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How (I like) to build Cognitive Models
• I like to be able to relate them to the brain, so “neurally

plausible” models are preferred -- neural nets.
• The model should be a working model of the actual task,

rather than a cartoon version of it.
• Of course, the model should nevertheless be simplifying

(i.e. it should be constrained to the essential features of the
problem at hand).

• Then, take the model “as is” and fit the experimental data:
0 fitting parameters is preferred over 1, 2 , or 3.



The other way (I like) to build
Cognitive Models

• Same as above, except:
• Use them as exploratory models -- in domains where there

is little direct data (e.g. no single cell recordings in infants
or undergraduates) to suggest what we might find if we
could get the data. These can then serve as “intuition
pumps.”

• Examples:
• Why we might get specialized face processors
• Why those face processors get recruited for other tasks



Outline
• Review of our model(s) of face (and object)

classification.
• (Very brief!) summary of results in face

specialization (exploratory model)
• Summary of results in expression recognition

(data fitting model)
• Tour of our model of visual expertise (exploratory

model)
• Wrap up
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The Gabor Filter Layer
• Basic feature: the 2-D Gabor wavelet filter (Daugman, 85):

• These model the processing in early visual areas

Convolution

*

Magnitudes

Subsample in
a 29x36
grid



The Gestalt Level
• We reduce dimensionality of the perceptual-level representation with

Principal Components Analysis (PCA):

• This is neurologically plausible because PCA can be
learned by Hebbian networks.

• The resulting 50-element vector is input to the category
level.

...

Output: 50-element
reduced representation
(~80% of the variance in
expression case).

Input: 40,600-element Gabor
Lattice

Perceptual Level

Gestalt Level



The Final Layer: Classification
• The final layer is trained based on the category of the

stimulus: expression, identity, object class - one output per
class.

• Categories can be at different levels: basic, subordinate.
• Simple learning rule (~delta rule). It says (mild lie here):

• add inputs to your weights (synaptic strengths) when
you are supposed to be on,

• subtract them when you are supposed to be off.
• This makes your weights “look like” your favorite patterns –

the ones that turn you on.
• When no hidden units => No back propagation of error.
• When hidden units: we get task-specific features (most

interesting when we use the basic/subordinate distinction)



Correlates to Psychological Variables
• 1 trained neural network = 1 human subject.
• “Answer” (button push, etc.) = highest network output
• Response distribution = average over multiple network

outputs
• Response time = uncertainty of maximal output (1.0 - ymax).
• Errors: Errors! I.e., when highest output is wrong answer
• Similarity: correlation between representations at a

particular level of processing (note: best fitting level =>
suggestion that we use that level)

• Discriminability: 1 – similarity



Outline
• Review of our model(s) of face (and object)

classification.
• (Very brief!) summary of results in face

specialization (exploratory model)
• Summary of results in expression recognition

(data fitting model)
• Tour of our model of visual expertise (exploratory

model)
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Face Specialization
• Why do we have a face processor in fusiform gyrus?  Our model

suggests that there is an interaction  between
• Low spatial frequency (LSF) information and
• The task of face expertise (subordinate level categorization)

• Given competing networks, the one that gets the LSF’s wins
• Recent behavioral, fMRI and ERP data support this account (Schyns &

Oliva, 1999; Gauthier et al. 1999; Goffaux et al., 2002)

Tong et al. (2000)

Feature
Extraction

...
...

...
...

...

...

Dailey and Cottrell (1999),
Neural Networks.
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The Issue: Are Similarity and
Categorization Two Sides of the

Same Coin?
• Some  researchers believe perception of facial

expressions is a new example of categorical
perception:
• Like the colors of a rainbow, the brain separates

expressions into discrete categories, with:
• Sharp boundaries between expressions, and…
• Higher discrimination of faces near those

boundaries.



