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wdentity specific information will be impaired. The
categorical information is more resilient to degrada-
tion and hence is more likely to be preserved in the
case of a local as well as a distributed lesion.

Such a selective impairment (7.e., destruction of
identity information with preservation of categorical
information) is reminiscent of some neuropsycholog-
ical data. In several cases of prosopagnosia (i.e., in-
ability to recognize faces), a simple dissociation be-
tween identity and categorical information has been
reported (e.g., Etcoff, Freeman & Cave, 1991; McNeil
& Warrington, 1991; Young & Ellis, 1989). In gen-
eral, patients exhibiting this dissociation are unable
to identify a face or to decide whether they know the
face, but are able to decide whether it is a female
or male face, or what is the approximate age of the
person. This is consistent with the fact that infor-
mation related to the identity of faces is less robust
than the categorical information. Additionally, in ac-
cordance with the idea that random lesions of a face
autoassociative memory would not selectively impair
the information conveyed by the eigenvectors with
large eigenvalues, double dissociations between iden-
tity and categorical information for faces have not
(to the best of our knowledge) been reported in the
literature. In other words, cases of patients able to
identify or recognize faces, but not able to derive the
gender of a person (or other “semantic” information,
with the exception of emotion) from his/her face have
not been reported.

However, as mentioned by Burton, Young, Bruce,
Johnston, and Ellis (1991), it is important to note
that face recognition deficits might occur at differ-
ent levels of processing (e.g., perceptual, semantic,
episodic). The analogy drawn between the autoasso-
ciative memory lesioning and prosopagnosic patients
applies only to the case of perceptual deficits. Fur-
ther, if we were to extend this analogy to more com-
plex phenomena such as covert face recognition, an
additional decision mechanism would be necessary.
Covert recognition refers to the fact that some pro-
sopagnosic patients with no overt recognition of faces
(explicit memory) actually demonstrate some recog-
nition ability when indirectly tested (implicit mem-
ory). For example, Young, Hellawell, and De Haan
(1988) reported the case of a prosopagnosic patient
(PH) who was unable to retrieve identity of famil-
iar faces but showed normal recognition effects when

tested covertly. To give an account of covert recog-
nition in terms of the PCA approach one would have
to assume that part of the information contained in
the eigenvectors with relatively small eigenvalues is
preserved. This information would then be used by
some kind of a decision system, the role of which
would be to evaluate the amount of preserved infor-
mation. Such a decision system could involve two
different thresholds, a “recognition threshold” and an
“explicit recognition threshold”. Covert recognition
would occur if the amount of information provided by
the eigenvectors with small eigenvalues lies between
those two thresholds. But clearly, such a mechanism
1s quite speculative at this time and further study is
necessary to determine its psychological relevance.

In conclusion, the internal representation extracted
by an autoassociative memory from a set of faces
seems to share some properties with the informa-
tion human observers extract from faces (see, also
Valentin, Abdi, Edelman, in press, for an elaboration
on this point of view). However, to assess the psy-
chological relevance of this type of facial representa-
tion, future research needs to explore more precisely
the relationship between human performance on face
processing tasks and the prediction of the autoasso-
ciative memory for the same tasks.
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Eigenvectors Number of faces per sample

2 4 6 8 10 20 50 100 150
1 94 .97 98 99 99 99 99 99 .99
2 39 47 b4 56 B8 .69 .84 .96 .99
3 28 .33 .39 42 58 81 .94 .99
4 A5 .23 .28 .29 51 .80 .94 .99
5 A5 .23 .24 39 .67 .92 .98
6 Jd4 .22 30 b3 .86 .98
7 Jd4 .18 .25 .48 .83 .98
8 13 .20 43 85 .95
9 A1 .20 .37 .73 .93
10 A7 .27 b8 .79
20 A5 .29 49
50 A2 .30
100 16

TABLE 3. Average correlation between the eigenvectors extracted from random samples of
faces and the eigenvectors extracted from the complete set of faces as a function of the

number of faces per sample.

In summary, the pattern of stability of the eigen-
vectors, reflected in the data of Table 3, is the fol-
lowing: very high stability of the first eigenvector,
lesser but still good stability of the next five eigenvec-
tors and decreasing stability of the eigenvectors with
smaller eigenvalues. This differential degree of avail-
ability and robustness of the information conveyed by
different eigenvectors can be related to some temporal
properties of the visual system reported by Sergent
(1986a). Briefly stated, some physiological and psy-
chophysical evidence suggests that the visual system
does not instantaneously nor simultaneously extract
all the information available in a visual stimulus. The
quantity of information available increases as a func-
tion of the exposure duration and decreases with the
retinal eccentricity. This “microgenesis” of percep-
tion suggests that different kinds of information, con-
veyed by different spatial frequencies, are processed
at different speeds. Particularly, since low spatial fre-
quencies are resolved faster than high spatial frequen-
cies, information relative to categorical discrimina-
tion is available earlier than information relative to
the identification of a face. In agreement with that
idea, empirical evidence indicates that gender deci-
sions are always made much faster than identity (i.e.,
familiar versus unfamiliar) decisions, suggesting that

computation of gender and identity might be two in-
dependent processes (Bruce, Ellis, Gibling & Young,
1987).

4. CONCLUSION

The results presented here support the idea that dif-
ferent kinds of facial information are conveyed by dif-
ferent ranges of eigenvectors of a cross-product ma-
trix derived from a set of face images. These differ-
ent types of information have different properties and
are not equally useful, depending on the type of tasks
to be performed. The eigenvectors with large eigen-
values contain mostly low frequency information, are
very stable, and capture information that is gener-
alizable to new faces. In contrast, eigenvectors with
small eigenvalues contain essentially high frequency
information, are very unstable and, the information
they capture is not generalizable to new faces.

