for the right profile pose, lighting from the left produces recognition failures, since
most of the face will be invisible. In Figure 9(a) we see that, while for frontal pose the
lighting conditions have better generalizibility, far apart lighting angles cause difficul-
ties for FaceIt. In separation, frontal-to-frontal recognition and recognition across illu-
mination are well handled. However, when coupled they can cause significant degra-
dation in face recognition accuracy.
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Figure 9:FaceIt illumination-to-illumination confusion matrix for two camera probe poses. The
gallery illumination conditions are shown along the x-axis, the probe illumination conditions
across the y-axis. The flashes are sorted from far left to far right (as seen from the subject).

4.6 Expression with Frontal Pose and Constant Illumination

Faces undergo large deformations under facial expressions. Humans can easily han-
dle this variation, but we expected the algorithms to have problems with the expres-
sion databases. Table 4 shows the results of the 3 algorithms in this experiments. To
our surprise FaceIt and LDA performed very well on the Cohn-Kanade and the AR
database, with the notable exception of thescream(AR04) set of the AR database. For
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Expression
Gallery: Cohn-Kanade/AR, frontal pose, room illumination, neutral expression
Probe: Cohn-Kanade/AR, frontal pose, room illumination, expressions

most facial expressions, the facial deformation is centered around the lower part of the
face. This might leave sufficient invariant information in the upper face for recogni-
tion, which results in a high recognition rate. The expression “scream” has effects on
both the upper and the lower face appearance, which leads to a significant fall off in the
recognition rate. This indicates that 1) face recognition under extreme facial expression
still remains an unsolved problem, and 2) temporal information can provide significant
additional information in face recognition under expression.

Cohn-Kanade AR 02 AR 03 AR 04
PCA 0.78 0.87 0.86 0.39
LDA 0.97 0.96 0.89 0.60
FaceIt 0.97 0.96 0.92 0.76

Table 4:Expression results. AR 02, AR 03 and AR 04 refer to the expression changes in the
AR database as shown in Figure 5. All three algorithms perform reasonably well under facial
expression, however the “scream” expression, AR 04, produces large recognition errors.

4.7 Occlusion with Frontal Pose and Three Illumination Condi-
tions

For the occlusion tests we look at images where parts of the face are invisible for the
camera. The AR database provides two scenarios: subjects wearing sun glasses and
subjects wearing a scarf around the lower portion of the face. The recognition rates for

Occlusion
Gallery: Frontal pose, room illumination, no occlusion
Probe: Frontal pose, one of three illumination conditions, sunglasses or scarf

the sun glass images, as shown in Table 5, are according to expectations: it is difficult
for face recognition system. The result further deteriorates when the left or right light
is switched on (AR09 and AR10). Furthermore, the test reveals that FaceIt is more
vulnerable to upper face occlusion than either PCA or LDA. Facial occlusion, partic-
ularly upper face occlusion, remains a difficult problem yet to be solved. Interesting
open questions are 1) what are the fundamental limits of any recognition system under
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various occlusions, and 2) to what extend can other additional facial information, such
as motion, provide the necessary help for face recognition under occlusion.

AR 08 AR 09 AR 10 AR 11 AR 12 AR 13
PCA 0.48 0.26 0.21 0.27 0.21 0.11
LDA 0.45 0.31 0.27 0.44 0.33 0.31
FaceIt 0.10 0.09 0.06 0.81 0.72 0.72

Table 5:Occlusion results. AR08, AR09, AR10 refer to the upper facial occlusions, and AR11,
AR12, AR13 refer to the lower facial occlusions as shown in Figure 5. Upper facial occlusion
causes a major drop in recognition rates.

4.8 Time Delay

Figure 10 shows the performance of all three algorithms across AR database conditions
for three different gallery/probe configurations. For thesession 1andsession 2curves
the gallery and probe images were taken from the same recording session. In the ma-
jority of conditions these two curves are identical. The third curve labeledsession 1/2
shows the performance for running FaceIt with the neutral image of session 1 as gallery
and the images of session 2 as probe. Even though the images for the two sessions were
recorded only two weeks apart, the recognition performance degrades visibly across all
conditions. This drop in performance is observable for all three algorithms.