The Issue: Are Similarity and
Categorization Two Sides of the

Same Coin?
• Some researchers believe the underlying

representation of facial expressions is NOT
discrete:
• There are two (or three) underlying dimensions,

e.g., intensity and valence (found by MDS).
• Our perception of expressive faces induces a

similarity structure that results in a circle in this
space

• Our model of expression recognition
accounts for both kinds of data



Expression recognition
• Here, we trained a simple neural network to classify the six

“basic” facial expressions, using the Ekman & Friesen
“Pictures of Facial Affect” (POFA) database.

• We fit (without fit parameters) a variety of data consistent
with:
• The “discrete categories” account of facial expression recognition

(the categorical perception account).
• The “continuous, multidimensional space” account of facial

expression perception (the “emotion circumplex” account).
• Hence, these data need not be at odds (but the discrete

folks need to rethink their position).

Dailey, Cottrell, Padgett, and Adolphs (2002), Journal of Cognitive Neuroscience 



Facial Expression Database
• Ekman and Friesen quantified muscle movements (Facial Actions)

involved in prototypical portrayals of happiness, sadness, fear, anger,
surprise, and disgust.
• Result: the Pictures of Facial Affect Database (1976).
• 70% agreement on emotional content by naive human subjects.

• 110 images, 14 subjects, 7 expressions.

Anger, Disgust, Neutral, Surprise, Happiness (twice), Fear, and Sadness 
This is actor “JJ”: The easiest for humans (and our model) to classify



Results (Generalization)

• Kendall’s τ (rank order correl.) of emotion difficulty:  .667, p=.0441
• Fear is hard because it is the most confusable expression.

ExpressionExpression Network % CorrectNetwork % Correct Human % AgreementHuman % Agreement

HappinessHappiness 100.0%100.0% 98.7%98.7%

SurpriseSurprise 100.0%100.0% 92.4%92.4%

DisgustDisgust 100.0%100.0% 92.3%92.3%

AngerAnger 89.2%89.2% 88.9%88.9%

SadnessSadness 82.9%82.9% 89.2%89.2%

FearFear 66.7%66.7% 87.7%87.7%

AverageAverage 89.9%89.9% 91.6%91.6%



Examining the Net’s Representations
• We want to visualize “receptive fields” in the network.
• But the Gabor magnitude representation is noninvertible.
• We can learn an approximate inverse mapping, however.
• We used linear regression to find the best linear

combination of Gabor magnitude principal components for
each image pixel.

• Then projecting each unit’s weight vector into image space
with the same mapping visualizes its “receptive field.”



Examining the Net’s Representations
• The “y-intercept” coefficient for each pixel is simply the

average pixel value at that location over all faces, so
subtracting the resulting “average face” shows more
precisely what the units attend to:

• Apparently local features appear in the global templates.



Morph Transition Perception
• Morphs help psychologists study categorization behavior in humans
• Example: JJ Fear to Sadness morph:

• Young et al. (1997) Megamix: presented images from
morphs of all 6 emotions (15 sequences) to subjects in
random order, task is 6-way forced choice button push.

    0%       10%      30%       50%      70%      90%     100%



Modeling Categorical Perception

• Overall correlation r=.9416, with NO FIT PARAMETERS!

iness Fear Sadness Disgust Anger Happ-Surprise



Modeling Discrimination (for CP)
• Is improved discrimination near boundaries due to influence of the

categories?
• Discrimination is naturally modeled as the flip side of similarity:

• We model discrimination as 1-r (correlation) between pairs.
• Prediction of CP: best fit should occur at category level of the model.
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Model Discrimination Scores

• The model fits the data best at a precategorical layer:
The layer we call the “gestalt” layer; NOT at the
category level

iness Fear Sadness Disgust Anger Happ-Surprise

PERCENT CORRECT DISCRIMINATIONPERCENT CORRECT DISCRIMINATION

HUMANHUMAN

MODELMODEL
OUTPUTOUTPUT
LAYERLAYER
R=0.36R=0.36

MODELMODEL
GESTALTGESTALT
LAYERLAYER
R=0.61R=0.61



Non-CP effect 1: Reaction Time
iness Fear Sadness Disgust Anger Happ-Surprise

Correlation between model & data: .6771, p<.001Correlation between model & data: .6771, p<.001

HUMAN SUBJECTS REACTION TIMEHUMAN SUBJECTS REACTION TIME

MODEL REACTION TIME (1-MODEL REACTION TIME (1-
MAX_OUTPUT)MAX_OUTPUT)



Non-CP effect 2:
Detecting a Morph Trajectory

• A strong discrete categories theory would predict no
perception of the structure internal to a category.

