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Abstract. Empirical studies of face recognition suggest that faces might be stored in memory using a few
canonical representations. The nature of these canonical representations is however unclear. Although psy-
chological data show a 3/4 view advantage, physiological studies suggest profile and frontal views are stored
in memory. In this paper we propose a computational approach to reconcile these findings. The patterns
of results obtained when different views, or combinations of views, are used as the internal representation
of a two-stage identification network consisting of an autoassociative memory followed by an RBF network
are compared. Results show that 1) a frontal and a profile view are sufficient to reach the optimal network
performance; 2) all the different representations produce a 3/4 view advantage, similar to that generally
described for human subjects. These results indicate that although 3/4 views yield better recognition than
other views, they need not be stored in memory to show this advantage.

1. Introduction

How do we recognize familiar faces from a variety of viewpoints? This is a fundamental problem
from both psychological and computational perspectives. As a face is subjected to rotation in depth,
its retinal projections change drastically. Yet human observers seem to have very little difficulty in
recognizing familiar faces from most view points. Several questions arise concerning the memory
representation that supports this expertise. For example, how can we recognize that each of the
images presented in Figure 1 represents the same face viewed from different angles? Do we store
some canonical or prototypical views of the face? Or do we instead store a whole set of images or
descriptions to cover every contingency?

The main purpose of the work presented here is to explore, using numerical simulations, the
usefulness of different types of memory representations for generalizing across view orientations.
This paper is organized as follows. First, we present some psychological and neurophysiological
studies relevant to the problem of facial representations. These studies converge to the idea that
faces are stored in memory using a limited set of 2D views of faces, but disagree on the nature of
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FiGURE 1. Illustration of a face rotated in depth. how do we know that each of the
images represents the same face?

these views. Second, we report a human-subject experiment and a series of simulations designed to
explore further the discrepancies observed in the literature.

The goal of the human-subject experiment is to replicate, for our face database, some previous
findings reported in the psychological literature. The goal of the series of simulations is to compare
the recognition/identification performance obtained when different views or combinations of views
are used as the internal representation of a computational model. A two-stage neural network, con-
sisting of an autoassociative memory followed by a radial basis function (RBF) network, is trained
to “identify” a set of faces presented from different view angles. The ability of the model to gener-
alize to new views of the faces is then tested. The patterns of results yielded by different internal
representations are contrasted and compared with the human-subject data.

2. Previous work

Very little research has been directed to exploring specifically or explicitely the kind of facial
representation human observers store in long-term memory. However, although not always designed
to investigate this specific problem, diverse studies have provided some insight into the nature and
properties of the representation that might be developed for familiar and unfamiliar faces. These
studies have been conducted simultaneously in the fields of psychology and neurophysiology with
the goal of examining the effect of depth rotation on face recognition.

2.1. Psychological studies. A first illustration of the ability of human observers to handle depth ro-
tation was provided by an experiment performed by Patterson and Baddeley (1977) using unfamiliar
faces. They demonstrated that a change in both orientation and expression (from full-face unsmiling
to 3/4 smiling) between learning and test did not affect subjects’ performance significantly. Subjects
were able to identify transformed faces at a level equivalent to that obtained with untransformed
faces. However, if the change involved a greater depth rotation (e.g. from full-face to profile), sub-
jects were less accurate in identifying the faces. Using a recognition task, Davies, Ellis and Shepherd



WHAT’S IN A FACE 3

(1978) also found that altering the orientation of faces from frontal to 3/4 views (and wvice versa)
between learning and test did not affect recognition accuracy.

These studies suggest that single views of faces contain enough invariant information to allow for
recognition and identification of the faces over moderate changes in view angles (up to 45 degrees)
between learning and test. However, these results have not always been replicated. For example,
Baddeley and Woodhead (1981) found a decrement in recognition accuracy when faces were changed
from a frontal view to a 3/4 view between learning and test and vice versa. Using a similar ap-
proach with both familiar and unfamiliar faces, Bruce (1982) reported also that, for unfamiliar faces,
changing the view from full-face unsmiling to 3/4 smiling between learning and testing reduced the
accuracy and increased the latency of the subjects’ responses. For familiar faces, an effect of view
transformation appeared only on the response latency.

To test the hypothesis that faces could be recognized more easily in some orientations than
in others, Krouse (1981) presented a group of subjects with frontal or 3/4 views of a series of
unfamiliar faces. The subjects were then asked to recognize the faces presented, either in the same
or in a different orientation. In addition to the classical effect of view change between study and test,
Krouse found a significant effect of study view. Three-quarter views at presentation led to better
performance at test than frontal views. Using a similar paradigm, Logie, Baddeley and Woodhead
(1987) found that an initial study of a 3/4 view led to better recognition performance than either a
frontal or a profile view. This advantage for the 3/4 view was also found with babies in an earlier
study by Fagan (1979) using a habituation paradigm. Babies presented with adult faces at different
orientations showed better recognition performance with 3/4 views than with frontal or profile views
of the faces.

