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Preface

Face recognition is a task humans perform remarkably easily and successfully. This appar-
ent simplicity was shown to be dangerously misleading as the automatic face recognition 
seems to be a problem that is still far from solved. In spite of more than 20 years of extensive 
research, large number of papers published in journals and conferences dedicated to this 
area, we still can not claim that artificial systems can measure to human performance. 
Automatic face recognition is intricate primarily because of difficult imaging conditions 
(lighting and viewpoint changes induced by body movement) and because of various other 
effects like aging, facial expressions, occlusions etc. Researchers from computer vision, im-
age analysis and processing, pattern recognition, machine learning and other areas are 
working jointly, motivated largely by a number of possible practical applications. 
The goal of this book is to give a clear picture of the current state-of-the-art in the field of 
automatic face recognition across three main areas of interest: biometrics, cognitive models and 
human-computer interaction. Face recognition has an important advantage over other biomet-
ric technologies - it is a nonintrusive and easy to use method. As such, it became one of three 
identification methods used in e-passports and a biometric of choice for many other security 
applications. Cognitive and perception models constitute an important platform for inter-
disciplinary research, connecting scientists from seemingly incompatible areas and enabling 
them to exchange methodologies and results on a common problem. Evidence from neuro-
biological, psychological, perceptual and cognitive experiments provide potentially useful 
insights into how our visual system codes, stores and recognizes faces. These insights can 
then be connected to artificial solutions. On the other hand, it is generally believed that the 
success or failure of automatic face recognition systems might inform cognitive and percep-
tion science community about which models have the potential to be candidates for those 
used by humans. Making robots and computers more "human" (through human-computer 
interaction) will improve the quality of human-robot co-existence in the same space and 
thus alleviate their adoption into our every day lives. In order to achieve this, robots must 
be able to identify faces, expressions and emotions while interacting with humans. 
Hopefully, this book will serve as a handbook for students, researchers and practitioners in 
the area of automatic (computer) face recognition and inspire some future research ideas by 
identifying potential research directions. The book consists of 28 chapters, each focusing on 
a certain aspect of the problem. Within every chapter the reader will be given an overview 
of background information on the subject at hand and in many cases a description of the au-
thors' original proposed solution. The chapters in this book are sorted alphabetically, ac-
cording to the first author's surname. They should give the reader a general idea where the 
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current research efforts are heading, both within the face recognition area itself and in inter-
disciplinary approaches. 
Chapter 1 describes a face recognition system based on 3D features, with applications in 
Ambient Intelligence Environment. The system is placed within a framework of home 
automation - a community of smart objects powered by high user-friendliness. Chapter 2 
addresses one of the most intensely researched problems in face recognition - the problem of 
achieving illumination invariance. The authors deal with this problem through a novel 
framework based on simple image filtering techniques. In chapter 3 a novel method for pre-
cise automatic localization of certain characteristic points in a face (such as the centers and 
the corners of the eyes, tip of the nose, etc) is presented. An interesting analysis of the rec-
ognition rate as a function of eye localization precision is also given. Chapter 4 gives a de-
tailed introduction into wavelets and their application in face recognition as tools for image 
preprocessing and feature extraction. 
Chapter 5 reports on an extensive experiment performed in order to analyze the effects of 
JPEG and JPEG2000 compression on face recognition performance. It is shown that tested 
recognition methods are remarkably robust to compression, and the conclusions are statisti-
cally confirmed using McNemar's hypothesis testing. Chapter 6 introduces a feed-forward 
neural network architecture combined with PCA and LDA into a novel approach. Chapter 7 
addresses the multi-view recognition problem by using a variant of SVM and decomposing 
the problem into a series of easier two-class problems. Chapter 8 describes three different 
hardware platforms dedicated to face recognition and brings us one step closer to real-world 
implementation. In chapter 9 authors combine face and gesture recognition in a human-
robot interaction framework. 
Chapter 10 considers fuzzy-geometric approach and symbolic data analysis for modeling 
the uncertainty of information about facial features. Chapter 11 reviews some known ap-
proaches (e.g. PCA, LDA, LPP, LLE, etc.) and presents a case study of intelligent face recog-
nition using global pattern averaging. A theoretical analysis and application suggestion of 
the compact optical parallel correlator for face recognition is presented in chapter 12. Im-
proving the quality of co-existence of humans and robots in the same space through another 
merge of face and gesture recognition is presented in chapter 13, and spontaneous facial ac-
tion recognition is addressed in chapter 14. 
Based on lessons learned from human visual system research and contrary to traditional 
practice of focusing recognition on internal face features (eyes, nose, and mouth), in chapter 
15 a possibility of using external features (hair, forehead, laterals, ears, jaw line and chin) is 
explored. In chapter 16 a hierarchical neural network architecture is used to define a com-
mon framework for higher level cognitive functions. Simulation is performed indicating that 
both face recognition and facial expression recognition can be realized efficiently using the 
presented framework. Chapter 17 gives a detailed mathematical overview of some tradi-
tional and modern subspace analysis methods, and chapter 18 reviews in depth some near-
est feature classifiers and introduces dissimilarity representations as a recognition tool. In 
chapter 19 the authors present a security system in which an image of a known person is 
matched against multiple images extracted from a video fragment of a person approaching a 
protected entrance 
Chapter 20 presents recent advances in machine analysis of facial expressions with special 
attention devoted to several techniques recently proposed by the authors. 3D face recogni-
tion is covered in chapter 21. Basic approaches are discussed and an extensive list of refer-
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ences is given, making this chapter an ideal starting point for researchers new in the area. 
After multi-modal human verification system using face and speech is presented in chapter 
22, the same authors present a new face detection and recognition method using optimized 
3D information from stereo images in chapter 23. Far-field unconstrained video-to-video 
face recognition system is proposed in chapter 24. 
Chapter 25 examines the results of research on humans in order to come up with some hints 
for designs of artificial systems for face recognition. Frequency domain processing and rep-
resentation of faces is reviewed in chapter 26 along with a thorough analysis of a family of 
advanced frequency domain matching algorithms collectively know as the advanced corre-
lation filters. Chapter 27 addresses the problem of class-based image synthesis and recogni-
tion with varying illumination conditions. Chapter 28 presents a mixed reality virtual sys-
tem with a framework of using a stereo video and 3D computer graphics model. 

June 2007 Kresimir Delac 
Mislav Grgic 

University of Zagreb 
 Faculty of Electrical Engineering and Computing 
 Department of Wireless Communications 
 Unska 3/XII, HR-10000 Zagreb, Croatia 
 E-mail: kdelac@ieee.org 





      IX 

Contents

Preface .................................................................................................................................V

1. 3D Face Recognition in a Ambient Intelligence Environment Scenario.................  001

Andrea F. Abate, Stefano Ricciardi and Gabriele Sabatino 

2. Achieving Illumination Invariance using Image Filters............................................  015

Ognjen Arandjelovic and Roberto Cipolla 

3. Automatic Facial Feature Extraction for Face Recognition.....................................  031

Paola Campadelli, Raffaella Lanzarotti and Giuseppe Lipori  

4. Wavelets and Face Recognition ................................................................................  059

Dao-Qing Dai and Hong Yan  

5. Image Compression Effects in Face Recognition Systems ....................................  075

Kresimir Delac, Mislav Grgic and Sonja Grgic  

6. PCA and LDA based Neural Networks for Human Face Recognition.....................  093

Alaa Eleyan and Hasan Demirel  

7. Multi-View Face Recognition with Min-Max  
Modular Support Vector Machines ................................................................................  107

Zhi-Gang Fan and Bao-Liang Lu  

8. Design, Implementation and Evaluation of Hardware Vision Systems  
dedicated to Real-Time Face Recognition ....................................................................  123

Ginhac Dominique, Yang Fan and Paindavoine Michel  

9. Face and Gesture Recognition for Human-Robot Interaction .................................  149

Md. Hasanuzzaman and Haruki Ueno 



X

10. Modelling Uncertainty in Representation of Facial  
Features for Face Recognition.......................................................................................  183

Hiremath P.S., Ajit Danti and Prabhakar C.J.  