An interesting implication of the pattern of sta-
bility found in the third series of simulations, is that
the information conveyed by the eigenvectors with
relatively small eigenvalues is the most vulnerable to
any kind of degradation. Hence, if we were to ran-
domly lesion an autoassociative memory trained to
reconstruct a set of face images, only the information
conveyed by the eigenvectors with small eigenvalues
would be degraded substantially. In other words, only
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faces by a Caucasian and a Japanese autoassociative memory (top panel); (b) accuracy of
gender categorization (d’) for Caucasian and Japanese faces by Caucasian and Japanese

observers (bottom panel).

captures the information that is most common to all
faces and because, as mentioned previously, the first
eigenvalue is very large (81%) this eigenvector should
be the most stable. What is impressive, however, is
that only 2 faces are necessary to estimate 1it.
According to O’'Toole et al. (1991, 1993), the
information useful for categorizing faces by gender,
race, and probably age, is conveyed essentially by the
eigenvectors with the larger eigenvalues. With the
particular set of faces used in this simulation, the
2nd, 3rd, and 4th eigenvectors convey most of the
information related to the general sexual appearance
of the faces. Table 3 shows that, on the average, 50
faces (25 males, 25 females) are sufficient to estimate
about 65% of these eigenvectors (r = .80). With 100

faces (50 males, 50 females), about 90% of the same
eigenvectors are correctly reconstructed (r = .94).

For the next five eigenvectors (i.e., up to 9), the ac-
curacy of reconstruction decreases progressively from
84% (r = .92) to 53% (r = .73) with 100 faces.
With 150 faces, the accuracy of reconstruction of the
same eigenvectors decreases from 96% (r = .98) to
86% (r = .93). The quality of reconstruction of the
eigenvectors with smallest eigenvalues decreases dras-
tically from 62% for the 10th to 3% for the 100th
eigenvector with a sample of 150 faces. Again, this
i1s not surprising because the eigenvectors with rel-
atively small eigenvalues convey essentially informa-
tion specific to individual or small groups of faces.
These eigenvectors are specific to the particular sam-
ple learned.
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FIGURE 9. The first two eigenvectors of an autoassociative memory created from 25 male

and 25 female face images.

short hair” is highly efficient to dissociate male and
female faces for this particular set of Japanese faces,
it not a very useful information to dissociate male
and female faces for the set of Caucasian faces. This
result indicates that the generalizability of categori-
cal information depends in part on the homogeneity
of the set of faces from which it i1s extracted.

3.4. Estimation of eigenvectors stability. The
purpose of this third series of simulations was to es-
timate the stability of the information conveyed by
the eigenvectors. Specifically, we were interested in
finding the minimum number of faces necessary to
estimate different eigenvectors accurately.

3.4.1. Procedure. An autoassociative memory was cre-
ated using the complete set of faces, and decomposed
into its eigenvectors. To assess the stability of these
eigenvectors, face samples, ranging in size from 2 to
150, were randomly selected from the original set of
faces, with the constraint that each sample contained
half male and half female faces. For each sample, an
autoassociative memory was created and decomposed
into its eigenvectors. Then, a coefficient of correlation
between the eigenvectors extracted from each sample
and the eigenvectors extracted from the full set of

faces was computed. This process was repeated 100
times, for each sample size, to ensure that the results
were not sample-dependent.

3.4.2. Results and Discussion. The average correla-
tions are reported in Table 3. Note that the eigen-
vectors are ordered according to their eigenvalues.
As previously noted, the eigenvector with the largest
eigenvalue is referred to as the first eigenvector, the
eigenvector with the second largest eigenvalue is re-
ferred to as the second eigenvector, and so on. A
simple glance at Table 3 indicates that the minimum
number of faces necessary to estimate correctly the
original eigenvectors varies as an inverse function of
their eigenvalues. The larger the eigenvalue associ-
ated with an eigenvector, the fewer faces needed to
estimate the eigenvector.

Examination of the first line of Table 3 shows that,
on the average, only two faces are sufficient to esti-
mate 88% of the original first eigenvector (r = .94,
r? = .88), and 8 faces are necessary to estimate it
with 98% accuracy (r = .99, 7% = .98). This indicates
that the information contained in this eigenvector is
very robust and easily accessible. This is not really
surprising since, by definition, the first eigenvector
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difference in the patterns of results depicted in Fig-
ure 10a and b is a reversal of main effect. For the
simulations, we obtained a main effect of face race,
with Japanese faces yielding better performance than
Caucasian faces. A main effect of face race was also
obtained by O’Toole et al. but in favor of Caucasian
faces. This difference is probably due to the fact that
in O’Toole et al. the faces were cropped so as to elim-
inate hair information. This contention seemed to be
confirmed by the fact that in a pilot study with the
same faces, including the hair, O’Toole et al. found
that the gender of Japanese faces was identified more
quickly than that of Caucasian faces.

The superiority of hairy Japanese faces over hairy
Caucasian faces can be explained by a larger homo-
geneity within the subsets of male and female Japan-
ese faces than within the subsets of male and female
Caucasian faces. Since this superiority seems to van-
ish when the hair information is discarded, we can
speculate that this effect was due essentially to the
fact that, for our face samples, Japanese hair-do are

more sexually stereotyped than Caucasian hair-do.
An inspection of the face images, indeed, showed that
all Japanese males have very short hair, whereas most
Japanese female have mid-length to long hair. This
obvious distinction does not exist for the Caucasian
images where some males have mid-length hair and
some females very short hair. However, further work
would be neccessary to clarify this issue.

A last point worth noting on this simulation se-
ries 1s the difference in generalization power of the
two autoassociative memories. The Japanese autoas-
sociative memory generalizes better to own race faces
than the Caucasian autoassociative memory (94% vs.
82%) but not to other race faces (63% wvs. T4%).
Again this difficulty in generalizing to other race faces
is probably due to the sexually stereotyped Japanese
hair-do. Because of the large within subsets homo-
negeity, the information captured by eigenvectors with
large eigenvalues is highly efficient to categorize faces
coming from these subsets, but less so for other faces.
For example, while the information “having a very
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Wrand Wface
Rank Average Minimum Maximum Average
1 .6075 6072 .6079 8137
2 .0043 .0042 .0045 0331
3 .0042 .0041 .0044 .0255
4 .0042 .0041 .0043 .0156
5 .0041 .0040 .0042 .0107
6 .0041 .0040 .0042 .0080
7 .0040 .0039 .0041 .0068
8 .0040 .0039 .0041 .0056
9 .0039 .0039 .0040 .0041
10 .0039 .0038 .0040 .0037

TABLE 2. Randomization test for the distribution of the eigenvalues of the face autoasso-
ciative memory under the null hypothesis of absence of structure. The first three columns
represent the average, maximum, and minimum proportion of variance explained for the
eigenvectors of W ,,4 and the last column the average proportion of variance for the eigen-

vectors of the face matrix W.