Bruce, Valentine, and Baddeley (1987) investigated whether the 3/4 view advantage could be
extended from a recognition task performed with unfamiliar faces to a speeded recognition task using
familiar faces. In a first experiment, they tested whether highly familiar faces could be categorized
as familiar more readily when presented in 3/4 rather than in frontal views. Results showed no
evidence of a 3/4 view advantage for accepting familiar or for rejecting unfamiliar faces. In a second
experiment, subjects were presented with pairs of faces and asked to indicate whether the faces
were of the same person or of different persons. In both same and different trials, the two faces
had different facial expressions (smiling and neutral). They observed a 3/4 view advantage for
unfamiliar faces on positive trials: Two 3/4 views were matched more quickly than were two frontal
views. Matchings of profiles were slowest of all. This 3/4 view advantage was not observed on
negative trials or for familiar faces. Similar results have been since reported by Bruyer and Galvez
(1989).

In summary, the picture that emerges from psychological studies is a rather confusing one. Some
studies indicate that a change in orientation from frontal to 3/4 view between learning and test
does not affect recognition accuracy (Davies et al. 1978; Patterson & Baddeley, 1977). Other studies
found that such a change did affect the recognition performance for unfamiliar faces (Baddeley &
Woodhead, 1981; Bruce, 1982) but not for familiar faces (Bruce, 1982). A potential explanation
for this diversity of results is that depth rotation does not affect all faces in a similar way (i.e.
there is an item effect for faces). However, despite these divergences, the studies reported in this
section suggest a shift in perceptual representation from unfamiliar faces to familiar faces. Whereas
recognition/identification performance for familiar faces tends to be insensitive to depth rotation,
recognition/identification performance for unfamiliar faces tends to decrease as faces are rotated
in depth. In terms of internal representation, these results make the hypothesis of a 3D invariant
representation questionable. Moreover, the fact that for unfamiliar faces 3/4 views lead to better
recognition performance than either frontal or profile views suggests a view-dependent representation
as a better candidate than a 3D invariant representation. This 3/4 view advantage can be interpreted
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as an indication that 3/4 views are “canonical” views of faces, as defined by Palmer, Rosch and
Chase (1981) for object recognition. According to these authors, certain views of an object are
judged better views of the object than certain other views. These “canonical” views maximize the
amount of salient information for the object. They lead to faster identification and are spontaneously
reported by human observers. Bruyer and Galvez (1989), for example, suggest that 3/4 views of
faces could constitute the “structural code” proposed by Bruce and Young (1986) and Fagan (1979)
notes that 3/4 views are more salient than either frontal or profile views. However, as noted by
Bruce (1988), no real support has been found, yet, for such an interpretation (see also Bruce et al.,
1987, for a discussion).

2.2. Neurophysiological data. The neurophysiological studies relevant to face representation consist
of single cell recordings in the temporal cortex of monkeys presented with either monkey or human
faces from different orientations. These studies have been applied both to the problem of depth
rotation (i.e. how does depth rotation affect the responses of single cells?) and to the problem of
the existence of canonical views (i.e. are there some cells preferentially tuned to particular views of
faces?). Although the results of these studies cannot be used as direct evidence for human subjects,
they can help us to understand some process underlying face recognition, and lead to new hypotheses
of face representation.

For example, Perrett, Rolls, and Caan (1982, see also Desimone, Albright, Gross & Bruce, 1984;
Perrett et al., 1985; Perrett et al., 1986; Perrett, Mistlin & Chitty, 1987) found a population of cells
in the fundus of the superior temporal sulcus of three rhesus monkeys that were selectively responsive
to human and monkey faces. Among the face-specific cells, some cells, or groups of cells, responded
to specific faces across different viewing orientations. Other cells responded to many different faces
but were sensitive to depth rotations. Rotating the faces from frontal to profile views reduced or
eliminated the response of 60% of these cells. Even rotations as small as 10 or 20 degrees produced
a substantial reduction of the responses.

Some of these view-specific cells were tuned to frontal, others to profile views, and some others
to the back of the head. Interestingly, they found no cells specifically tuned to views intermediate
between full-face and profile. Perrett et al. (1986) interpreted this finding as an indication that “
... the recognition of each individual known to an observer proceeds by an analysis of a small set of
prototypical views of that individual” (p.191). They theorized that intermediate views are recognized
by interpolating between these prototypical or canonical views. For example, they mentioned that
even in the absence of 3/4 view-specific cells, 3/4 views might generate the same amount of total
responses as frontal or profile views by activating both full-face and profile specific cells to half the
rate produce by the preferred “canonical” views.

Of course the fact that they did not find cells preferentially tuned to intermediate views of faces
cannot be taken as a proof for the nonexistence of such cells. Indeed, later studies discovered a few
cells specifically tuned to other views than the canonical views mentioned by the early studies, thus
casting a doubt on the original claim of preferential coding of views of faces (Hasselmo, Rolls, Baylis,
& Nalwa, 1989; Perrett, Mistlin & Harries, 1989; Perrett et al., 1991). Yet, Perrett, Oram, Hietanen
& Benson, 1994, report that “recent quantitative and extensive studies have, however, confirmed
the notion of preferential coding of particular views. Although cells are tuned to a whole range of
views in the horizontal plane there is statistical preference for the face and profile” (pp. 50-51.) In
terms of facial representations, this finding suggests that frontal and profile views might be stored
in memory and that recognition from other views could be done mostly by interpolating between
these two canonical views.