11. Intelligent Global Face Recognition ........................................................................  219

Adnan Khashman  

12. Compact Parallel Optical Correlator for 
Face Recognition and its Application ...........................................................................  235

Kashiko Kodate and Eriko Watanabe 

13. Human Detection and Gesture Recognition  
Based on Ambient Intelligence ......................................................................................  261

Naoyuki Kubota  

14. Investigating Spontaneous Facial Action Recognition  
through AAM Representations of the Face...................................................................  275

Simon Lucey, Ahmed Bilal Ashraf and Jeffrey F. Cohn  

15. Measuring External Face Appearance for Face Classification ............................  287

David Masip, Agata Lapedriza and Jordi Vitria 

16. Selection and Efficient Use of Local Features for Face and 
Facial Expression Recognition in a Cortical Architecture...........................................  305

Masakazu Matsugu

17. Image-based Subspace Analysis for Face Recognition ........................................  321

Vo Dinh Minh Nhat and SungYoung Lee 

18. Nearest Feature Rules and Dissimilarity Representations  
for Face Recognition Problems .....................................................................................  337

Mauricio Orozco-Alzate and German Castellanos-Dominguez  

19. Improving Face Recognition by Video Spatial Morphing ......................................  357

Armando Padilha, Jorge Silva and Raquel Sebastiao  

20. Machine Analysis of Facial Expressions ................................................................  377

Maja Pantic and Marian Stewart Bartlett 

21. 3D Face Recognition.................................................................................................  417

Theodoros Papatheodorou and Daniel Rueckert  

22. Multi-Modal Human Verification using Face and Speech ......................................  447

Changhan Park and Joonki Paik



      XI 

23. Face Recognition Using Optimized 3D  
Information from Stereo Images ....................................................................................  457

Changhan Park and Joonki Paik

24. Far-Field, Multi-Camera, Video-to-Video Face Recognition ..................................  467

Aristodemos Pnevmatikakis and Lazaros Polymenakos  

25. Facing Visual Tasks Based on Different Cognitive Architectures ........................  487

Marcos Ruiz-Soler and Francesco S. Beltran  

26. Frequency Domain Face Recognition .....................................................................  495

Marios Savvides, Ramamurthy Bhagavatula, Yung-hui Li and Ramzi Abiantun 

27. From Canonical Face to Synthesis 
An Illumination Invariant Face Recognition Approach ................................................  527

Tele Tan  

28. A Feature-level Fusion of Appearance and 
Passive Depth Information for Face Recognition ........................................................  537

Jian-Gang Wang, Kar-Ann Toh, Eric Sung and Wei-Yun Yau 





1

3D Face Recognition 
in a Ambient Intelligence Environment Scenario 

Andrea F. Abate, Stefano Ricciardi and Gabriele Sabatino 
Dip. di Matematica e Informatica - Università degli Studi di Salerno 

Italy

1. Introduction 

Information and Communication Technologies are increasingly entering in all aspects of our 
life and in all sectors, opening a world of unprecedented scenarios where people interact 
with electronic devices embedded in environments that are sensitive and responsive to the 
presence of users. Indeed, since the first examples of “intelligent” buildings featuring 
computer aided security and fire safety systems, the request for more sophisticated services, 
provided according to each user’s specific needs has characterized the new tendencies 
within domotic research. The result of the evolution of the original concept of home 
automation is known as Ambient Intelligence (Aarts & Marzano, 2003), referring to an 
environment viewed as a “community” of smart objects powered by computational 
capability and high user-friendliness, capable of recognizing and responding to the presence 
of different individuals in a seamless, not-intrusive and often invisible way. As adaptivity 
here is the key for providing customized services, the role of person sensing and recognition 
become of fundamental importance.  
This scenario offers the opportunity to exploit the potential of face as a not intrusive 
biometric identifier to not just regulate access to the controlled environment but to adapt the 
provided services to the preferences of the recognized user. Biometric recognition (Maltoni 
et al., 2003) refers to the use of distinctive physiological (e.g., fingerprints, face, retina, iris) 
and behavioural (e.g., gait, signature) characteristics, called biometric identifiers, for 
automatically recognizing individuals. Because biometric identifiers cannot be easily 
misplaced, forged, or shared, they are considered more reliable for person recognition than 
traditional token or knowledge-based methods. Others typical objectives of biometric 
recognition are user convenience (e.g., service access without a Personal Identification 
Number), better security (e.g., difficult to forge access). All these reasons make biometrics 
very suited for Ambient Intelligence applications, and this is specially true for a biometric 
identifier such as face which is one of the most common methods of recognition that 
humans use in their visual interactions, and allows to recognize the user in a not intrusive 
way without any physical contact with the sensor.  
A generic biometric system could operate either in verification or identification modality, 
better known as one-to-one and one-to-many recognition (Perronnin & Dugelay, 2003). In 
the proposed Ambient Intelligence application we are interested in one-to-one recognition, 
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as we want recognize authorized users accessing the controlled environment or requesting a 
specific service.  
We present a face recognition system based on 3D features to verify the identity of subjects 
accessing the controlled Ambient Intelligence Environment and to customize all the services 
accordingly. In other terms to add a social dimension to man-machine communication and 
thus may help to make such environments more attractive to the human user. The proposed 
approach relies on stereoscopic face acquisition and 3D mesh reconstruction to avoid highly 
expensive and not automated 3D scanning, typically not suited for real time applications. 
For each subject enrolled, a bidimensional feature descriptor is extracted from its 3D mesh 
and compared to the previously stored correspondent template. This descriptor is a normal 
map, namely a color image in which RGB components represent the normals to the face 
geometry. A weighting mask, automatically generated for each authorized person, improves 
recognition robustness to a wide range of facial expression.  
This chapter is organized as follows. In section 2 related works are presented and the 
proposed method is introduced. In section 3 the proposed face recognition method is 
presented in detail. In section 4 the Ambient Intelligence framework is briefly discussed and 
experimental results are shown and commented. The paper concludes in section 5 showing 
directions for future research and conclusions. 

2. Related Works 

In their survey on state of the art in 3D and multi-modal face recognition, Bowyer et al. 
(Bowyer et al., 2004) describe the most recent results and research trends, showing that “the 
variety and sophistication of algorithmic approaches explored is expanding”. The main 
challenges in this field result to be the improvement of recognition accuracy, a greater 
robustness to facial expressions, and, more recently, the efficiency of algorithms. Many 
methods are based on Principal Component Analysis (PCA), such is the case of Hester et al. 
(Hester et al., 2003) which tested the potential and the limits of PCA varying the number of 
eigenvectors and the size of range images. Pan et al. (Pan et al., 2005) apply PCA to a novel 
mapping of the 3D data to a range, or depth, image, while Xu et al. (Xu et al., 2004) aim to 
divide face in sub-regions using nose as the anchor, PCA to reduce feature space 
dimensionality and minimum distance for matching. Another major research trend is based 
on Iterative Closest Point (ICP) algorithm, which has been exploited in many variations for 
3D shape aligning, matching or both. The first example of this kind of approach to face 
recognition has been presented from Medioni and Waupotitsch (Medioni & Waupotitsch, 
2003), then Lu and Jain (Lu & Jain, 2005) developed an extended version aimed to cope with 
expressive variations, whereas Chang et al. (Chang et al., 2005) proposed to apply ICP not to 
the whole face but to a set of selected subregions instead.  
As a real face is fully described by its 3D shape and its texture, it is reasonable to use both 
kind of data (geometry and color or intensity) to improve recognition reliability: this is the 
idea behind Multi-Modal or (3D+2D) face recognition. The work by Tsalakanidou et al. 
(Tsalakanidou et al., 2003) is based on PCA to compare both probe’s range image and 
intensity/color image to the gallery, Papatheodorou and Rueckert (Papatheodorou & 
Rueckert, 2004)  presented a 4D registration method based on Iterative Closest Point (ICP), 
augmented with texture data. Bronstein et al. (Bronstein et al., 2003) propose a multi-modal 
3D + 2D recognition using eigen decomposition of flattened textures and canonical images. 
Other authors combine 3D and 2D similarity scores obtained comparing 3D and 2D profiles 
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(Beumier & Acheroy, 2000), or extract a feature vector combining Gabor filter responses in 
2D and point signatures in 3D (Wang et al., 2003).  