Caucasian face images and twenty samples of 50 Japa-
nese face images were used as training sets. The re-
maining faces (Caucasian and Japanese) were used to
test the ability of the memory to generalize to new
own-race and other-race faces. The estimation of the
gender of the faces was performed using the algo-
rithm described previously, with the difference that,
because we wanted to evaluate the optimal perfor-
mance of the memories, all the eigenvectors were used
for this series of simulations.

3.3.2. Results and discussion. Figure 10a presents the
proportion of correct gender classifications for new
Caucasian and Japanese faces by the Caucasian and
Japanese autoassociative memories. Three major po-
ints can be noted from this figure:

e Both the Caucasian and the Japanese autoasso-
ciative memories perform better with own-race
faces (82% and 94%, respectively) than with
other-race faces (63% and 74%, respectively).

e Japanese faces, however, seem to be on the whole
easier to gender categorize than Caucasian faces

(84% vs 72%).

e All performance, however, is above chance level,
thus indicating that gender information is par-
tially generalizable across races.

In summary, this series of simulations showed that
part of the gender information captured by the eigen-
vectors of a population of faces can be generalized to
another population. This suggests that gender infor-
mation is partially common to all faces independent
of the race of the faces. However, the decrement in
performance between own and other race faces also
suggests that it is easier to process gender informa-
tion in the context of a familiar race than in the con-
text of a different race. This result is interesting in
that such an other-race effect for gender categoriza-
tion has been described for human subjects. Using
the same face database as here, O’Toole, Peterson
and Deffenbacher (1996), found Oriental observers to
be more efficient than Caucasian Observers at gender
categorizing Japanese faces, and vice versa.

As a comparison point between simulations and
human data, Figure 10b presents the d’ obtained by
Caucasian and Oriental observers for Caucasian and
Japanese faces in the O’ Toole et al. study. The main
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tests. The procedure used was as follows. The ele-
ments of matrix X were randomly permuted to give
the matrix X,anq, and the eigenvalues of the matrix
Wiana (i€, XranerTand) were then computed. The
procedure was repeated 2000 times in order to be
able to derive an empirical sampling distribution of
the eigenvalues of W under the null hypothesis of ab-
sence of structure in the matrix X. The average value
of the first 10 eigenvalues of Wy ,,4 as well as their
minimum and maximum values are reported in Ta-
ble 2 with the corresponding eigenvalues of W. The
corresponding values for the second eigenvalues on-
ward are plotted in Figure 8 (the first eigenvalue is
omitted because its size makes the plot of the other
eigenvalues unreadable).

The relatively high values of the first random eigen-
value are due to the fact that W is a cross-product
matrix (instead of, say, a covariance matrix), and
hence the first eigenvector is almost equivalent to an
average. In the case of the face autoassociative mem-
ory, the first eigenvector is very similar to the average
face3 (i.e., the coefficient of correlation between the
average face and the first eigenvector is r = .9996).
However, the eigenvalue of the face autoassociative
memory (81% ) is very clearly larger than what can be
expected under the null hypothesis (61%). Therefore,
the importance of the eigenvalue associated with the
first eigenvector reflects not only the fact that W is a
cross-product matrix but also the very strong inter-
similarity of faces. The specific structure of the set of
faces is also reflected by the difference in the distrib-
ution of the face eigenvalues from the test eigenvalues
(cf. Figure 8). Clearly, while in the test condition all
the eigenvalues after the first one are almost equiva-
lent (i.e., the space is almost spherical), in the face
condition, the eigenvalues decrease progressively.

As an illustration of the perceptual information
captured by earlier eigenvectors, Figure 9 displays
the first two eigenvectors of an autoassociative mem-
ory created from 25 female and 25 male faces. The
first eigenvector appears clearly to be some kind of
an average face. The second eigenvector is somewhat
harder to describe. At first sight, the hair area seems

3The orthogonality of the eigenvectors makes the ex-
traction of the first eigenvector serve as a sort of centering
process (i.e., subtracting the average face from each face),
and hence the (Z + l)th eigenvector of W is very similar
to the £th eigenvector of a face covariance matrix (like the
one used, for example, by Turk & Pentland, 1991).

to be an important contributor to this eigenvector.
This suggests that, for the sample used in the present
simulation, the hair might be an important factor
for gender discrimination. However, a more precise
analysis of the pixel contributions to this eigenvector,
showed that the forehead, eyebrows, nose, and chin
areas also contribute strongly to this eigenvector. On
the average, male faces in this sample tend to have
a longer chin, a bigger nose, thicker eyebrows, and
shorter hair than female faces (Abdi et al., 1995).

Finally, an analysis of the errors achieved by the
model shows that the system tends to be biased to
classify faces as male. This bias can be explained by
the fact that female faces are more dispersed around
their barycenter than male faces (cf. Figure 7). Hence,
some female faces are closer to the barycenter of the
male faces than they are to their own barycenter.
This bias could be easily avoided by using a classifi-
cation algorithm that takes into account the unequal
dispersion of the female and male faces around their
barycenters.

3.3. Other race effect in gender categorization.
The purpose of this second series of simulations was
to determine the extent to which the gender infor-
mation extracted from a sample of faces can be gen-
eralized to faces from a different population. Pre-
vious work showed that the eigenvectors of an au-
toassociative memory created from a heterogeneous
set of faces, made up of a majority of faces of one
race and a minority of faces of another race, are op-
timal for discriminating between majority-race faces
but not between minority-race faces (O’Toole, Abdi
et al., 1991). To determine whether the Pca approach
would predict such an other-race effect for gender cat-
egorization, we compared the ability of a Caucasian
and a Japanese autoassociative memory to classify
new Caucasian and Japanese faces. If the gender in-
formation contained in face images is independent of
the race of the face, or in other words, if this infor-
mation is generalizable across race, the performance
for Caucasian and Japanese faces should be roughly
equivalent. On the other hand, if gender information
depends on the race of the faces, the Caucasian au-
toassociative memory should classify better new Cau-
casian faces than new Japanese faces and vice versa.