2.3. Integrating psychological and physiological data. Both psychological and neurophysiological
data suggest that faces are stored in memory using view-dependent representations. However, the
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nature of the views stored in memory is not clear. Psychological data suggest the existence of one
canonical view: 3/4 view. Physiological data suggest the existence of two canonical views: frontal
and profile.

This apparent contradiction between the psychological and neurophysiological data has already
been mentioned by Bruce (1988) who indicated as a possible resolution that “Paradoxically, a system
which separately represented full-face and profile views could show an advantage for 3/4 views if
these were within range of both sets of specialist detectors” (p. 89). However, the estimates of
tuning of characteristic cells provided by Perrett et al. (1991) do not give a straight forward support
for Bruce’s explanation. According to Perrett et al., “for most (characteristic) cells, 45-90 degrees
rotation of the head reduced the magnitude of response to half that of the optimal view” (p. 160).
At best, with such tunings, a simple additive model would predict that the 3/4 views would be as
well recognized as the full face or profile views but not better. Moreover, the physiological data alone
could not lead a priori to the prediction of a 3/4 view advantage.

This contradiction might come from the fact that we are comparing results that are not directly
comparable. Finding a way to compare psychological and neurophysiological data is not trivial.
First, single cell recordings of face recognition have not been reported for human subjects. Sec-
ond, no transfer experiments exploring the 3/4 view advantage have been reported for monkeys.
Therefore it seems that, isolated, traditional laboratory experiments are unlikely to be helpful in
resolving this issue of representation. An alternative to the difficult comparison of psychological and
neurophysiological data can be provided by computational simulations. In addition to simulating
behavioral data, computational models permit the manipulation of internal representations as well
as the simulation of single cell recording data.

The goal of the simulation we present in this paper is to integrate psychological and neurophysio-
logical data. However, because of the item effect often encountered with faces, it is important, first,
to show that the particular set of faces used as input to the computational model yields behavior
similar to that reported in previous work.

3. Human experiment

The purpose of this experiment is to evaluate the ability of human observers to recognize familiar
and unfamiliar faces across orientation changes as well as to assess the presence of a 3/4 view
advantage for the faces in our database. Most of the previous studies used only a small range of
transformations of the faces (45 degrees), which limits the extent of the claim that face recognition is
resistant to orientation transformation. In the present recognition experiment subjects are asked to
memorize a set of faces presented from a single point of view (either full-face, 3/4 view, or profile).
Their memory is then tested by presenting the same faces in one of the three viewpoints mixed with
an equal number of distractor faces. The overall range of transformation in this experiment is, thus,
90 degrees. In addition, to verify the fact that familiar and unfamiliar faces are differently affected
by a change in orientation between learning and test, two familiarity conditions are used—familiar
(i.e. subjects knew the faces from somewhere else) and unfamiliar (i.e. subjects did not know the
faces before the experiment.)

3.1. Methodology.

3.1.1. Observers. Because the same faces were used in the two familiarity conditions, two different
types of observers participated in the experiment. For the unfamiliar condition, 24 undergraduates
from the University of Texas at Dallas were recruited in exchange for a core psychology course
research credit. The fact that they were not familiar with the faces was verified at the end of
the experiment. Only the data of subjects not familiar with the faces were analyzed. For the
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0 degrees 45 degrees 90 degrees
learning testing  learning testing  learning testing
full-face full-face full-face 3/4 full-face  profile
3/4 3/4 3/4 full-face profile full-face
profile profile 3/4 profile

profile 3/4

TABLE 1. Patterns of rotation used in the human subject experiment

familiar condition, 24 volunteer graduate students, staff and faculty members of the School of Human
Development (UTD) familiar with the faces participated in the experiment.

3.1.2. Stimuli. Forty female volunteers were photographed to create a face database. Fach face in
the database was represented by 20 views including: 1) one series of 10 views sampling the rotation
of the head from full-face to right profile with about 10-degree steps, and 2) two series of five
views, both sampling the rotation of the head from full-face to right profile with about 20-degree
steps. Before the experiment, graduate students, staff and faculty members of the School of Human
Development were asked to fill out a brief questionnaire to assess their familiarity with the persons
in the database (e.g. from where they knew the person, how long they knew her, how frequently they
usually see her). Using the results of this survey, the 30 faces judged most familiar were selected
from the database to be used as experimental stimuli. The ten remaining faces were used as fillers
during the learning session. Performance on these faces was ignored in the analyses of the results.
Six pictures of each face served as stimuli (3 view angles x 2 poses) so that different pictures of the
target faces were used for learning and testing in each angle of rotation condition.

3.1.3. Ezperimental design. Forty-eight observers were tested on a standard yes-no recognition task.
Two independent variables were manipulated: familiarity of the subjects with the faces (unfamiliar
versus familiar) and degrees of rotation between learning and test (0, 45, and 90 degrees). The
patterns of transformations used to obtain the different rotation conditions are described in Table 1.