3. Description of Facial Recognition System 

The basic idea behind proposed system is to represent user’s facial surface by a digital 
signature called normal map. A normal map is an RGB color image providing a 2D 
representation of the 3D facial surface, in which each normal to each polygon of a given 
mesh is represented by a RGB color pixel. To this aim, we project the 3D geometry onto 2D 
space through spherical mapping. The result is a bidimensional representation of original 
face geometry which retains spatial relationships between facial features. Color info coming 
from face texture are used to mask eventual beard covered regions according to their 
relevance, resulting in a 8 bit greyscale filter mask (Flesh Mask). Then, a variety of facial 
expressions are generated from the neutral pose through a rig-based animation technique, 
and corresponding normal maps are used to compute a further 8 bit greyscale mask 
(Expression Weighting Mask) aimed to cope with expression variations. At this time the two 
greyscale masks are multiplied and the resulting map is used to augment with extra 8 bit 
per pixel the normal map, resulting in a 32 bit RGBA bitmap (Augmented Normal Map).  
The whole process (see Figure 1) is discussed in depth in the following subsections 3.1 to 
3.4..

Figure 1. Facial and Facial Expression Recognition workflow 
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3.1 Face Capturing 

As the proposed method works on 3D polygonal meshes we firstly need to acquire actual 
faces and to represent them as polygonal surfaces. The Ambient Intelligence context, in 
which we are implementing face recognition, requires fast user enrollment to avoid 
annoying waiting time. Usually, most 3D face recognition methods work on a range image 
of the face, captured with laser or structured light scanner. This kind of devices offer high 
resolution in the captured data, but they are too slow for a real time face acquisition. Face 
unwanted motion during capturing could be another issue, while laser scanning could not 
be harmless to the eyes.  
For all this reasons we opted for a 3D mesh reconstruction from stereoscopic images, based 
on (Enciso et al., 1999) as it requires a simple equipment more likely to be adopted in a real 
application: a couple of digital cameras shooting at high shutter speed from two slightly 
different angles with strobe lighting. Though the resulting face shape accuracy is inferior 
compared to real 3D scanning it proved to be sufficient for recognition yet much faster, with 
a total time required for mesh reconstruction of about 0.5 sec. on a P4/3.4 Ghz based PC, 
offering additional advantages, such as precise mesh alignment in 3D space thanks to the 
warp based approach, facial texture generation from the two captured orthogonal views and 
its automatic mapping onto the reconstructed face geometry. 

3.2 Building a Normal Map  

As the 3D polygonal mesh resulting from the reconstruction process is an approximation of 
the actual face shape, polygon normals describe local curvature of captured face which 
could be view as its signature. As shown in Figure 2, we intend to represent these normals 
by a color image transferring face’s 3D features in a 2D space. We also want to preserve the 
spatial relationships between facial features, so we project vertices’ 3D coordinates onto a 
2D space using a spherical projection. We can now store normals of mesh M in a 
bidimensional array N using mapping coordinates, by this way each pixel represents a 
normal as RGB values. We refer the resulting array as the Normal Map N of mesh M and 
this is the signature we intend to use for the identity verification.  

Figure 2. (a) 3d mesh model, (b) wireframe model, (c) projection in 2D spatial coordinates, 
(d) normal map 

3.3 Normal Map Comparison 

To compare the normal map NA from input subject to another normal map NB previously 
stored in the reference database, we compute through: 
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( )
BABABA NNNNNN bbggrr ⋅+⋅+⋅= arccosθ  (1) 

the angle included between each pairs of normals represented by colors of pixels with 
corresponding mapping coordinates, and store it in a new Difference Map D with 
components r, g and b opportunely normalized from spatia l domain to color domain, so 

1,,0 ≤≤
AAA NNN bgr  and 1,,0 ≤≤

BBB NNN bgr . The value , with 0  < , is the angular 

difference between the pixels with coordinates ( )
AA NN yx ,  in NA and ( )

BB NN yx ,  in NB and it is 
stored in D as a gray-scale color. At this point, the histogram H is analyzed to estimate the 
similarity score between NA and NB. On the X axis we represent the resulting angles 
between each pair of comparisons (sorted from 0° degree to 180° degree), while on the Y 
axis we represent the total number of differences found. The curvature of H represents the 
angular distance distribution between mesh MA and MB, thus two similar faces featuring 
very high values on small angles, whereas two unlike faces have more distributed 
differences (see Figure 3). We define a similarity score through a weighted sum between H 
and a Gaussian function G, as in: 
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−
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k
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where with the variation of  and k is possible to change recognition sensibility. To reduce 
the effects of residual face misalignment during acquisition and sampling phases, we 
calculate the angle  using a k × k (usually 3 × 3 or 5 × 5) matrix of neighbour pixels.  

Figure 3. Example of histogram H to represent the angular distances. (a) shows a typical 
histogram between two similar Normal Maps, while (b) between two different Normal 
Maps

3.4 Addressing Beard and Facial Expressions via 8 bit Alpha Channel  

The presence of beard with variable length covering a portion of the face surface in a subject 
previously enrolled  without it (or vice-versa), could lead to a measurable difference in the 
overall or local 3D shape of the face mesh (see Figure 4). In this case the recognition 
accuracy could be affected resulting, for instance, in a higher False Rejection Rate FRR. To 
improve the robustness to this kind of variable facial features we rely on color data from the 
captured face texture to mask the non-skin region, eventually disregarding them during the 
comparison.
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Figure 4. Normal maps of the same subject enrolled in two different sessions with and 
without beard 

We exploit flesh hue characterization in the HSB color space to discriminate between skin 
and beard/moustaches/eyebrows. Indeed, the hue component of each given texel is much 
less affected from lighting conditions during capturing then its corresponding RGB value. 
Nevertheless there could be a wide range of hue values within each skin region due to 
factors like facial morphology, skin conditions and pathologies, race, etc., so we need to 
define this range on a case by case basis to obtain a valid mask. To this aim we use a set of 
specific hue sampling spots located over the face texture at absolute coordinates, selected to 
be representative of flesh’s full tonal range and possibly distant enough from eyes, lips and 
typical beard and hair covered regions.  

Figure 5. Flesh Hue sampling points (a),  Flesh Hue Range (b) non-skin regions in white (c) 

This is possible because each face mesh and its texture are centered and normalized during 
the image based reconstruction process (i.e. the face’s median axis is always centered on the 
origin of 3D space with horizontal mapping coordinates equal to 0.5), otherwise normal map 
comparison would not be possible.  We could use a 2D or 3D technique to locate main facial 
features (eye, nose and lips) and to position the sampling spots relative to this features, but 
even these approaches are not safe under all conditions. For each sampling spot we sample 
not just that texel but a 5 x 5 matrix of neighbour texels, averaging them to minimize the 
effect of local image noise. As any sampling spot could casually pick wrong values due to 
local skin color anomalies such as moles, scars or even for improper positioning, we 
calculate the median of all resulting hue values from all sampling spots, resulting in a main 
Flesh Hue Value FHV which is the center of the valid flesh hue range. We therefore consider 
belonging to skin region all the texels whose hue value is within the range: -t  FHV  t,
where t is a hue tolerance which we experimentally found could be set below 10° (see Figure 
5-b). After the skin region has been selected, it is filled with pure white while the remaining 
pixels are converted to a greyscale value depending on their distance from the selected flesh 
hue range (the more the distance the darker the value). 
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To improve the facial recognition system and to address facial expressions we opt to the  use 
of expression weighting mask, a subject specific pre-calculated mask aimed to assign 
different relevance to different face regions. This mask, which shares the same size of 
normal map and difference map, contains for each pixel an 8 bit weight encoding the local 
rigidity of the face surface based on the analysis of a pre-built set of facial expressions of the 
same subject. Indeed, for each subject enrolled, each of expression variations (see Figure 6) is 
compared to the neutral face resulting in difference maps.  