3.3.1. Procedure. The procedure was similar to that
used in the first simulation. Twenty samples of 50



Face images: What can be generalized? 187

OoLD NEW
N 0.4 TES L N 0.4 +
2 * i
0 0.2 - I: S 0.2
= 4T+ =
o O 3 o O
2 2
©.0.2 ﬁ?}g@@ ©.0.2

®
0.8 0.9 1 0.8 0.9 1
eigenvector 1 eigenvector 1
+
+ H +
< <
S 020 L+ of = 02, 536
9 O Oj( 3+ o 9 +J§%¢++ ++
O o &) + + Se
= O+ oogmqj\vﬂ = 0 +@9§ﬁ 3 oF
o +i.d§% ©o ° o ﬂ@%é =) ¢
2 o 2 Q)+
-02 ®-0.2 +
+ -
+
-02 0 02 04 -02 0 02 04

eigenvector 3

eigenvector 3

FIGURE 7. Projections of the 160 Caucasian faces in the database onto the first four eigen-
vectors of a sample of 50 faces. The projections of the 50 training faces (“old”) appear on
the left panels and the projections of the 110 new faces on the right panels. The barycenters
of the male (“0”) and female (“4+”) faces are represented respectively by the letters “M”
and “F”. The second eigenvector is the most important one for discriminating between male

and female faces.

Eigenvectors 1 2 3 4
T 28 .68 .24 .03
r? .08 47 .05 .00

TABLE 1. Correlation analysis be-
tween the projections of the faces
onto the first 4 eigenvectors and the
gender of the faces coded as “0” and
((177 .

The first eigenvector represents essentially the char-
acteristics shared by all the faces or, in other words,

it represents the face category in general. Because
both old (left panel) and new (right panel) faces are
strongly correlated with this eigenvector (the aver-
age squared correlation between a face and the first
eigenvector is .8), it could be used to categorize faces
as opposed to other object categories or to detect
a face in an image. The eigenvalue associated with
this eigenvector is very large: it represents 81% of
the total of the eigenvalues (i.e., it explains 81% of
the total variance). To evaluate the importance of
this value, we performed a series of randomization
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FI1GURE 6. Average, minimum, and maximum proportion of correct classification for learned
(“old”) and unlearned (“new”) faces (collapsed across gender) as a function of the number

of eigenvectors used to reconstruct the faces.

al. (1995) found that with a training set of 158 faces,
about 90% of the new faces were correctly classified as
male or female. In other words, going from a training
set of 50 faces to a training set of 158 faces increases
the performance by less than 10%. This result, in
conjunction with the small performance dispersion
displayed in Figure 6, suggests that generalizable gen-
der information can be derived from a small sample
of faces and remains stable from one sample to the
other. In summary, this series of simulations corrob-
orates the Abdi et al. finding that all eigenvectors
contain information relative to the gender of faces,
but that only the information conveyed by eigenvec-
tors with large eigenvalues can be generalized to new
faces. In addition, it shows that these eigenvectors

can be estimated from a relatively small number of
faces. We shall investigate this issue further in the
third series of simulations.

As an illustration of the role of the first four eigen-
vectors in gender classifying faces, Figure 7 displays
the projections of the faces used in the first series of
simulations onto the first four eigenvectors of a sam-
ple of 50 training faces. The training faces are rep-
resented on the left panels and the new faces on the
right panels. Observation of the distance between
male M and female F barycenters shows that the
second eigenvector is the most reliable gender pre-
dictor. This observation was confirmed by a corre-
lation analysis between the projections of the faces
onto each eigenvector and their gender (cf. Table 1).
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50 faces each. This was aimed to assess the robust-
ness of the type of face representation proposed by
the pcaA approach.

3.2.1. Procedure. Different samples of 50 Caucasian
faces (25 males and 25 females) randomly selected
from the original set of 160 Caucasian face images
were used as training sets. The remaining faces were
used to test the ability of the memory to generalize to
new faces. The faces in the training sets were repre-
sented by I x 50 matrices denoted X1q and the faces
in the training sets by I x 110 matrices denoted Xey.
The estimation of the gender of the faces by the model
was performed using the following algorithm.

1. For each training set, an autoassociative mem-
ory (cf. Equation 5) was created from the face
images and decomposed into its eigenvectors:

W =UAUT . (10)

2. The projections of all the faces (learned and
new) onto the first N (with N < L) eigenvec-
tors (i.e., the ones with the largest eigenvalues)
were computed as:

Golg = XZIdUA_l =V (11)

for the learned faces, and

Grw = XL UA™!

new (12)
for the new faces. Recall that, after complete
Widrow-Hoff learning, the variance of the pro-
jections onto each eigenvector is equal to 1 (i.e.,
the weight matrix is sphericized). This is done
by multiplying U, the eigenvectors of W by
A~!in Equations 11 and 12.

3. The coordinate vectors of the average male face
(m) and the average female face (f) were com-
puted by taking the mean of the projections of
the male and female learned faces onto the first
N eigenvectors, respectively:

J

1
m = 7 ' Z 8j (13)
j€{male faces}
and
1 L

jre{female faces}

where J represents the number of learned male
faces, J' the number of learned female faces;

and g; and g;s the projection of the jth and
j'-th face, respectively, onto the N first eigen-
vectors.

4. The categorization of a face was determined on
the basis of the Euclidean distance between its
projections onto the first N eigenvectors and
the coordinate vectors (in N dimensions) of the
average faces. Specifically, the distance of the
kth face to the average male and female faces
in the N-dimensional subspace is computed as

d(gk, m) = ||gr — m]| (15)

and

d(gk, 1) = |lgr — £1] - (16)
Faces closer to the average female face were
classified as female, and faces closer to the av-
erage male face were classified as male.