A counterbalancing Latin Square procedure was used to ensure that every face appeared equally
often as target and distractor and in each transformation condition. For both learning and testing
lists, the order of presentation of the faces was randomized and a different order used for each
subject.

3.1.4. Procedure. The experiment consisted of two sessions, learning and testing, separated by a 10-
minute break. During the learning phase subjects were shown 25 faces (15 targets and 10 fillers), each
presented on a computer screen for 4 seconds, with a 4-second interstimulus interval. Approximately
one third of the faces were presented from a frontal view, one third from a 3/4 view and the last
third from a profile view. Subjects were asked to watch the faces and to try to memorize them.
They were informed that a recognition test would follow, and that the faces in the test would not
necessarily be taken from the same view angle as in the original presentation. During the testing
phase, subjects were shown a second series of 40 faces, the 15 targets presented during the learning
phase, 15 distractors, and the 10 fillers. For one third of the subjects in the unfamiliar condition and
one third of the subjects in the familiar condition, the view orientation of the target faces was the
same as in the learning session. For the second third of the subjects in both familiarity conditions,
the target faces were rotated in depth by 45 degrees. For the remaining subjects, the target faces
were rotated in depth by 90 degrees. For each face, subjects were asked to decide whether they had
seen the face during the learning session. They were instructed to press the right mouse button if
they thought the face was presented during the learning session and to press the left mouse button if
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they thought it was not presented during the learning session. The faces remained on the computer
screen until the subjects indicated their answer by pressing one of the mouse buttons.

3.2. Results. Results were analyzed using signal detection methodology. Each subject contributed
a d' calculated on the basis of 15 scores. Hit rates of 100 percent and false-alarm rates of 0 percent
were converted to 1 —1/2N = .97 and 1/2N = .03 respectively (cf. Macmillan & Creelman, 1991),
thus leading to a maximum value of d' equal to 3.76. Separate analyses of variance (ANOVA) were
carried out for estimating: 1) the effect of depth rotation on accuracy performance, and 2) the effect
of learning and testing views on accuracy performance.

3.2.1. Depth rotation. The mean d' values are shown in Figure 2. A 2 x 3 between-subjects ANOVA
(familiarity x angle of rotation between learning and test) reveals a highly significant effect of
familiarity, F'(1,42) = 27.08, M S, = .52, p < .0001, and a significant effect of degrees of rotation,
F(2,42) = 6.11, M S, = .52, p < .01. No significant interaction was observed between familiarity
and depth rotation. However, a sub-design analysis of the effect of depth rotation conditional on
familiarity shows that the effect of rotation is significant only in the unfamiliar condition, F'(2,42) =
5.75, MS, = .52, p < .01. Further, 91% of the effect of depth rotation within the unfamiliar
condition is due to the difference between 0 and 45 degrees.

Hl Familiar
[ Unfamiliar
3.0

25

20
15

Accuracy (d')

10
0.5

0.0

0 45 920
Angle of rotation between
learning and test

FIGURE 2. Average d' averaged across subjects as a function of familiarity of the
subjects and degrees of rotation between learning and test.

3.2.2. Type of views. Figure 3 shows the d' values obtained for familiar and unfamiliar subjects as a
function of the views presented during learning and testing. A 3 x 3 x 2 between-subject ANOVA with
learning view, testing view, and familiarity as independent variables and d' as a dependent variable
reveals a main effect of familiarity F'(1,126) = 33.94, M S, = 1.06, p < .0001, a main effect of type
of view at test, F'(2,126) = 5.13, M S, = 1.06, p < .01, and an interaction between type of view
at learning and type of view at test, F(4,126) = 9.60, MS. = 1.06, p < .05. A contrast analysis
indicates that subjects are more accurate when tested with a 3/4 view than with any of the two
other views, independently of the view presented during learning, F'(1,126) = 4.66, M S, = 1.06,
p < .05. No difference was observed between profile and frontal views, F' < 1. A sub-design analysis
by familiarity condition indicates that the 3/4 view advantage is significant only for the unfamiliar
condition F(1,126) = 6.89, M'S, = 1.06, p < .01.
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FIGURE 3. Average d' as a function of the familiarity of the subjects with the faces
and the view presented during learning and test.

3.3. Discussion. The main findings of this experiment are the following. First, as expected, and in
agreement with Bruce (1982), changing the orientation of faces between learning and test affects the
recognition accuracy of subjects in the unfamiliar condition, but not in the familiar condition. More
surprisingly and contrary to previous evidence, for the particular set of faces used here, the effect
of degrees of rotation is mainly due to the difference observed between 0 and 45 degrees. Previous
work suggested that subjects’ performance should stay relatively stable up to 45 degrees of rotation
and dramatically decrease beyond this point.