Figure 6. An example of normal maps of the same subject featuring a neutral pose (leftmost 
face) and different facial expressions 

The average of this set of difference maps specific to the same individual represent its 
expression weighting mask. More precisely, given a generic face with its normal map N0

(neutral face) and the set of normal maps N1, N2, …, Nn (the expression variations), we first 
calculate the set of difference map D1, D2, …, Dn resulting from {N0 - N1, N0 - N2, …, N0 – 
Nn}. The average of set {D1, D2, …, Dn} is the expression weighting mask which is multiplied 
by the difference map in each comparison between two faces. 
We generate the expression variations through a parametric rig based deformation system 
previously applied to a prototype face mesh, morphed to fit the reconstructed face mesh 
(Enciso et al., 1999). This fitting is achieved via a landmark-based volume morphing where 
the transformation and deformation of the prototype mesh is guided by the interpolation of 
a set of landmark points with a radial basis function. To improve the accuracy of this rough 
mesh fitting we need a surface optimization obtained minimizing a cost function based on 
the Euclidean distance between vertices. 
So we can augment each 24 bit normal map with the product of Flesh Mask and Expression 
Weighting Mask normalized to 8 bit (see Figure 7). The resulting 32 bit per pixel RGBA 
bitmap can be conveniently managed via various image formats like the Portable Network 
Graphics format (PNG) which is typically used to store for each pixel 24 bit of colour and 8 
bit of alpha channel (transparency). When comparing any two faces, the difference map is 
computed on the first 24 bit of color info (normals) and multiplied to the alpha channel 
(filtering mask). 

4. Testing Face Recognition System into an Ambient Intelligence Framework 

Ambient Intelligence (AmI) worlds offer exciting potential for rich interactive experiences.  
The metaphor of AmI envisages the future as intelligent environments where humans are 
surrounded by smart devices that makes the ambient itself perceptive to humans’ needs or 
wishes. The Ambient Intelligence Environment can be defined as the set of actuators and 
sensors composing the system together with the domotic interconnection protocol. People 
interact with electronic devices embedded in environments that are sensitive and responsive 
to the presence of users. This objective is achievable if the environment is capable to learn, 
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build and manipulate user profiles considering from a side the need to clearly identify the 
human attitude; in other terms, on the basis of physical and emotional user status captured 
from a set of biometric features. 

Figure 7. Comparison of two Normal Maps using Flesh Mask and the resulting Difference 
Map (c) 

Figure 8. Ambient Intelligence Architecture 

To design Ambient Intelligent Environments, many methodologies and techniques have to 
be merged together originating many approaches reported in recent literature (Basten & 
Geilen, 2003). We opt to a framework aimed to gather biometrical and environmental data, 
described in (Acampora et al., 2005) to test the effectiveness of face recognition systems to 
aid security and to recognize the emotional user status. This AmI system’s architecture is 
organized in several sub-systems, as depicted in Figure 8, and it is based on the following 
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sensors and actuators: internal and external temperature sensors and internal temperature 
actuator, internal and external luminosity sensor and internal luminosity actuator, indoor 
presence sensor, a infrared camera to capture thermal images of user and a set of color 
cameras to capture information about gait and facial features. Firstly Biometric Sensors are 
used to gather user’s biometrics (temperature, gait, position, facial expression, etc.) and part 
of this information is handled by Morphological Recognition Subsystems (MRS) able to 
organize it semantically. The resulting description, together with the remaining biometrics 
previously captured, are organized in a hierarchical structure based on XML technology in 
order to create a new markup language, called H2ML (Human to Markup Language)
representing user status at a given time. Considering a sequence of H2ML descriptions, the 
Behavioral Recognition Engine (BRE), tries to recognize a particular user behaviour for which 
the system is able to provide suitable services. The available services are regulated by means 
of the Service Regulation System (SRS), an array of fuzzy controllers coded in FML (Acampora 
& Loia, 2004) aimed to achieve hardware transparency and to minimize the fuzzy inference 
time.
This architecture is able to distribute personalized services on the basis of physical and 
emotional user status captured from a set of biometric features and modelled by means of a 
mark-up language, based on XML. This approach is particularly suited to exploit biometric 
technologies to capture user’s physical info gathered in a semantic representation describing 
a human in terms of morphological features. 

4.1 Experimental Results 

As one of the aims in experiments was to test the performance of the proposed method in a 
realistic operative environment, we decided to build a 3D face database from the face 
capture station used in the domotic system described above. The capture station featured 
two digital cameras with external electronic strobes shooting simultaneously with a shutter 
speed of 1/250 sec. while the subject was looking at a blinking led to reduce posing issues. 
More precisely, every face model in the gallery has been created deforming a pre-aligned 
prototype polygonal face mesh to closely fit a set of facial features extracted from front and 
side images of each individual enrolled in the system.  
Indeed, for each enrolled subject a set of corresponding facial features extracted by a 
structured snake method from the two orthogonal views are correlated first and then used 
to guide the prototype mesh warping, performed through a Dirichlet Free Form 
Deformation. The two captured face images are aligned, combined and blended resulting in 
a color texture precisely fitting the reconstructed face mesh through the feature points 
previously extracted. The prototype face mesh used in the dataset has about 7K triangular 
facets, and even if it is possible to use mesh with higher level of detail we found this 
resolution to be adequate for face recognition. This is mainly due to the optimized 
tessellation which privileges key area such as eyes, nose and lips whereas a typical mesh 
produced by 3D scanner features almost evenly spaced vertices. Another remarkable 
advantage involved in the warp based mesh generation is the ability to reproduce a broad 
range of face variations through a rig based deformation system. This technique is 
commonly used in computer graphics for facial animation (Lee et al., 1995, Blanz & Vetter, 
1999) and is easily applied to the prototype mesh linking the rig system to specific subsets of 
vertices on the face surface. Any facial expression could be mimicked opportunely 
combining the effect of the rig controlling lips, mouth shape, eye closing or opening, nose 
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tip or bridge, cheek shape, eyebrows shape, etc. The facial deformation model we used is 
based on (Lee et al., 1995) and the resulting expressions are anatomically correct. 
We augmented the 3D dataset of each enrolled subject through the synthesis of fiften 
additional expressions selected to represent typical face shape deformation due to facial 
expressive muscles, each one included in the weighting mask. The fiften variations to the 
neutral face are grouped in three different classes: “good-mood”, “normal-mood” and “bad-
mood” emotional status (see Figure 9).  
We acquired three set front-side pair of face images from 235 different persons in three 
subjective facial expression to represent “normal-mood”, “good-mood” and “bad-mood” 
emotional status respectively (137 males and 98 females, age ranging from 19 to 65).  

Figure 9. Facial Expressions grouped in normal-mood (first row), good-mood (second row), 
bad-mood (third row) 

For the first group of experiments, we obtained a database of 235 3D face models in neutral 
pose (represented by “normal-mood” status) each one augmented with fiften expressive 
variations. Experimental results are generally good in terms of accuracy, showing a 
Recognition Rate of 100% using the expression weighting mask and flesh mask, the 
Gaussian function with =4.5 and k=50 and normal map sized 128 × 128 pixels. These 
results are generally better than those obtained by many 2D algorithms but a more 
meaningful comparison would require a face dataset featuring both 2D and 3D data. To this 
aim we experimented a PCA-based 2D face recognition algorithm [Moon and Phillips 1998, 
Martinez and Kak 2001] on the same subjects. We have trained the PCA-based recognition 
system with frontal face images acquired during several enrolment sessions (from 11 to 13 
images for each subject), while the probe set is obtained from the same frontal images used 
to generate the 3D face mesh for the proposed method. This experiment has shown that our 
method produce better results than a typical PCA-based recognition algorithm on the same 
subjects. More precisely, PCA-based method reached a recognition rate of 88.39% on gray-
scaled images sized to 200 × 256 pixels, proving that face dataset was really challenging.  
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Figure 10. Precision/Recall Testing with and without Expression Weighting Mask and Flesh 
Mask to show efficacy respectively to (a) expression variations, (b) beard presence and (c) 
both

Figure 10 shows the precision/recall improvement provided by the expression weighting 
mask and flesh mask. The results showed in Figure 10-a were achieved comparing  in one-
to-many modality a query set with one expressive variations to an answer set composed by 
one neutral face plus ten expression variations and one face with beard. In Figure 10-b are 
shown the results of one-to-many comparison between subject with beard and an answer set 
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composed of one neutral face and ten expressive variations. Finally for the test reported in 
Figure 10-c the query was an expression variation or a face with beard, while the answer set 
could contain a neutral face plus ten associated expressive variations or a face with beard. 
The three charts clearly show the benefits involved with the use of both expressive and flesh 
mask, specially when combined together. 
The second group of experiments has been conducted on FRGC dataset rel. 2/Experiment 3s 
(only shape considered) to test the method's performance with respect to Receiver 
Operating Characteristic (ROC) curve which plots the False Acceptance Rate (FAR) against 
Verification Rate (1 – False Rejection Rate or FRR) for various decision thresholds. The 4007 
faces provided in the dataset have undergone a pre-processing stage to allow our method to 
work effectively. The typical workflow included: mesh alignment using the embedded info 
provided by FRGC dataset such as outer eye corners, nose tip, chin prominence; mesh 
subsampling to one fourth or original resolution; mesh cropping to eliminate unwanted 
detail (hair, neck, ears, etc.); normal map filtering by a 5 × 5 median filter to reduce capture 
noise and artifacts. Fig. 11 shows resulting ROC curves with typical ROC values at  
FAR = 0.001. The Equal Error Rate (EER) measured on all two galleries reaches 5.45% on the 
our gallery and 6.55% on FRGC dataset. 