Note that in a neural network framework this is
equivalent to using a simple perceptron with the pro-
jections of the faces onto the first N eigenvectors as
input, and the gender of the faces as output (cf. Abdi,
1994b). The number of eigenvectors (N) used to per-
form the categorization task varied from 1 to 50 (50
represents the rank of the matrix W and hence gives
the maximum number of eigenvectors). For each con-
dition (7.e., number of eigenvectors), 20 different sam-

ples were randomly selected from the original set of
faces.

3.2.2. Results and Discussion. Figure 6 presents the
average (solid lines) and the minimum and maximum
(dashed lines) proportions of correct classifications
for old and new faces. The results are collapsed across
gender. This figure shows that, for the old faces (top
panel), the accuracy of categorization increases with
the number of eigenvectors used to reconstruct the
faces. When only the first eigenvector is used, per-
formance is below the chance level (37% correct clas-
sification averaged across samples). When the second
eigenvector is added to the first one, performance im-
proves dramatically (76%). When more eigenvectors
are used, performance increases smoothly until a per-
fect categorization score is obtained with 40 eigenvec-
tors.

For the new faces, the accuracy of categorization
increases significantly with the first four eigenvectors
and then reaches a plateau with a value of 83% cor-
rect classification (plus or minus 5% depending on
the sample). Using the same face database, Abdi et
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F1GURE 5. Proportion of correct classifications obtained with compressed faces versus pro-
portion of correct classifications obtained with non compressed faces. *: new female faces;
+: old female faces; o: new male faces, o: old male faces. The training sets were composed
of 50 faces (25 males, 25 females). The number of eigenvectors used to reconstruct the faces
were 2, 5, 10, 20, 30, 40. For each condition, the proportion of correct classifications was

averaged across 20 random samples.

faces against the proportion of correct classifications
obtained with compressed faces.

3.2. Gender Classification. The purpose of this
first series of simulations was to replicate and ex-
pand the results of Abdi et al. (1995). Abdi et
al. trained two classification networks (perceptron
and radial basis function network) to classify a set
of face images according to their gender. The face
images were either preprocessed via an eigendecom-
position or used directly as input to the classification
networks. They showed that the eigendecomposition

preprocessing not only saves processing time by re-
ducing the size of the classification networks, but also
produces a set of features relevant for discriminating
between male and female faces. In addition, they
showed that although all eigenvectors contain infor-
mation about the gender of a given face, only the
information captured by the eigenvectors with large
eigenvalues is useful to classify new faces. These re-
sults were obtained using a leave-one-out jackknife
technique that maximizes the number of training faces.
In the simulations reported here, a bootstrap tech-
nique was used to test different random samples of
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FIGURE 4. The top panels show a Japanese face reconstructed using 1) the first 40 eigenvec-
tors of an autoassociative memory trained with 160 Caucasian faces (r = .87, r? = .76); 2)
all but the first 40 eigenvectors of the autoassociative memory (r = .25, r? = .06) 18 percent
of the variance of the image is left unexplained [1 — (.76 4+ .06) = .18]. The bottom panels
represent a spatial filtering analysis of the same face (low frequencies—preserving 94% of the
power spectrum—us. high frequencies—preserving 6% of the power spectrum). Filtering
a new face through the autoassociative memory is quite different from filtering it through
spatial frequency filters. The autoassociative memory filters the face image through the
statistical properties of the set of learned faces and so distorts the new image in proportion
to its difference from the set of learned faces.

to simulate gender categorization is detailed in the window caused relatively little change in the perfor-
following section. For now, we simply note that the mance of the model on gender classification. This
results of this preliminary simulation indicated that is made clear in Figure 5, which shows the propor-
compressing the faces by local averaging with a 5 x5 tion of correct classifications obtained with complete
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F1GURE 3. The left panels show the original face. The center panels show: top panel — the
face reconstructed with the first 40 eigenvectors of an autoassociative memory trained with
160 Caucasian faces. The correlation between the original face and the reconstructed face is:
r = .94 (the explained variance is: r? =.88); bottom panel — the face after lowpass filtering
(i.e., only low frequencies are preserved), 93% of the image power is preserved. The right
panels show: top panel — the face reconstructed with all but the first 40 eigenvectors of the
autoassociative memory. The correlation between the original face and the reconstructed
face is: r = .36 (the explained variance is: r? = .13); bottom panel — the face after high-
pass filtering (7.e., only high frequencies are preserved), 7% of the image power is preserved.
Filtering a learned face through the autoassociative memory is somewhat similar to filtering

it through spatial frequency filters.

shown (Harmon, 1973; Samal, 1991) that there is
enough information in a 32 x 32 pixel image of face
digitized with a resolution of 8 gray levels, for faces to
be correctly identified by human subjects. To verify

that we did not lose information essential for gen-
der categorization, a preliminary set of simulations
was performed for a sample of conditions using both
complete and compressed faces. The method used
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recognition and identification tasks require finer in-
formation than a simple categorization task, perfor-
mance for these tasks can be improved by the addi-
tion of a high frequency range. High frequencies carry
information concerning the inner features of a face
(e.g., specific shape of the eyes, nose, and mouth).
Figure 3 illustrates the similarity between the prin-
cipal component and the spatial frequency analysis
for faces learned by the memory: Eigenvectors with
large eigenvalues contain mostly low frequency infor-
mation, and eigenvectors with small eigenvalues con-
tain essentially high frequency information.

However, as noted by Abdi et al. (1995), the ap-
parent similarity between these two approaches should
not be interpreted as an indication that the Pca ap-
proach could be reduced to a simple spatial filtering
technique. In contrast to spatial filters, eigenvectors
depend on the statistical structure of the set of faces
from which they are extracted. Figure 4, for example,
shows that a Japanese face filtered through Caucasian
eigenvectors 1s dramatically distorted, whereas spa-
tial filtering does not have the same effect: When high
frequencies are retained the face is recognizable. This
property of eigenvectors has been used by O’Toole,
Deffenbacher, Abdi & Bartlett (1991) to model the
often cited other-race effect as a perceptual learning
problem. They trained two autoassociative memo-
ries to reconstruct a large number of faces of one race
(“own race”) and a smaller number of faces of an-
other race (“other race”). The ability of the memo-
ries to reconstruct new faces from both races was then
tested. Results showed that new faces from the ma-
jority race were better reconstructed than new faces
from the minority race. Moreover, reconstructions of
new faces from the minority race were more similar
to each other than reconstructions of new faces from
the majority race.