Second, also in agreement with previous work (Logie et al., 1987; Krouse, 1981), 3/4 views of
faces yield better accuracy performance than either profile or frontal views. However, a difference
should be noted, between the present result and the results reported in the literature. Previous
work indicated that a 3/4 view presented during learning led to better performance than a frontal
or a profile view. Here the 3/4 view advantage was observed when a 3/4 view was presented at
test, independent of the view presented during learning. This latter result, however, is not in
disagreement with the canonical view hypothesis proposed to account for the 3/4 view advantage
described in the literature. Moreover, the fact that, in the present experiment a clear advantage
was observed in the 3/4 - 3/4 transfer condition, as compared to the frontal-frontal and profile-
profile transfer conditions, provides some additional support for the idea that 3/4 views constitute
an optimal view for face recognition. The problem with interpreting this result as indicating that
3/4 views are stored in memory and play the role of canonical views for faces is addressed in the
following series of simulations.

4. Computational model

The computational model used to investigate the apparent paradox arising from the 3/4 view
advantage of human subjects and single cell recording data consists of an autoassociative memory
and an RBF network. The autoassociative memory (see appendix A ) is used to preprocess pixel
images, yielding a compressed representation of faces. This compressed representation is then input
into the RBF network.

4.1. Autoassociative memory preprocessing. A first problem in simulating face recognition or iden-
tification is to find a way of coding the perceptual information in faces. Previous work showed
that autoassociative memories operating on pixel arrays, or more generally the principal component
analysis (PCA) approach, provide an efficient solution to that problem (Abdi, 1988; Abdi, Valentin,



WHAT’S IN A FACE 9

Edelman & O’Toole, 1995; O’Toole, Abdi, Deffenbacher, Valentin, 1993; Sirovich and Kirby, 1987;
Turk and Pentland, 1991). In this framework, face images are represented by their projections onto a
set of statistically derived dimensions. In neural network terms, the dimensions are the eigenvectors
of the between unit connection weight matrix (see appendix A). In statistical terms the dimensions
are the principal components of the pixel-by-pixel face cross-product matrix. The eigenvectors, or
principal components, constitute an orthogonal basis (or eigenspace) for representing the faces. A
given face can be either perfectly represented by using the complete eigenspace, or approximated by
using a subset of the eigenspace.

Most of the earlier models using this type of approach represented faces using single frontal (or
nearly frontal) 2D representations of faces. As a consequence, their performance across large changes
in orientation was rather poor. Recent studies (Pentland, Moghaddam, & Starner, 1994; Valentin
& Abdi, 1996), however, showed that this limitation can be overcome by using multiple views of
the faces. In their study, Pentland et al. used 2D images taken from different view angles, sampling
the rotation of the head from left profile to right profile. They created separate covariance matrices
for each view angle and decomposed them into their eigenvectors and eigenvalues. This procedure
gives rise to a series of eigenspaces for representing the faces, which the authors call view-based
eigenspaces. When a face is presented as input, its orientation is first evaluated by computing
its distance from all the eigenspaces. Then the face is projected onto the closest eigenspace and
identified using a nearest neighbor algorithm. The problem with this approach is that it assumes
two separate mechanisms sequentially ordered: determination of the pose followed by identification
of the face. There is no psychological evidence for such a dual mechanism.

Valentin and Abdi (1996) proposed a somewhat different approach in which a single eigenspace
is computed from multiple views of faces. They showed that this eigenspace provides enough in-
formation to both estimate the orientation of the faces and identify them. Their approach has
the advantage of avoiding the assumption of separate sequential mechanisms while implementing a
natural dissociation between orientation and identity information. The projections of a face onto
the first 20 eigenvectors allow for the determination of its orientation, and the projections onto the
remaining eigenvectors allow for the identification of the face. A similar approach was used here to
represent the faces before using them as input to the RBF network

4.2. RBF network. An RBF network is a 3-layer network in which the hidden layer performs a
nonlinear mapping of the input layer onto the output layer. Intuitively, the inner workings of an
RBF network can be separated into two phases as illustrated by Figure 4. During the first phase
(recoding phase) the input patterns are recoded in terms of their distances from prototypes (or
centers of the RBF network.) During the second phase (learning phase), the recoded patterns are
associated with the expected outputs using a standard heteroassociator (see appendix B for more
detail.)

o Recoding phase. The recoding of the input is performed by the hidden units of the RBF network.
Each hidden unit computes a Gaussian transformation of the distance from the input to its
center. From a psychological point of view, the centers of the hidden units can be regarded as
some kind of prototypes and the distance from the input to the centers as an indication of the
similarity between the input and the prototypes. The activity of a hidden unit depends on the
similarity between the exemplar presented as input and its center: When the exemplar matches
exactly the center or prototype, the activity of the unit is at its maximum and it decreases
as an exponential function of the squared distance between the input and the center. At the
end of the recoding phase, the input patterns are represented by I-dimensional vectors (with
I representing the number of hidden units) in which a given element represents the activity of
a given hidden unit.
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FIGURE 4. Illustration of an RBF network.

e Learning phase. During the second step, a linear heteroassociation is performed between
the output of the hidden units (or recoded input) and the expected output. In brief, the
output units compute a weighted sum of their input (hidden unit outputs.) The weights
are the strength of the connections between hidden and output units. Learning is achieved
by modifying the connection weights so as to minimize the difference between the expected
output and the actual output. The optimum values for the weights can be obtained by using
a least-squares approximation.