Figure 11. Comparison of ROC curves and Verification Rate at FAR=0.001 

Finally, we have tested the method in order to evaluate statistically the behaviour of method 
to recognize the “emotional” status of the user.  To this aim, we have performed a one-to-
one comparison of a probe set of 3D face models representing real subjective mood status 
captured by camera (three facial expressions per person) with three gallery set of artificial 
mood status generated automatically by control rig based deformation system (fifteen facial 
expression per person grouped as shown in Figure 9). As shown in Table 1, the results are 
very interesting, because the mean recognition rate on “good-mood” status gallery is 100% 
while on “normal-mood” and “bad-mood” status galleries is 98.3% and 97.8% respectively 
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(probably, because of the propensity of the people to make similar facial expressions for 
“normal-mood” and “bad-mood” status). 

Recognition Rate 
“normal-mood” “good-mood” “bad-mood” 
98.3% 100% 97.8% 

Table 1. The behaviour of method to recognize the “emotional” status of the user 

5. Conclusion 

We presented a 3D face recognition method applied to an Ambient Intelligence 
Environment. The proposed approach to acquisition and recognition proved to be suited to 
the applicative context thanks to high accuracy and recognition speed, effectively exploiting 
the advantages of face over other biometrics. As the acquisition system requires the user to 
look at a specific target to allow a valid face capture, we are working on a multi-angle 
stereoscopic camera arrangement, to make this critical task less annoying and more robust 
to a wide posing range.  
This 3D face recognition method based on 3D geometry and color texture is aimed to 
improve robustness to presence/absence of beard and to expressive variations. It proved to 
be simple and fast and experiments conducted showed high average recognition rate and a 
measurable effectiveness of both flesh mask and expression weighting mask. Ongoing 
research will implement a true multi-modal version of the basic algorithm with a second 
recognition engine dedicated to the color info (texture) which could further enhance the 
discriminating power. 
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1. Introduction 

In this chapter we are interested in accurately recognizing human faces in the presence of 
large and unpredictable illumination changes. Our aim is to do this in a setup realistic for 
most practical applications, that is, without overly constraining the conditions in which 
image data is acquired. Specifically, this means that people's motion and head poses are 
largely uncontrolled, the amount of available training data is limited to a single short 
sequence per person, and image quality is low. 
In conditions such as these, invariance to changing lighting is perhaps the most significant 
practical challenge for face recognition algorithms. The illumination setup in which 
recognition is performed is in most cases impractical to control, its physics difficult to 
accurately model and face appearance differences due to changing illumination are often 
larger than those differences between individuals [1]. Additionally, the nature of most real-
world applications is such that prompt, often real-time system response is needed, 
demanding appropriately efficient as well as robust matching algorithms. 
In this chapter we describe a novel framework for rapid recognition under varying 
illumination, based on simple image filtering techniques. The framework is very general and 
we demonstrate that it offers a dramatic performance improvement when used with a wide 
range of filters and different baseline matching algorithms, without sacrificing their 
computational efficiency. 

1.1 Previous work and its limitations 

The choice of representation, that is, the model used to describe a person's face is central to 
the problem of automatic face recognition. Consider the components of a generic face 
recognition system schematically shown in Figure 1. 
A number of approaches in the literature use relatively complex facial and scene models that 
explicitly separate extrinsic and intrinsic variables which affect appearance. In most cases, 
the complexity of these models makes it impossible to compute model parameters as a 
closed-form expression ("Model parameter recovery" in Figure 1). Rather, model fitting is 
performed through an iterative optimization scheme. In the 3D Morphable Model of Blanz 
and Vetter [7], for example, the shape and texture of a novel face are recovered through 
gradient descent by minimizing the discrepancy between the observed and predicted 
appearance. Similarly, in Elastic Bunch Graph Matching [8, 23], gradient descent is used to 



Face Recognition 16

recover the placements of fiducial features, corresponding to bunch graph nodes and the 
locations of local texture descriptors. In contrast, the Generic Shape-Illumination Manifold 
method uses a genetic algorithm to perform a manifold-to-manifold mapping that preserves 
pose.

Figure 1. A diagram of the main components of a generic face recognition system. The 
"Model parameter recovery" and "Classification" stages can be seen as mutually 
complementary: (i) a complex model that explicitly separates extrinsic and intrinsic 
appearance variables places most of the workload on the former stage, while the 
classification of the representation becomes straightforward; in contrast, (ii) simplistic 
models have to resort to more statistically sophisticated approaches to matching 

Figure 2. (a) The simplest generative model used for face recognition: images are assumed to 
consist of the low-frequency band that mainly corresponds to illumination changes, 
midfrequency band which contains most of the discriminative, personal information and 
white noise, (b) The results of several most popular image filters operating under the 
assumption of the frequency model 
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One of the main limitations of this group of methods arises due to the existence of local 
minima, of which there are usually many. The key problem is that if the fitted model 
parameters correspond to a local minimum, classification is performed not merely on noise-
contaminated but rather entirely incorrect data. An additional unappealing feature of these 
methods is that it is also not possible to determine if model fitting failed in such a manner. 
The alternative approach is to employ a simple face appearance model and put greater 
emphasis on the classification stage. This general direction has several advantages which 
make it attractive from a practical standpoint. Firstly, model parameter estimation can now 
be performed as a closed-form computation, which is not only more efficient, but also void 
of the issue of fitting failure such that can happen in an iterative optimization scheme. This 
allows for more powerful statistical classification, thus clearly separating well understood 
and explicitly modelled stages in the image formation process, and those that are more 
easily learnt implicitly from training exemplars. This is the methodology followed in this 
chapter. The sections that follow describe the method in detail, followed by a report of 
experimental results. 

2. Method details 

2.1 Image processing filters 

Most relevant to the material presented in this chapter are illumination-normalization 
methods that can be broadly described as quasi illumination-invariant image filters. These
include high-pass [5] and locally-scaled high-pass filters [21], directional derivatives [1, 10, 
13, 18], Laplacian-of-Gaussian filters [1], region-based gamma intensity correction filters 
[2,17] and edge-maps [1], to name a few. These are most commonly based on very simple 
image formation models, for example modelling illumination as a spatially low-frequency 
band of the Fourier spectrum and identity-based information as high-frequency [5,11], see 
Figure 2. Methods of this group can be applied in a straightforward manner to either single 
or multiple-image face recognition and are often extremely efficient. However, due to the 
simplistic nature of the underlying models, in general they do not perform well in the 
presence of extreme illumination changes.  

2.2 Adapting to data acquisition conditions 

The framework proposed in this chapter is motivated by our previous research and the 
findings first published in [3]. Four face recognition algorithms, the Generic Shape-
Illumination method [3], the Constrained Mutual Subspace Method [12], the commercial system 
Facelt and a Kullback-Leibler Divergence-based matching method, were evaluated on a large 
database using (i) raw greyscale imagery, (ii) high-pass (HP) filtered imagery and (iii) the 
Self-Quotient Image (QI) representation [21]. Both the high-pass and even further Self 
Quotient Image representations produced an improvement in recognition for all methods 
over raw grayscale, as shown in Figure 3, which is consistent with previous findings in the 
literature [1,5,11,21]. 
Of importance to this work is that it was also examined in which cases these filters help and 
how much depending on the data acquisition conditions. It was found that recognition rates 
using greyscale and either the HP or the QI filter negatively correlated (with p -0.7), as 
illustrated in Figure 4. This finding was observed consistently across the result of the four 
algorithms, all of which employ mutually drastically different underlying models.