Happy

Afraid

Surprised

50%
70%

70%

50%

30%

30%

• But subjects are above
chance at detecting the
target emotion of 30%
morphs!

• The model’s sensitivity is
nearly identical to human
sensitivity within
categories.



Mixed-in Expression Detection
Mixed-In Expression Detection
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Similarity Structures
• Multidimensional scaling (MDS) helps visualize similarity ratings. The

technique makes facial expression space look continuous.
• Human and model confusions lead to similar structures.
• Confusion matrices are also highly correlated on train and test sets.

HappyDisgusted

Surprised
Angry

AfraidSad

HappyDisgusted

SurprisedAngry

Afraid
Sad

Human Model
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Are you a
perceptual expert?

Take the expertise test!!!**

“Identify this object with the first
name that comes to mind.”

**Courtesy of Jim Tanaka, University of Victoria



“Car” - Not an expert

“2002 BMW Series 7” - Expert!



“Bird” or “Blue Bird” - Not an expert

“Indigo Bunting” - Expert!



“Face” or “Man” - Not an expert

“George Dubya”- Expert!
““JerkJerk”” or  or ““MegalomaniacMegalomaniac”” - Democrat! - Democrat!



Behavioral benchmarks of expertiseBehavioral benchmarks of expertise
••  Entry level shift - can recognize items on category and  Entry level shift - can recognize items on category and
individual level equally fastindividual level equally fast

Neurological benchmarks of expertiseNeurological benchmarks of expertise
••  Enhancement of N170 ERP brain component  Enhancement of N170 ERP brain component
••  Increased activation of   Increased activation of fusiform gyrusfusiform gyrus

How to identify an expert?How to identify an expert?
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Neurologic Neurologic Markers of ExpertiseMarkers of Expertise
Event-related PotentialsEvent-related Potentials

Tanaka & Curran, 2001; see also  Gauthier, Curran,
Curby & Collins, 2003, Nature Neuro.

Novice Domain Expert Domain



Neurologic Neurologic Markers of ExpertiseMarkers of Expertise

Fusiform
Gyrus

CarCar
ExpertsExperts

BirdBird
ExpertsExperts

NeuroimagingNeuroimaging



Visual expertise
• The so-called “Fusiform Face Area” (FFA) is apparently

specialized for face processing.
• However, Gauthier and colleagues have shown that it also

lights up for cars when the subject is a car expert, birds
when the subject is a bird expert, Greebles when the
subject is a Greeble expert (what’s a Greeble? Later.)

• Hence her view is that the FFA is an area associated with
a process: fine level discrimination of homogeneous
categories.

• But why would an area that presumably starts as a face
area get recruited for these other visual tasks?         Surely,
they don’t share features, do they?

 Sugimoto & Cottrell (2001), Proceedings of the Cognitive Science Society



Motivation: Evidence for the Face
Specific View

• Prosopagnosia patients have a deficit in identifying
individual faces but normal in detecting faces or other non-
face objects, while visual object agnosia patients may be
normal with face recognition but have a deficit in object
recognition.

• fMRI shows the fusiform face area “lights up” for faces but
not for objects (Kanwisher)

• Recognition of faces is more sensitive to configural
changes than objects.

Face and non-face objects have separate processing
mechanisms



Motivation: Evidence against the face
specific view

• Gauthier et al. point out that faces and objects differ not
only in their image geometries, but also in …

1. Level of discrimination
2. Level of experience

We are all face “experts”.

• FFA shows high activation for a wide variety of non-
objects when these two conditions are controlled.