A useful property of RBF networks for the problem of face representation is that their hidden layers
act as internal representations that can be manipulated. By using specific views, or combinations
of views, as centers of an RBF network, we can test the usefulness of these views to represent and
identify faces. Moreover, when particular views of faces are used as centers, the hidden-units become
somewhat similar to the view-specific cells reported in the neurophysiological literature. Specifically,
as is the case for view-specific cells, the hidden units can be regarded as preferentially tuned to
specific views of faces: Their activity is a function of the similarity between the view presented as
input and their center (or preferred view.) This property of RBF networks is used here to compare
the patterns of results yielded by different types of internal representations. Five different types of
“representations” are used as the centers of a series of RBF networks. The choice of the centers was
dictated by different theoretical hypotheses:

1. To test the hypothesis that faces are represented in memory by several 2D views of the faces
corresponding to the familiar orientations of the face (exemplar model), we used as many
centers as views presented as input for each face.

2. In an attempt to create a view-independent representation of the faces, we used one center for
each face: the average of the face across views.

3. To test the different canonical view hypotheses, we used either:

e One center for each face: a 3/4 view
e Two centers for each face: a frontal and a profile view
e Three centers for each face: a frontal, a 3/4, and a profile view.



WHAT’S IN A FACE 11

Each RBF network was trained to identify a set of faces presented from a different number of view
angles and tested for its ability to recognize the faces from a new orientation.

5. Simulations

A series of simulations applied the computational model described in the previous section to the
task of identifying faces from new orientations.

5.1. Method.

5.1.1. Stimuli. The 40 faces used in the human subject experiment were used as stimuli. Each face
was represented by either 10 views sampling the rotation of the head from full-face to profile in
about 10-degree steps (10-view condition), or five views sampling the rotation of the head in about
20-degree steps (5-view condition.)

5.1.2. Ezperimental design. The task simulated was an identification task from new orientations.
Two variables were manipulated: The number of views presented during learning (four or nine
views) and the type of centers of the hidden units of the RBF networks (all views; average view;
frontal and profile views; frontal, 3/4, and profile view; and 3/4 view only.) For each simulation, the
number of identification errors was recorded.

5.1.3. Procedure. A two-stage network, consisting of an autoassociative memory followed by an RBF
network, was used to identify all the faces in the database using a sample of the available views.
The procedure included three steps: A compression step, a learning step, and a testing step. These
three steps are illustrated in Figure 5, and are described below:

o Compression step. All the views of the 40 faces (five in the 5-view condition, and ten in the
10-view condition) were stored in an autoassociative memory and the memory decomposed into
its eigenvectors and eigenvalues (see appendix A). Each view of the faces was then represented
by a 50 dimensional vector corresponding to its projections (or weights) onto the first 50
eigenvectors. Figure 6 illustrates the reconstruction of a face with the first 50 eigenvectors. The
squared coefficient of correlation between the frontal view (top panels) and its reconstruction
is .82. The squared coeflicient of correlation between the profile view and its reconstruction is
.81. Clearly these reconstructions contain information relative to both the orientation and the
identity of the faces'.

e Learning step. All but one view of the 40 faces (4 in the 5-view condition and 9 in the 10-view
condition) were used as input to an RBF network made of 50 input units, from 40 to 360 hidden
units depending on the learning condition and the type of centers, and 40 output units. In
the 5-view condition, four views per face were chosen from the set of five possible views (0, 20,
45, 70, and 90 degrees from full-face) to be used as a training set. In the 10-view condition,
nine views per face were chosen from the set of 10 possible views (0, 10, 20, 30, 40, 50, 60,
70, 80, and 90 degrees from full-face) to be used as a training set. In both conditions, the
training views were randomly chosen, under the constraint that each view angle appear an
approximately equal number of times in the learning list. The remaining view was used as a
testing view.

The network was trained to produce a 1 in the output unit corresponding to the face
presented at the input layer and a 0 in every other unit. For example, if as illustrated in

IThe ghostly appearance of the reconstruction is due to the fact that only 50 eigenvectors out of 200 have been
used. The appearance of the image can be improved by increasing the number of eigenvectors. However, doing so
does not improve the identification performance of the RBF network, thus showing that the visual appearance of the
reconstructions and the usefulness of the information they convey are two separate issues.
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FI1GURE 6. Tllustration of a face reconstructed with the first 50 eigenvectors of an
autoassociative memory. The memory was trained with five views of 40 female faces.
The views sampled the rotation of the head from full-face to profile with about 20
degree steps.

network and that, decreasing it reduces its ability to generalize. At the end of learning, the
weights of the RBF network were fixed.

o Testing step. One view of each of the 40 faces—the view that was not used during learning—
was used as input to the RBF network and the activation of the output units computed for each
face. The level of activation of the output units was used as a classification criterion: The target
view was identified as the face corresponding to the output unit with the highest activation
(winner-take-all strategy.) For example, the target view presented as input in Figure 5 would be
identified as a view of Betty’s face because the level of activity of the output unit corresponding
to “Betty” (.9) is larger that the level of activity of the output units corresponding to the faces
of “Inah” (.3) or “Candy” (.4). If the target view is really a view of Betty’s face, the network
is said to have made a correct identification. If the target view was not a view of Betty’s face,
the network is said to have made an identification error.