Face Recognition 18

 a) b) 

Figure 3. Performance of the (a) Mutual Subspace Method and the (b) Constrained Mutual 
Subspace Method using raw grey scale imagery, high-pass (HP) filtered imagery and the 
Self-Quotient Image (QI), evaluated on over 1300 video sequences with extreme 
illumination, pose and head motion variation (as reported in [3]). Shown are the average 
performance and ± one standard deviation intervals 

Figure 4. A plot of the performance improvement with HP and QI filters against the 
performance of unprocessed, raw imagery across different illumination combinations used 
in training and test. The tests are shown in the order of increasing raw data performance for 
easier visualization 

This is an interesting result: it means that while on average both representations increase the 
recognition rate, they actually worsen it in "easy" recognition conditions when no 
normalization is needed. The observed phenomenon is well understood in the context of 
energy of intrinsic and extrinsic image differences and noise (see [22] for a thorough 
discussion). Higher than average recognition rates for raw input correspond to small 
changes in imaging conditions between training and test, and hence lower energy of 
extrinsic variation. In this case, the two filters decrease the signal-to-noise ratio, worsening 
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the performance, see Figure 5 (a). On the other hand, when the imaging conditions between 
training and test are very different, normalization of extrinsic variation is the dominant 
factor and performance is improved, see Figure 5 (b).  

(a) Similar acquisition conditions between sequences 

(b) Different acquisition conditions between sequences 

Figure 5. A conceptual illustration of the distribution of intrinsic, extrinsic and noise signal 
energies across frequencies in the cases when training and test data acquisition conditions 
are (a) similar and (b) different, before (left) and after (right) band-pass filtering 

This is an important observation: it suggests that the performance of a method that uses 
either of the representations can be increased further by detecting the difficulty of 
recognition conditions. In this chapter we propose a novel learning framework to do exactly 
this.

2.2.1 Adaptive framework 

Our goal is to implicitly learn how similar the novel and training (or gallery) illumination 
conditions are, to appropriately emphasize either the raw input guided face comparisons or 
of its filtered output. 
Let be a database of known individuals, novel input corresponding to one 
of the gallery classes and ( ) and F( ), respectively, a given similarity function and a quasi 
illumination-invariant filter. We then express the degree of belief μ that two face sets and 

belong to the same person as a weighted combination of similarities between the 
corresponding unprocessed and filtered image sets:

(1)
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In the light of the previous discussion, we want * to be small (closer to 0.0) when novel and 
the corresponding gallery data have been acquired in similar illuminations, and large (closer 
to 1.0) when in very different ones. We show that * can be learnt as a function:

(2)

where μ is the confusion margin - the difference between the similarities of the two most 
similar to . The value of * (μ) can then be interpreted as statistically the optimal choice of 
the mixing coefficient given the confusion margin μ. Formalizing this we can write 

(3)

or, equivalently 

(4)

Under the assumption of a uniform prior on the confusion margin, p(μ)

(5)

and

(6)

2.2.2 Learning the - function 

To learn the a-function * (μ) as defined in (3), we first need an estimate of the joint 
probability density p( , μ) as per (6). The main difficulty of this problem is of practical 
nature: in order to obtain an accurate estimate using one of many off-the-shelf density 
estimation techniques, a prohibitively large training database would be needed to ensure a 
well sampled distribution of the variable μ. Instead, we propose a heuristic alternative 
which, we will show, will allow us to do this from a small training corpus of individuals 
imaged in various illumination conditions. The key idea that makes such a drastic reduction 
in the amount of training data possible, is to use domain specific knowledge of the 
properties of p( , μ) in the estimation process. 
Our algorithm is based on an iterative incremental update of the density, initialized as a 
uniform density over the domain , μ  [0,1], see Figure 7. Given a training corpus, we 
iteratively simulate matching of an "unknown" person against a set of provisional gallery 
individuals. In each iteration of the algorithm, these are randomly drawn from the offline 
training database. Since the ground truth identities of all persons in the offline database are 
known, we can compute the confusion margin μ( ) for each  = k , using the inter-
personal similarity score defined in (1). Density is then incremented at each ((k ,
μ (0)) proportionally to μ (k ) to reflect the goodness of a particular weighting in the 
simulated recognition.
The proposed offline learning algorithm is summarized in Figure 6 with a typical evolution 
p( , μ) in Figure 7. 
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The final stage of the offline learning in our method involves imposing the monotonicity 
constraint on * (μ) and smoothing of the result, see Figure 8. 

3. Empirical evaluation 

To test the effectiveness of the described recognition framework, we evaluated its perfor-
mance on 1662 face motion video sequences from four databases: 

Figure 6. Offline training algorithm 
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Figure 7. The estimate of the joint density p( , μ) through 550 iterations for a band-pass filter 
used for the evaluation of the proposed framework in Section 3.1 
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Figure 8. Typical estimates of the  -function plotted against confusion margin μ. The 
estimate shown was computed using 40 individuals in 5 illumination conditions for a 
Gaussian high-pass filter. As expected, * assumes low values for small confusion margins 
and high values for large confusion margins (see (1)) 

CamFace with 100 individuals of varying age and ethnicity, and equally represented 
genders. For each person in the database we collected 7 video sequences of the 
person in arbitrary motion (significant translation, yaw and pitch, negligible roll), 
each in a different illumination setting, see Figure 9 (a) and 10, at l0 fps and 320 x 
240 pixel resolution (face size  60 pixels) 1.

ToshFace kindly provided to us by Toshiba Corp. This database contains 60 individuals of 
varying age, mostly male Japanese, and 10 sequences per person. Each sequence 
corresponds to a different illumination setting, at l0 fps and 320 x 240 pixel 
resolution (face size  60 pixels), see Figure 9 (b). 

Face Video freely available2 and described in [14]. Briefly, it contains 11 individuals and 2 
sequences per person, little variation in illumination, but extreme and uncontrolled 

                                                                
1 A thorough description of the University of Cambridge face database with examples of video 
sequences is available at http: //mi.eng.cam. ac.uk/~oa214/.
2 See http: / /synapse. vit. lit. nrc. ca/db/video/ faces /cvglab.
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variations in pose and motion, acquired at 25fps and 160 x 120 pixel resolution (face 
size  45 pixels), see Figure 9 (c). 

Faces96 the most challenging subset of the University of Essex face database, freely available 
from http://cswww.essex.ac.uk/mv/allfaces/ faces96 .html. It contains 152 
individuals, most 18-20 years old and a single 20-frame sequence per person in 196 
x 196 pixel resolution (face size  80 pixels). The users were asked to approach the 
camera while performing arbitrary head motion. Although the illumination was 
kept constant throughout each sequence, there is some variation in the manner in 
which faces were lit due to the change in the relative position of the user with 
respect to the lighting sources, see Figure 9 (d). 

For each database except Faces96, we trained our algorithm using a single sequence per 
person and tested against a single other sequence per person, acquired in a different session 
(for CamFace and ToshFace different sessions correspond to different illumination condi-
tions). Since Faces96 database contains only a single sequence per person, we used the first 
frames 1-10 of each for training and frames 11-20 for test. Since each video sequence in this 
database corresponds to a person walking to the camera, this maximizes the variation in 
illumination, scale and pose between training and test, thus maximizing the recognition 
challenge. 
Offline training, that is, the estimation of the a-function (see Section 2.2.2) was performed 
using 40 individuals and 5 illuminations from the CamFace database. We emphasize that 
these were not used as test input for the evaluations reported in the following section. 
Data acquisition.   The discussion so far focused on recognition using fixed-scale face 
images. Our system uses a cascaded detector [20] for localization of faces in cluttered 
images, which are then rescaled to the unform resolution of 50 x 50 pixels (approximately 
the average size of detected faces in our data set). 
• Gaussian high-pass filtered images [5,11] (HP): 

(7)

• local intensity-normalized high-pass filtered images - similar to the Self-Quotient Image 
[21] (QI): 

(8)

the division being element-wise, 
• distance-transformed edge map [3, 9] (ED): 

(9)

• Laplacian-of-Gaussian [1] (LG): 

 (10) 

and
• directional grey-scale derivatives [1,10] (DX, DY): 
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(11)

(12)

(a) Cambridge Face Database 

(b) Toshiba Face Database 

(c) Face Video Database 

(d) Faces 96 Database 
Figure 9. Frames from typical video sequences from the four databases used for evaluation 

Methods and representations. The proposed framework was evaluated using the following 
filters (illustrated in Figure 11): 
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For baseline classification, we used two canonical correlations-based [15] methods: 
• Constrained MSM (CMSM) [ 12] used in a state-of-the-art commercial system 

FacePass® [19], 
• Mutual Subspace Method (MSM) [12], and 
These were chosen as fitting the main premise of the chapter, due to their efficiency, 
numerical stability and generalization robustness [16]. Specifically, we (i) represent each 
head motion video sequence as a linear subspace, estimated using PCA from appearance 
images and (ii) compare two such subspaces by computing the first three canonical 
correlations between them using the method of Björck and Golub [6], that is, as singular 
values of the matrix where are orthonormal basis of two linear subspaces. 