In summary, the principal component and the spa-
tial frequency approaches provide somewhat similar
and complementary analysis of the information con-
tained in facial patterns. The work by O’Toole et al.
(1993), Valentin and Abdi (1996) and Sergent (1986a)
shows that most of the information in faces as mea-
sured by traditional image analysis techniques (i.e.,
energy spectrum for the spatial frequencies analysis,
and variance explained or inertia for the principal
components analysis) is conveyed by the lower fre-
quency bandwidth or by the eigenvectors with the
largest eigenvalues. This does not imply, although

it was suggested by Ginsburg (1978) and Sirovich
and Kirby (1987), that the information conveyed by
the high frequencies or by the eigenvectors with rel-
atively small eigenvalues is redundant or not useful.
In fact, both the principal component and the spatial
frequency approaches suggest the existence of a dis-
sociation between two kinds of information in faces:
1) general configural information (basic shape and
structure of the face) which is conveyed by low spa-
tial frequencies or eigenvectors with large eigenval-
ues, and is useful for general semantic categorization;
and 2) highly detailed, identity-specific information,
which is conveyed by high spatial frequencies or eigen-
vectors with small eigenvalues, and is useful for face
recognition and identification.

3. SIMULATIONS

In the first two series of simulations we tested the
“generalizability” of the information captured by ei-
genvectors for classifying new faces (i.e., not learned)
according to their gender. The first series evaluates
the ability of the model to generalize to new faces
from the same race as the learned faces, and the sec-
ond one the ability to generalize to new faces from
a different race. The third series of simulations esti-
mates the stability of the information carried by dif-
ferent eigenvectors as a function of their eigenvalues.
These simulations were designed to extend previous
analyses of the statistical properties of the eigenvec-
tors extracted from the cross-product matrix of a set
of male and female face images.

3.1. Stimuli. A set of 320 full-face pictures of young
adults (80 Caucasian females, 80 Caucasian males, 80
Japanese females, and 80 Japanese males) was used
as the database. The images were roughly aligned
along the axis of the eyes so that the eyes of all faces
were about the same height. None of the pictured
faces had major distinguishing characteristics, such
as beards or glasses. Each face was digitized from a
slide as a 225 x 151 = 33975 pixel image with a reso-
lution of 16 gray levels per pixel. For computational
convenience, faces were compressed by local averag-
ing, using a b x 5 window, giving 46 x 31 = 1426 pixel
images.

Reducing the number of pixels in an image filters
out part of the high detailed information, preserv-
ing only the low spatial frequency information. This
should not be a problem, however, since it has been
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F1GURE 2. The top panels show three original faces and the bottom panels the “responses”
produced by an autoassociative memory trained with 160 Caucasian faces when these faces
are presented as input after complete Widrow-Hoff learning. The faces are 1) a Caucasian
face learned by the memory, 2) a Caucasian face that has not been learned by the memory,
and 3) a Japanese face that has not been learned by the memory. The learned face is
reconstructed perfectly by the memory (r = 1). The Japanese face is more distorted by the
memory than the new Caucasian face (r = .93, > = .87 versus r = .82, r? = .68 respec-
tively).
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When displayed visually (i.e., as an image), the
eigenvectors of the weight matrix appear face-like.
They can be thought of as a set of “global features”,
“macrofeatures,” or “eigenfeatures” from which the
faces are built (Abdi, 1988; O’Toole & Abdi, 1989;
Sirovich & Kirby, 1987). The estimation of a face by
the system can, thus, be represented as a weighted
sum of eigenvectors (from Eq. 2, and Eq. 5)

L L
Xe = Mwuixp =3 A ith v, = ul
XE — zuzuz XE — LYely w1 Ye = uz Xk

=1 =1 (7)

where the weights 7, are the projections of the faces
onto the eigenvectors. These weights can be inter-
preted as an indication of the extent to which a given
eigenvector (or “macrofeature”) characterizes a par-
ticular face.

When Widrow-Hoff learning is used, Eq. 5 reduces
to

W =uu” (8)

and the estimation of a face is obtained by dropping
the eigenvalues in Eq. 7:
L

X = E yeup  with v, = ul xy .
=1

)

Intuitively, this is equivalent to giving the same im-
portance to each eigenvector in the reconstruction
of a face. More formally, we say that Widrow-Hoff
learning amounts to sphericizing the weight matrix
W.

A first advantage of using eigenvectors to repre-
sent faces is that they are determined a posteriori. A
second advantage is that they reflect the statistical
structure of the set of faces from which they are ex-
tracted. As an illustration, Figure 1 displays the first
three eigenvectors extracted from a set of 80 male
faces (left panels) and the first three eigenvectors ex-
tracted from a set of 80 female faces (right panels).
Clearly, these two sets of eigenvectors differ in global
shape and form.

From a signal processing point of view, the sys-
tem acts somewhat like a Wiener filter (Abdi, 1994a).
In neural network terminology this type of system is
known as a linear content addressable memory. When
new faces are presented as memory keys, they are fil-
tered through the features extracted from the set of
learned faces. Hence, new faces that resemble the

learned faces are less distorted by the memory than
new faces which are very different from the learned
faces. In other words, the more different a new face
is from the learned faces, the poorer the quality of
reconstruction of this face will be. This is illustrated
by Figure 2 (see also Valentin, Abdi, Edelman, & Ni-
jdam, 1996, for a detailled analysis of this phenome-
non).