To optimize the number of views available for testing the model, this procedure was repeated until
each view of the 40 faces was used, in turn, as the testing view (i.e. using a jackknife technique.)
Thus, a total of 50 simulations was carried out: Five types of views (0, 20, 45, 70, and 90 degrees
from full-face) x five types of centers (all views; average view; frontal and profile views; frontal, 3/4,
and profile views; and 3/4 view) x 2 learning conditions (5-view and 10-view conditions.) At the
end of each simulation, the number of identification errors produced by the network was recorded.

5.2. Results and discussion. The ability of the model to generalize to new orientations was analyzed
by examining both:
e The proportion of identification errors as a function of the type of centers of the RBF network
and the number of views presented during learning;
e The repartition of identification errors as a function of the view presented at test.
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FIGURE 7. Proportion of errors as a function of the type of centers and the number
of views presented during learning. F indicates a frontal view and P a profile view.

5.2.1. Proportion of identification errors. Figure 7 displays the proportion of errors as a function of
the type of centers and the number of views presented during learning. Three points can be noted
from this figure:

e The proportion of errors decreases when more views of the faces are presented during learning;:
The misidentification average is 30% in the 5-view condition, but only 15% in the 10-view
condition.

e Performance depends on the type of center used: The largest number of misidentifications
occured for the average view centers (40% error in the 5-view condition and 20% error in
the 10-view condition) and the 3/4 view centers (36% error in the 5-view condition and 20%
error in the 10-view condition.) No major differences were observed among the three other
conditions (around 20% error in the 5-view condition and 10% in the 10-view condition.)

e There was no interaction between the number of learned views and the type of centers, which
suggests that the optimality of the internal representation is not dependent on the number of
views presented during learning.

The first conclusion that can be drawn from this series of simulations is that, having a 3D
invariant internal representation is not necessary for a computational model to be able to identify
faces from new orientations, nor is it necessary to store in memory all the familiar orientations of the
faces. In fact, only two views (frontal and profile) are enough to reach 90% correct identification.
The second conclusion is that in terms of distance from canonical or prototypical views, the internal
representation suggested by single cell recording studies—two canonical views: full-face and profile—
is more efficient than an internal representation involving only 3/4 views of faces. Moreover, the
fact that, on the whole, no improvement was observed when a 3/4 view was added to the frontal
and profile views suggests some optimality in the hypothesis derived from single cell recordings.
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FicURE 8. Repartition of identification errors as a function of the type of view
presented at test. The horizontal axis represents the degrees of rotation from a
frontal view.

5.2.2. Error repartition. Figure 8 displays the repartition of the identification errors averaged across
the type of centers as a function of the type of views presented at test in the 5-view and the 10-view
conditions. The main point to note from this figure is that the identification performance is better
when an intermediate view (20, 45, 60, degrees from full face) is presented at test than when either
a frontal or a profile view is presented. The worst performance is obtained in both the 10-view
condition and the 5-view condition when a profile view is presented as a test view.

Although not surprising, this pattern of results is noteworthy because it replicates the 3/4 view
advantage found with human subjects. Even more interesting is that this pattern of results is
obtained with all the different types of centers (cf. Figure 9). This result indicates that the 3/4
view advantage cannot be interpreted as evidence for the memory storage of 3/4 views because this
advantage is obtained even when the internal representation is only a frontal and a profile view.

6. Conclusion

The main results of the simulation are the following. First, the performance of the model improves
with the number of views presented during learning for all types of representation. In the 5-view
condition the model behaves somewhat like human subjects recognizing unfamiliar faces: It produces
a lot of mistakes. In the 10-view condition, the performance of the model becomes closer to that of
human subjects recognizing familiar faces: It becomes less sensitive to depth rotation. Second, in
both learning conditions (5-view and 10-view conditions) the best performance was obtained when
either 1) all the views, 2) a frontal, a 3/4, and a profile view, or 3) a frontal and a profile view
were used as the centers of the RBF networks. The fact that the same performance was obtained in
these three conditions indicates that the recognition/identification of a face from a new orientation
can be achieved very efficiently by interpolating between two extreme orientations. Or, in other
words, it is not necessary to store intermediate views in memory for a computational model to be
able to recognize faces from new view orientations. Third, even when intermediate views are not
used as the internal representation, they still yield the best performance. In other words, the fact
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FI1GURE 9. Repartition of identification errors as a function of the type of view
presented at test and type of centers. The horizontal axis represents the degrees of
rotation from a frontal view.

that a particular view of a face yields better performance does not imply that this view is stored in
memory.