Time Delay: Session 1
Gallery: Condition 01 first recording session
Probe: Conditions 02-13 first recording session

Time Delay: Session 2
Gallery: Condition 01 second recording session
Probe: Conditions 02-13 second recording session

Time Delay: Session 1/2
Gallery: Condition 01 first recording session
Probe: Conditions 02-13 second recording session

4.9 Gender

We evaluated the influence of gender on face recognition algorithms on the AR database
due to its balanced ratio between the female and male subjects. The results reveal a sur-
prising trend: better recognition rates are consistently achieved for female subjects. Av-
eraged across the conditions (excluding the tests AR08-10 where FaceIt breaks down)
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Figure 10: Results on the ARDB database for multiple sessions for PCA, LDA and FaceIt.
Excluding the three worst conditions the performances drop by 18.1% for PCA, 21.9% for LDA
and 18.2% for FaceIt.

the recognition rate for male subjects is 83.4%, while the recognition rate for female
subjects is 91.66%. We replicated this test over the much larger FERET database (1,199
subjects). For thefb set FaceIt achieves a recognition rate of 93.7% for female sub-
jects and 87.6% for male subjects. The difference in performance for male and female
subjects is statistically significant (chisquare,p = 0:0006). This opens up many in-
teresting questions on face recognition. In particular it raises the questions: 1) what
makes one face easier to recognize than another, and 2) are there face classes with
similar recognizability.

5 Discussion

To summarize the results in previous experiments, we see that:

1. Pose:Pose variation still presents a challenge for face recognition. Frontal train-
ing images have better generalizability to novel poses than do non-frontal train-
ing images. For a frontal training pose, we can achieve reasonable recognition
rates of above 90% for32Æ head rotation. In field applications, however, even
this range of viewing angles may prove insufficient. Security cameras often are
positioned near ceilings and corners, thus creating viewing angles that are out-
side of the effective limits we observed.

2. Illumination: Pure illumination changes on the face are handled well by current
face recognition algorithms. However, face recognition systems have difficul-
ties in extreme illumination conditions in which significant parts of the face are
invisible. Furthermore, it can become particularly difficult when illumination
is coupled with pose variation. Our findings for illumination are seemingly at
variance with those of the Facial Recognition Vendor Test. In the latter, illumi-
nation was a significant problem for the algorithms. Because illumination and
non-linear variation in camera characteristics were confounded in the FRVT, our
results suggest that it was non-linear camera characteristics that were primarily
responsible for the effects they interpreted as due to illumination.
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3. Expression:With the exception of extreme expressions such as scream, the algo-
rithms are relatively robust to facial expression. Deformation of the mouth and
occlusion of the eyes by eye narrowing and closing present a problem for the
algorithms.

4. Occlusion:The performance of the face recognition algorithms under occlusion
is in general poor. There are however important differences among algorithms
in this regard. FaceIt proves robust with respect to lower face occlusion but fails
with upper-face occlusion. PCA and LDA show the opposite pattern. These
findings suggest that optimal results might be achieved by combining features of
different approaches.

5. Time delay between gallery and probe images:Time delay between acquisition
of gallery and probe images can cause degradation in face recognition perfor-
mance. In the AR database, with recording sessions just 2 weeks apart, we see
a significant difference of about 20% in recognition rate. The effects of time
are likely to be non-linear over longer periods of change with development. The
accuracy of recognition algorithms in children and across developmental periods
(e.g., childhood to adolescence) to our knowledge remains unexplored.

6. Gender:We found surprisingly consistent differences of face recognition rates
related to gender. In two databases (AR and FERET) the recognition rate for
female subjects is higher than for males across a range of perturbations. One
hypothesis is that women invest more effort into modifying their facial appear-
ance, by use of cosmetics, for instance, which leads to greater differentiation
among women than men. Alternatively, algorithms may simply be more sensi-
tive to structural differences between the faces of women and men. The finding
that algorithms are more sensitive to women’s faces suggests that there may be
other individual differences related to algorithm performance. Algorithms may,
for instance, prove more accurate for some ethnic groups or ages than others.

These experiments in total show that challenging problems remain in face recog-
nition. Pose, occlusion, and time delay variation in particular present the most
difficulties.

While our study has revealed many challenges for current face recognition re-
search, the current study has several limitations. One, we did not examine the
effect of face image size on algorithm performance in the various conditions.
Minimum size thresholds may well differ for various permutations, which would
be important to determine. Two, the influence of racial or ethnic differences on
algorithm performance could not be examined due to the homogeneity of racial
and ethnic backgrounds in the databases. While large databases with ethnic vari-
ation are available, they lack the parametric variation in lighting, shape, pose
and other factors that were the focus of this investigation. Three, faces change
dramatically with development, but the influence of change with development
on algorithm performance could not be examined. Fourth, while we were able to
examine the combined effects of some factors, databases are needed that support
examination of all ecologically valid combinations, which may be non-additive.
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The results of the current study suggest that greater attention be paid to the mul-
tiple sources of variation that are likely to affect face recognition in natural envi-
ronments.
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