2.3. Analysis of Perceptual Information in Fa-
ces. An interesting aspect of the PcaA approach is
that it provides a tool for analyzing the perceptual
information in faces. For example, O’ Toole et al.
(1993), and Valentin and Abdi (1996) examined the
kind of information provided by different ranges of
eigenvectors, and the usefulness of this information
with respect to specific tasks. They showed that dif-
ferent tasks make different demands in terms of the
information that needs to be processed, and that this
information is not contained in the same ranges of
eigenvectors. More specifically, they showed that the
eigenvectors with larger eigenvalues convey informa-
tion relative to the basic shape and structure of the
faces as well as their orientation (e.g., full-face or
profile). This kind of information is most useful in
categorizing faces along general semantic dimensions
such as gender or race (O’Toole, Abdi, Deffenbacher
& Bartlett, 1991). In contrast, the eigenvectors with
smaller eigenvalues capture information that is spe-
cific to single or small subsets of learned faces. These
eigenvectors are most useful for distinguishing a par-
ticular face from any other face.

These results can be related to some earlier work
by Sergent (1986a, 1986b), in which facial informa-
tion was analyzed in terms of spatial frequencies. Ser-
gent reported that different kinds of facial informa-
tion are conveyed by different physical characteris-
tics of the face. Specifically, faces contain both feat-
ural and configural properties. These properties are
not conveyed by the same spatial frequency ranges
and are not equally useful, depending on the nature
of the processes involved in performing a particular
task. A low frequency representation provides infor-
mation concerning facial configurations (i.e., general
shape, outer contour, and hairline of a face) but does
not provide a detailed representation of the individ-
ual features. Consequently, categorization tasks may
be accurately achieved by processing only the low fre-
quency range of a face image. In contrast, because
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FIGURE 1. The first 3 eigenvectors of an autoassociative memory trained with 80 Caucasian
male faces appear in the left panels, the first 3 eigenvectors of an autoassociative memory
trained with 80 Caucasian female faces in the right panels. Global differences in shape and
form can be observed between the two sets of eigenvectors.
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memory is to find the values or weights for the con-
nections between input units so that when a portion
of an input is presented as a memory key, the memory
retrieves the complete pattern, filling in the missing
components. Kohonen (1977) used faces as stimuli
to illustrate some properties of autoassociative mem-
ories. Specifically, he showed that an autoassocia-
tive memory can act as a content addressable mem-
ory for faces. Both Kohonen (1977) and Anderson
et al. (1977) pointed out that using an autoassocia-
tive memory to store a set of patterns i1s equivalent
to computing the eigen-decomposition of the cross-
product matrix created from the set of features de-
scribing these patterns, or, in other words, perform-
ing the principal component analysis of the set of
patterns. The model is presented first, followed by
a discussion of the interpretation of eigenvectors as
“macrofeatures”.

2.1. Model Description. To construct the input
patterns, each face i1s digitized and coded as a I-
dimensional vector x;, concatenated from the columns
of the face image (with I representing the number of
pixels, and k indexing the faces). For example, if
the kth face image is a 225 x 151 pixel image, it is
represented by the 33975-element vector xj, where
each entry represents a gray scale value. The vectors
are normalized so that xgxk = 1. The set of K faces
composing the learning set is represented by an I x K
matrix X in which the kth column is equal to xj.

The faces are stored in an autoassociative memory
composed of I neuron-like units as follows: Each unit
is connected to all the other units, and the intensities
of the connections are represented by an / x I matrix
W. When standard Hebbian learning is used, W is
given by the sum of the outer product matrices of
each face vector

K
W =) xpxf =XX" . (1)
k=1
The reconstruction of the kth face is obtained by pre-
multiplication of the vector x; by the matrix W:

ﬁk = WXk (2)
where X represents the estimation of the kth face
by the memory. The quality of this estimation can
be measured by computing the cosine of the angle

between Xj and xj:

T
_TkXk (3)
BRI

A cosine of 1 indicates a perfect reconstruction of the
stimulus.

The performance of the autoassociator can be im-
proved by using a Widrow-Hoff error-correction learn-
ing rule. The Widrow-Hoff learning rule corrects the
difference between the response of the system and the
expected response by iteratively changing the weights
in matrix W as follows:

Wiy = Wiy +9(X = Wiy X)XT

cos(Xg, Xg) =

(4)
where 7 is a small positive constant (typically smaller
than one).

2.2. Eigenvectors as “Macrofeatures”. As poin-
ted out by Anderson et al. (1977) and Kohonen
(1977), since the weight matrix W is a cross-product
matrix, it is positive semi-definite (i.e., all its eigen-
values are positive or zero, and all of its eigenvectors
are real). As a consequence, W can be expressed in a
convenient way as a weighted sum of its eigenvectors:

L
W =) A\uuf = UAU”
=1

with UTU =1

(5)
where ug is the f-th eigenvector of W, A, the /-th
eigenvalue, I stands for the identity matrix, A repre-
sents the L x L diagonal matrix of eigenvalues, U is
the 7 x L matrix of eigenvectors, and L is the rank
of the matrix W. The eigenvectors in U are gener-
ally ordered according to their eigenvalues. In what
follows, the eigenvector with the largest eigenvalue
is referred to as the first eigenvector, the eigenvector
with the second largest eigenvalue is referred to as
the second eigenvector, and so on.

The eigenvectors and eigenvalues of the weight ma-
trix W can be obtained directly using the singular
value decomposition (cf., e.g., Horn & Johnson, 1985)
of the face matrix X. Formally:

X = UAVT (6)

where U represents the matrix of eigenvectors of XX
V represents the matrix of eigenvectors of X7 X, and

A is the diagonal matrix of singular values, which are

equal to the square roots of the eigenvalues of XX

and XTX (they are the same).
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of a set of learned faces. These features or “macro-
features” (Anderson & Mozer, 1981) are the eigen-
vectors, or principal components of the pixel cross-
product matrix of a set of faces. They can be ob-
tained directly (Sirovich & Kirby, 1987; Turk & Pent-
land, 1991) or via a neural network-linear autoasso-
ciator (Abdi, 1988; Diamantaras & Kung, 1996) or a
backpropagation network (Cottrell & Fleming, 1990).
This approach, generally called the principal compo-
nent analysis (PCA) approach has the advantage of
eliminating the difficult problem of feature selection
and extraction. Although not intended as a general
solution to the problem of face processing, the pPca
approach provides a way of modeling a wide range of
tasks including face categorization and recognition,
as well as simulating some well-known psychological
phenomena such as the other-race effect! or the ef-
fect of typicality? on face recognition (cf. O’Toole,
Abdi, Deffenbacher, & Valentin, 1995, for a review).
Originally applied to raw pixel-based representation
of faces, this approach has been applied recently to
more sophisticated representations such as 2D sepa-
rated shape and texture representations (e.g., Han-
cock, Burton & Bruce, 1996) and 3D laser scan data
(e.g., O’Toole, Vetter, Troje, & Biilthoff, 1997).