In conclusion, this simulation shows that the apparent contradiction between psychological and
physiological data mentioned previously is not a real one. Recall that single cell studies found a larger
number of cells specific to full-face and profile views than to 3/4 views, but that human data showed
a strong advantage for 3/4 views. The simulation results reported here show this contradiction to
be only apparent, because a 3/4 view advantage is obtained when only frontal and profile views
are used as canonical or prototypical views. In fact, the pattern of results illustrated in Figure 7
suggests some optimality in the single cell hypothesis since performance was not improved when a
3/4 view was added.

This result suggests a different interpretation of the 3/4 view advantage than one previously
proposed in the literature. Recall that the 3/4 view advantage has been interpreted as evidence that
3/4 views are stored in memory, and that recognition from other views is done by comparison to
that view. An alternative explanation is that because the stimuli here sampled the rotation of the
faces from frontal to profile view, recognizing a face from a 3/4 view is an interpolation task whereas
recognizing a face from a profile or a frontal view is an extrapolation task. The main difference
between these two types of tasks is the amount of available information: There is more information
available to recognize a face from an intermediate view than from an extreme view. If this is the
case, then, the relatively poor performance observed for frontal views should improve if multiple
views of faces sampling the rotation of the head from left profile to right profile were used as stimuli.
In this situation, since the same amount of information would be available for recognizing frontal
and 3/4 views, the advantage of 3/4 views over frontal views should disappear. However, if 3/4
views are indeed canonical their advantage over frontal views would be maintained.
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Appendix

.1. Autoassociative memory. An autoassociative memory is a network of I linear units or cells fully
interconnected by way of modifiable connections or synapses. The connections between two cells 4
and j are bidirectional and symmetrical. The set of connections is represented by an I x I matrix
W in which a given element represents the strength of the connection between two cells. To store a
set of K faces in an autoassociative memory, the faces are first digitized and coded as pixel vectors,
denoted xj, with each numerical element in x; being the gray level of the corresponding pixel. For
computational convenience, The vectors x; are normalized so that x} x; = 1. The set of faces is
represented by a I x K matrix denoted X in which the k-th column is equal to x.

The K face images can be stored in the memory by setting the weights of the connections between
cells using Hebbian learning.

K
W =XX" =" xxj (1)
k=1

where T' denotes the transpose operation. Retrieval of a face is performed by presenting the face as
input to the memory. Specifically, recall of the k-th face is achieved as

ﬁk = ka (2)

where X, represents the answer of the memory. The quality of this answer can be estimated either by
visually comparing the reconstructed face with the original face or, more formally, by computing the
correlation or cosine between X and x; (see e.g. Valentin, Abdi & O’Toole, 1994 for more details).
The storage capacity of the memory can be improved by using a Widrow-Hoff error-correction
learning rule:

Wint1) = Wiy + (X - WX)X" 3)

where n represents the iteration step and 7 a small positive constant.
Since the weight matrix W is a cross-product matrix (and hence is positive semi-definite), it can
be analyzed in terms of its eigen-decomposition as

W =UAU? with UTU =1 (4)

where U is the matrix of eigenvectors of W, and A is the diagonal matrix of eigenvalues. As a
consequence, a learned face can be expressed as a linear combination of the eigenvectors of W:

L

ﬁk = Z )\gmqu{xk (5)
=1

where the dot product (u} xy) represents the projection (or weight) of face k on eigenvector u; . If
complete Widrow-Hoff learning is used, Eq. 4 reduces to

Wi = UUT (6)

and Eq. 5 can be rewritten as:

L
)/Ek = ZuEu{Xk . (7)
(=1
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.2. Radial basis function networks. RBF networks are 2-layer feed forward networks in which the
input vectors xj, perform a nonlinear mapping of the input layer onto the output layer. This nonlinear
mapping can be regarded as a recoding of the stimuli presented as input. Specifically, each hidden
unit computes the radial basis function ¢ of the distance from the input vectors x; to its center c:

hi = ¢(llxx — <ill) (8)

where h; is the output of the i-th hidden unit and ||.|| denotes the Euclidean norm. A variety of
radial basis functions can be chosen. In the simulations presented in this paper we used a Gaussian
function:

1
#(z) = ———=exp{—2?/20? 9)
s {—2/207}
where o2 represents the variance of the Gaussian function. Note that the constant term (v2mo?2) is
used to normalize the integral to 1 and can be omitted without any problem.
The outputs of the hidden units are then propagated to the output units of the network that
integrates them in the following manner:

0; = D wihi = 3 Swi{llxe - cil} (10

where w; ; represents the strength of the connection between hidden unit 4 and output unit j. Using
a matricial notation, the activity of the J output units for the K exemplars presented as input can
be expressed as:

0 =HW (11)

where O is the K x J output matrix, W is the I x J weight matrix, and H is the K x I matrix of
hidden units activities. Learning is achieved by modifying the connection weights so as to minimize
the difference between the K x J expected output matrix, denoted T, and the actual output O. In
general, the optimum values for the weights can be obtained by using a least-squares approximation.
Formally:

W~HTT (12)

where HY represents the Moore-Penrose pseudo-inverse of H (see e.g. Abdi 1994 for a more detailed
description).
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