(a) FaceDBlOO 

(b) FaceDB60 

Figure 10. (a) Illuminations 1-7 from database FaceDBlOO and (b) illuminations 1-10 from 
database FaceDBOO 

Figure 11. Examples of the evaluated face representations: raw grey scale input (RW), high-
pass filtered data (HP), the Quotient Image (QI), distance-transformed edge map (ED), 
Laplacian-of-Gaussian filtered data (LG) and the two principal axis derivatives (DX and DY) 

3.1 Results 

To establish baseline performance, we performed recognition with both MSM and CMSM 
using raw data first. A summary is shown in Table 3.1. As these results illustrate, the Cam-
Face and ToshFace data sets were found to be very challenging, primarily due to extreme 
variations in illumination. The performance on Face Video and Faces96 databases was sig-
nificantly better. This can be explained by noting that the first major source of appearance 
variation present in these sets, the scale, is normalized for in the data extraction stage; the 
remainder of the appearance variation is dominated by pose changes, to which MSM and 
CMSM are particularly robust to [4,16]. 
Next we evaluated the two methods with each of the 6 filter-based face representations. The 
recognition results for the CamFace, ToshFace and Faces96 databases are shown in blue in 
Figure 12, while the results on the Face Video data set are separately shown in Table 2 for the 
ease of visualization. Confirming the first premise of this work as well as previous research 
findings, all of the filters produced an improvement in average recognition rates. Little 
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interaction between method/filter combinations was found, Laplacian-of-Gaussian and the 
horizontal intensity derivative producing the best results and bringing the best and average 
recognition errors down to 12% and 9% respectively. 

a) CamFace 

(b) ToshFace 

(c) Faces96 

Figure 12. Error rate statistics. The proposed framework (-AD suffix) dramatically improved 
recognition performance on all method/filter combinations, as witnessed by the reduction 
in both error rate averages and their standard deviations. The results ofCMSM on Faces96 
are not shown as it performed perfectly on this data set 
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CamFace ToshFace FaceVideoDB Faces96 Average

CMSM 73.6 / 22.5 79.3 / 18.6 91.9 100.0 87.8

MSM 58.3 / 24.3 46.6 / 28.3 81.8 90.1 72.7

Table 1. Recognition rates (mean/STD, %) 

RW HP Qi ED LG DX DY

MSM 0.00 0.00 0.00 0.00 9.09 0.00 0.00

MSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CMSM 0.00 9.09 0.00 0.00 0.00 0.00 0.00

CMSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. FaceVideoDB, mean error (%) 

Finally, in the last set of experiments, we employed each of the 6 filters in the proposed 
data-adaptive framework. The recognition results are shown in red in Figure 12 and in Table 
2 for the Face Video database. The proposed method produced a dramatic performance 
improvement in the case of all filters, reducing the average recognition error rate to only 3% 
in the case of CMSM/Laplacian-of-Gaussian combination.This is a very high recognition 
rate for such unconstrained conditions (see Figure 9), small amount of training data per 
gallery individual and the degree of illumination, pose and motion pattern variation 
between different sequences. An improvement in the robustness to illumination changes can 
also be seen in the significantly reduced standard deviation of the recognition, as shown in 
Figure 12. Finally, it should be emphasized that the demonstrated improvement is obtained 
with a negligible increase in the computational cost as all time-demanding learning is 
performed offline. 

4. Conclusions 

In this chapter we described a novel framework for automatic face recognition in the 
presence of varying illumination, primarily applicable to matching face sets or sequences. 
The framework is based on simple image processing filters that compete with unprocessed 
greyscale input to yield a single matching score between individuals. By performing all 
numerically consuming computation offline, our method both (i) retains the matching 
efficiency of simple image filters, but (ii) with a greatly increased robustness, as all online 
processing is performed in closed-form. Evaluated on a large, real-world data corpus, the 
proposed framework was shown to be successful in video-based recognition across a wide 
range of illumination, pose and face motion pattern changes. 
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1. Introduction 

Facial feature extraction consists in localizing the most characteristic face components (eyes, 
nose, mouth, etc.) within images that depict human faces. This step is essential for the 
initialization of many face processing techniques like face tracking, facial expression 
recognition or face recognition. Among these, face recognition is a lively research area 
where it has been made a great effort in the last years to design and compare different 
techniques.
In this chapter we intend to present an automatic method for facial feature extraction that 
we use for the initialization of our face recognition technique. In our notion, to extract the 
facial components equals to locate certain characteristic points, e.g. the center and the 
corners of the eyes, the nose tip, etc. Particular emphasis will be given to the localization of 
the most representative facial features, namely the eyes, and the locations of the other 
features will be derived from them. 
An important aspect of any localization algorithm is its precision. The face recognition 
techniques (FRTs) presented in literature only occasionally face the issue and rarely state the 
assumptions they make on their initialization; many simply skip the feature extraction step, 
and assume perfect localization by relying upon manual annotations of the facial feature 
positions.
However, it has been demonstrated that face recognition heavily suffers from an imprecise 
localization of the face components. 
This is the reason why it is fundamental to achieve an automatic, robust and precise 
extraction of the desired features prior to any further processing. In this respect, we 
investigate the behavior of two FRTs when initialized on the real output of the extraction 
method. 

2. General framework 

A general statement of the automatic face recognition problem can be formulated as follows: 
given a stored database of face representations, one has to identify subjects represented in 
input probes. This definition can then be specialized to describe either the identification or 
the verification problem. The former requires as input a face image, and the system 
determines the subject identity on the basis of the database of known individuals; in the 
latter situation the system has to confirm or reject the identity claimed by the subject. 
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As noted by [Zhao et al., 2003], whatever the problem formulation, its solution requires the 
accomplishment of three subsequent subtasks: face detection, feature extraction and face
recognition (Figure 1). 

Figure 1. The subtasks of the face recognition problem 

In fact, given an input image depicting one or more human subjects, the problem of 
evaluating their identity boils down to detecting their faces, extracting the relevant 
information needed for their description, and finally devising a matching algorithm to 
compare different descriptions. 
On one hand, the modularity of the original problem is a beneficial property as it allows to 
decompose it and to concentrate on the specific difficulties of each task in order to achieve a 
more effective solution. On the other hand, care must be taken in recomposing the separate 
modules: a common approach is to devise techniques that face only a task at once1 without 
considering the problems that can arise at the “interfaces” between them. 
In particular, most of face recognition techniques (FRTs) presented in literature skip the 
previous tasks and assume perfect feature extraction. While this can be certainly useful to 
develop and compare different recognition strategies, this attitude is not practical if the goal 
is to produce a fully automatic recognition system. Relying upon manual annotations of the 
feature positions does not account for the influence played by the extraction error on the 
recognition rate: the amount and trend of this dependency is not easily predictable and 
varies from FRT to FRT. 
These facts bring to two important observations: first of all it is fundamental to achieve an 
automatic, robust and precise extraction of the desired features prior to the application of a 
face recognition technique; secondly, it is important to study the relation between the 
quality of the feature extraction and the performance of the face recognition. By doing so, 
one ensures to couple only truly compatible modules to realize a fully automatic, robust 
system for face recognition. Differently stated, any FRT should be aware of the minimum 
precision required for its functioning and should clearly declare it. 
Regarding feature extraction, there is a general agreement that eyes are the most important 
facial features, thus a great research effort has been devoted to their detection and 
localization [Ji et al., 2005, Zhu and Ji, 2005, Fasel et al., 2005, Hamouz et al., 2005, Tang et 
al., 2005, Wang et al., 2005, Song et al., 2006, Gizatdinova and Surakka, 2006]. This is due to 
several reasons, among which: 
• eyes are a crucial source of information about the state of human beings. 