The general purpose of the present work is to ana-
lyze the robustness of the kind of face representation
proposed by the pca approach. The human face is
a complex visual pattern that contains general cate-
gorical information as well as idiosyncratic, identity
specific information. By categorical information, we
mean that some aspects of a face are not specific to
that particular face but are shared by subsets of faces
(e.g., female faces share some visual characteristics
such as smoothness of the skin, prominence of the
cheeks, or roundness of the face). These aspects can
be used to assign both unfamiliar and familiar faces
to general semantic categories such as gender or race.

Previous work showed that the pca approach dis-
sociates spontaneously between different types of in-
formation. O’Toole, Abdi, Deffenbacher and Valentin
(1993) reported that eigenvectors with large eigenval-
ues capture information that 1s common to subsets

Lthe fact that it is easier to recognize faces from our own
race than from another race.

2the fact that typical (i.e., average) faces are harder to
recognize than distinctive faces.

of faces (i.e., categorical information) and eigenvec-
tors with small eigenvalues capture information spe-
cific to individual faces (i.e., identity specific informa-
tion). In a recent study, Abdi et al. (1995) showed
that, while all eigenvectors are necessary to categorize
learned faces optimally along general categories (e.g.,
gender), only the information contained by the eigen-
vectors with large eigenvalues can be generalized to
new faces. Our objective was to examine further the
generalizability and the stability of categorical infor-
mation conveyed by the eigenvectors of a set of male
and female faces.

The present paper is organized as follows. The
PCA approach is presented briefly first (for a more de-
tailed presentation see e.g., Valentin, Abdi, O’Toole
& Cottrell, 1994 or Valentin, Abdi & O’Toole, 1994)
followed by a discussion of the interpretation of eigen-
vectors as “macrofeatures.” Next, the usefulness of
this approach for analyzing the perceptual informa-
tion in faces is discussed along with its relationship
to some earlier work on the role of different spatial
frequencies in face processing. Finally, three series
of simulations concerning the statistical properties of
eigenvectors derived from a set of face images are de-
scribed. In the first series;, we estimate the general-
izability of the gender information conveyed by the
eigenvectors extracted from small sets of faces. In
the second series, we examine if the gender informa-
tion extracted from a given population of faces (e.g.,
Caucasian) can be generalized to faces from a differ-
ent population (e.g., Japanese). In the third series,
we evaluate the “stability” of face eigenvectors (i.e.,
the minimum number of faces necessary to estimate
them) as a function of the variance they explain in
the set of faces. The results of these simulations are
then discussed in relation to temporal properties of
the visual system and are put in perspective with
some neuropsychological data.

2. PRINCIPAL COMPONENT AND
LINEAR NEURAL NETWORK APPROACH

This approach is based on earlier work by Ander-
son, Silverstein, Ritz, and Jones (1977) and Kohonen
(1977) on autoassociative memories. Autoassociative
memories are a special case of associative memories in
which the input patterns are associated with them-
selves. The goal of constructing an autoassociative
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We present an overview of the major findings of the prin-
cipal component analysis (PCA) approach to facial analysis.
In a neural network or connectionist framework this approach
is known as the linear autoassociator approach. Faces are
represented as a weighted sum of macrofeatures (eigenvec-
tors or eigenfaces) extracted from a cross-product matrix of
face images. Using gender categorization as an illustration,
we analyze the robustness of this type of facial representa-
tion. We show that eigenvectors representing general cate-
gorical information can be estimated using a very small set of
faces and that the information they convey is generalizable
to new faces of the same population and to a lesser extent
to new faces of a different population.

1. INTRODUCTION

One of the major problems in modeling face process-
ing is to find a way of representing faces that allows
for the wide range of tasks typical of human perfor-
mance. Traditionally, computational models of face
recognition represent faces in terms of geometric de-
scriptors that include distances, angles, and areas
between elementary features such as eyes, nose, or
chin (Harmon & Hunt, 1977; Harmon, Khan, Lash &
Ramig, 1981; Kaya & Kobayashi, 1972; Sakai, Nagao
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& Kidode, 1971) or in terms of template parameters
(Yuille, 1991), or isodensity lines (Nakamura, Mathur
& Minami, 1991). Although these approaches eco-
nomically represent faces in a way that is relatively
insensitive to variations in scale, tilt, or rotation of
the faces, they are not without problems (for a re-
view, see Samal & Tyengar, 1992).

The major difficulty with representing faces as a
set of features 1s that it assumes some a prior: knowl-
edge about what are the features and/or what are
the relationships between them that are essential to
the task at hand. Burton, Bruce, and Dench (1993),
for example, showed the difficulty of finding a set of
features useful in discriminating accurately between
male and female faces. In a series of five experiments,
they examined the usefulness of different kinds of fea-
ture measures for predicting the gender of a set of
faces. The measures they used ranged from simple
raw distances between facial landmarks (e.g., pupils)
to more complex measures including ratios of dis-
tances, or angles taken from full faces and/or profile
views of the faces. They showed that no simple set
of features can predict the gender of faces accurately.
By combining measurements from all five of their ex-
periments, however, they obtained 94% correct clas-
sification by gender (for the learning set). They con-
cluded that “explicit measurement” of facial features
is probably not the best “basis for automated face
recognition systems” .

Abdi, Valentin, Edelman, and O’Toole (1995), sh-
owed that comparable gender categorization perfor-
mance can be obtained using a posterior: features
automatically derived from the statistical structure
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