Greeble Experts (Gauthier et al.
1999)

• Subjects trained over many hours to recognize individual
Greebles.

• Activation of the FFA increased for Greebles as the training
proceeded.



Model Database
• 64x64 8bit grayscale

images of faces, books,
cups, cans and Greebles

• 12 individuals per category
• 5 different images per

individual
• Total of 5x12x5=300

images
Main idea: We willMain idea: We will pretrain  pretrain at different levels of categorization.at different levels of categorization.
An An ““expertexpert”” is a network trained to individuate individuals. is a network trained to individuate individuals.
A non-expert is a network trained only to categorize at theA non-expert is a network trained only to categorize at the
superordinate superordinate level.level.
Can an expert network learn theCan an expert network learn the Greebles  Greebles better?better?



Model

• Pretrain two groups of
neural networks on
different tasks.

• Compare the abilities to
learn a new individual
Greeble classification
task.
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Experts Learn Experts Learn Greebles Greebles FasterFaster

Time to
learn
Greebles

Training time on previous task



Entry Level Shift:Entry Level Shift:
Subordinate RT decreases withSubordinate RT decreases with

trainingtraining
  ((rt rt = uncertainty of response = 1.0 -= uncertainty of response = 1.0 -max(output)max(output)))

Human dataHuman data
--- Subordinate
     Basic

RT

Network dataNetwork data

# Training Sessions



How do experts learn the task?How do experts learn the task?

•• Expert level networks must be Expert level networks must be sensitivesensitive to to
within-class variation:within-class variation:
•• Representations must Representations must amplifyamplify small small

differencesdifferences
•• Basic level networks must Basic level networks must ignoreignore within-class within-class

variation.variation.
•• Representations should Representations should reducereduce

differencesdifferences



Observing hidden layer representations
•• Principal Components Analysis on hidden unitPrincipal Components Analysis on hidden unit

activation:activation:
•• PCA of hidden unit activations allows us to reducePCA of hidden unit activations allows us to reduce

the dimensionality (to 2) and plot representations.the dimensionality (to 2) and plot representations.
•• We can then observe how tightly clustered stimuliWe can then observe how tightly clustered stimuli

are in a low-dimensional subspaceare in a low-dimensional subspace
•• We expect basic level networks to separate classes,We expect basic level networks to separate classes,

but not individuals.but not individuals.
•• We expect expert networks to separate classes andWe expect expert networks to separate classes and

individuals.individuals.



Subordinate level training magnifiesSubordinate level training magnifies
small differences small differences withinwithin object object

representationsrepresentations
1 epoch 80 epochs 1280 epochs

Face

Basic

       greeble



Greeble Greeble representations are spreadrepresentations are spread
out prior to out prior to Greeble Greeble TrainingTraining

FaceBasic

       greeble



Variability Decreases Learning TimeVariability Decreases Learning Time

Greeble
Learning
Time

Greeble Variance Prior to Learning Greebles

(r = -0.834)(r = -0.834)



Examining the Net’s Representations
• We want to visualize “receptive fields” in the network.
• But the Gabor magnitude representation is noninvertible.
• We can learn an approximate inverse mapping, however.
• We used linear regression to find the best linear

combination of Gabor magnitude principal components for
each image pixel.

• Then projecting each hidden unit’s weight vector into
image space with the same mapping visualizes its
“receptive field.”



Two hidden unit receptive fields
AFTER TRAINING AS A FACE EXPERT AFTER FURTHER TRAINING AS A GREEBLE EXPERT

HU  16HU  16

HU 36HU 36



Conclusion
• Experts learned a new domain of expertise faster.
• The weird thing is: the more experts are trained,

the faster they learn the new task:
• Suggests the features developed for fine level

discrimination (high entropy representations) are good
for differentiating other stimuli.

• Another way to think about it is: for fine level
discrimination, similar inputs need to lead to dissimilar
representations.

Visual expertise is a general skill that is not specific to
any class of images including faces.



Wrap up
• We are able to explain a variety of results in face

processing.
• Why low spatial frequencies appear to be important in face

processing (specialization model: LSF -> better learning
and generalization).

• How expression processing can appear to be discrete and
continuous at the same time (but it is continuous!).

• Why fear is the hardest expression to recognize.
• Why a face area would be recruited to be a Greeble area:

expert level (fine discrimination) processing leads to highly
differentiated features useful for other discrimination tasks.



END



Conclusions
• The best models perform the same task people do
• Concepts such as “similarity” and “categorization” need to

be understood in terms of models that do these tasks
• Our model simultaneously fits data supporting both

categorical and continuous theories of emotion
• The fits, we believe, are due to the interaction of the way

the categories slice up the space of facial expressions,
• And the way facial expressions inherently resemble one

another.
• It also suggests that the continuous theories are correct:

“discrete categories” are not required to explain the data.
• We believe our results will easily generalize to other visual

tasks, and other modalities.



Outline
ν An overview of our facial expression recognition

system.
ν The internal representation shows the model’s

prototypical representations of Fear, Sadness, etc.
ν How our model accounts for the “categorical” data
ν How our model accounts for the “two-dimensional”

data
ν Discussion
ν Conclusions



Correlation of Net/Human Errors
ν Like all good Cognitive Scientists, we like our models to

make the same mistakes people do.
ν Networks and humans have a 6x6 confusion matrix for the

stimulus set.
ν This suggests looking at the off-diagonal terms: The errors
ν Correlation of off-diagonal terms: r = 0.567. [F (1,28) =

13.3; p = 0.0011]
ν Again, this correlation is an emergent property of the

model: It was not told which expressions were confusing.



Subject Discrimination Scores

ν Subjects discriminate pairs of images best when they
cross a perceived category boundary

iness Fear Sadness Disgust Anger Happ-Surprise

PERCENT CORRECT DISCRIMINATIONPERCENT CORRECT DISCRIMINATION

BUTTON PUSHBUTTON PUSH



Megamix Human Results
ν Sharp transitions, small intrusions, scalloped RTs

iness Fear Sadness Disgust Anger Happ-Surprise

REACTION TIMEREACTION TIME

BUTTON PUSHBUTTON PUSH



Discrimination
ν Classically, one requirement for “categorical perception” is

higher discrimination of two stimuli at a fixed distance apart
when those two stimuli cross a category boundary

ν Indeed, Young et al. found in two kinds of tests that
discrimination was highest at category boundaries.

ν The result that we fit the data best at a layer before any
categorization occurs is significant: In some sense, the
category boundaries are “in the data,” or at least, in our
representation of the data.



Discussion

ν The discrimination correlates with human results most
accurately at a precategorization layer: The discrimination
improvement at category boundaries is in the
representation of data, not based on the categories.

ν These results suggest that for expression recognition, the
notion of “categorical perception”  simply is not necessary
to explain the data

ν Indeed, most of the data can be explained by the
interaction between the similarity of the representations
and the categories imposed on the data: Fear faces are
similar to surprise faces in our representation – so they are
near each other in the circumplex



Discussion
ν Our model of facial expression recognition:

• Performs the same task people do
• On the same stimuli
• At about the same accuracy

ν Without actually “feeling” anything, without any access to
the surrounding culture, it nevertheless:
• Organizes the faces in the same order around the

circumplex
• Correlates very highly with human responses.
• Has about the same rank order difficulty in classifying

the emotions



Outline
ν An overview of our facial expression recognition

system.
ν How our model accounts for the “categorical” data
ν How our model accounts for the “two-dimensional”

data
ν The internal representation shows the model’s

prototypical representations of Fear, Sadness, etc.
ν Discussion
ν Conclusions



Megamix Human Results

Mixed-In Expression Detection
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ν Young et al. also found evidence for non-categorical
perception

ν Subjects rated 1st, 2nd, and 3rd most apparent emotion.

ν At the 70/30 morph level, subjects were above chance at
detecting mixed-in emotion. These data seem more
consistent with continuous theories of emotion.