                                                                

1 Face detection and feature extraction are often accomplished simultaneously as it is possible to locate 
faces by directly locating their inner features. 
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• the eye appearance is less variant to certain typical face changes. For instance they are 
unaffected by the presence of facial hair (like beard or mustaches), and are little altered 
by small in-depth rotations and by transparent spectacles. 

• the knowledge of the eye positions allows to roughly identify the face scale (the inter-
ocular distance is relatively constant from subject to subject) and its in-plane rotation. 

• the accurate eye localization permits to identify all the other facial features of interest. 

To our knowledge, eyes are the only facial features required for the initialization of any FRT; 
actually this is the only information needed by those methods that operate an alignment of 
the face region, for instance as done by [Zhang et al., 2005]. However some techniques may 
require more features than just the eyes. For instance all FRTs derived from subspace 
methods (see [Shakhnarovich and Moghaddam, 2004] for a detailed survey) are initialized 
on four positions (the eyes, nose and mouth locations) to warp the face region before 
projection.2 Other techniques operate on larger sets of facial positions because they base the 
recognition on some kind of local processing: e.g. [Wiskott et al., 1999] is based on the 
comparison of the image texture found in the neighborhood of several fiducial points.
Due to these considerations, the performance evaluation of a feature extraction method is 
usually given in terms of error measures that take into account only the localized eye 
positions. In Sec. 3. we will motivate the choice of such measures and we will introduce the 
study of the recognition rate in function of the eye localization precision. Sec. 4. presents the 
proposed algorithm for precise eye localization, together with the experimental results of its 
application on many public databases. In Sec. 5. we show a possible way to automatically 
derive the locations of a set of facial features from the knowledge of the sole eye positions. 
Sec. 6. reports the results of two face recognition experiments carried out on automatically 
extracted features: the behavior of two FRTs is discussed by making some considerations 
about their dependence on the extraction quality. 

3. The importance of precise eye localization 

Given the true positions of the eye centers (by manual annotation), the eye localization 
accuracy is expressed as a statistics of the error distribution made over each eye (usually the 
mean or the maximum), measured as the Euclidean pixel distance. In order to make these 
statistics meaningful, so that they can be used to compare the results obtained on any 
dataset, it is necessary to standardize the error by normalizing it over the face scale. 
One popular error measure has been introduced by [Jesorsky et al., 2001], and it has been 
already adopted by many research works on eye localization. The measure, which can be 
considered a worst case analysis, is defined as 

                                                                

2 Both the alignment and the warping are operations that intend to normalize a face database. The 
former consists in bringing the principal features (usually the eyes) to the same positions. This is done 
via an affine transformation (a scaling plus a roto-translation) that uses the eye centers as “pivots” of the 
transform. A warping is a non-affine transformation (a non uniform “stretching” of the face 
appearance) that is meant to densely align the face appearance (or at least the position of several 
features). 
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where  are the ground truth positions and  the results of automatic 
localization. There is a general agreement [Jesorsky et al., 2001, Ma et al., 2004a, Zhou and 
Geng, 2004] that deye  0.25 is a good criterion to flag the eye presence (to claim eye 
detection). This precision roughly corresponds to a distance smaller than or equal to the eye 
width. However, this accuracy level may not be sufficient when the localized positions are 
used for the initialization of subsequent techniques.
Following the idea presented in [Ma et al., 2004a], we studied the relation between deye and 
the face recognition rate of some baseline methods available in the CSU package [Beveridge 
et al., 2005] together with the LAIV-FRT described in Sec. 6. To mimic the behavior of eye 
localization techniques that achieve different levels of precision, we carried out four 
recognition experiments by artificially perturbing the ground truth quality; both Cr and Cl

have been randomly displaced inside circles of radii equal to 5%, 10% and 15% of Cl -Cr

with uniform distribution. In Figure 2 we report the results of this study on the XM2VTS 
database (see Appendix 8.). The experiment is defined as follows: session 1 is used for the 
gallery, session 2 for the probe, sessions 3 and 4 constitute the training set.3 Differently from 
[Ma et al., 2004a] where only the probe set is affected by artificial error, all three sets 
(gallery, probe and training) have been perturbed as it would happen in a completely 
automatic system. The graphs of Figure 2 clearly show that the precision of eye localization 
is critical for the alignment of faces, even if it does not affect all the methods in the same 
way.

Figure 2. Face recognition vs. (artificial) eye localization precision 

Very recently in [Rodriguez et al., 2006] the issue has been further developed, suggesting a 
new error measure which is more discriminative than deye as it permits a quantitative 
evaluation of the face recognition degradation with respect to different error types. Instead 
of considering only the Euclidean distance between the detections and the ground truth 
points, it considers four kinds of error: the horizontal and the vertical error (both measured 
                                                                

3 The training set is needed by all the reported CSU methods, not by LAIV-FRT.
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between the mid-points  of the segments , see Figure 3), the scale and 
the rotation error. 

In fact it happens that some FR systems are more sensitive to certain types of error. In 
particular, the baseline PCA method is extremely sensitive to all types, while the FR system 
described in the article (referred to as DCT/GMM) seems to be almost indifferent to 
translational errors ( x, y), while its performance notably degrades when the error is due 
principally to scale or rotation inaccuracy ( s, ). The authors conclude that it is not 
possible to define an absolute concept of precise localization: each FR will have a different 
tolerance to errors and it should clearly state the level and type of precision required for its 
initialization.  
The article [Shan et al., 2004] is entirely devoted to the so called curse of misalignment. There 
it is reported the high dependence of the Fisherface method [Belhumeur et al., 1997] 
performance on the alignment precision, especially with respect to rotation or scale errors. 
The authors also propose to evaluate the overall face recognition rate with a measure, rate*, 
that integrates the FR rate over all possible misaligned initializations, weighted by their 
probability: 

(1)

They measure the robustness of a FRT to errors as the overall FR rate normalized with 
respect to the ideal case of absence of error, i.e. rate*/rate(0). Although we deem correct the 
definition of the overall FR rate, the limit of this approach is the difficulty of knowing the 
pdf of the misalignment distribution, thus preventing from a direct computation of rate*. 

Figure 3. Localization error:  are the ground truth positions,  are the results 
of automatic localization 

A totally different approach is that of [Martinez, 2002] where, instead of imposing the 
maximum level of acceptable localization error, it is proposed to deal with it by learning its 
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distribution directly into the statistical model of each subject. The method requires a 
quantitative estimate of the localization error distribution to be used to perturb each image 
accordingly, generating a certain number of new images constituting the set of all the 
possible displacements. These enriched samples become the classes to be modelled (one for 
each subject). Such models are then used for face recognition, being robust to localization 
errors by construction. A similar approach has also been proposed by [Min et al., 2005]. 

4. Coarse-to-fine eye localization 

The general outline of our eye localization system is presented in Figure 4. The system 
assumes to be initialized on a face map (a binary image of the regions that have been detected 
as faces) and processes it in a coarse-to-fine fashion: the first level is an eye detector meant to 
locate the eye pattern; the second level is initialized on the positions output by the first one 
and aims at improving the localization precision. Both modules are based on strong 
statistical classifiers and both take advantage of a suitable eye representation consisting in 
optimally selected wavelet coefficients. One important difference lies in the definition of the 
receptive field of the respective eye patterns: the first is equal to the inter-ocular distance, 
while the second is half of it to consider a finer space resolution (see some examples in 
Figure 5). 

Figure 4. General outline of the eye localization system 

The system can be applied to the output of any face detector that returns a rough estimation 
of the face position and scale, e.g. [Viola and Jones, 2004, Schneiderman and Kanade, 2004, 
Osadchy et al., 2005, Campadelli et al., 2005]. The eye detector serves two distinct objectives: 
it not only produces a rough localization of the eye positions, it also validates the output of 
the face detector (a region of the face map is validated as a true face if and only if there has 



Automatic Facial Feature Extraction for Face Recognition 37

been at least an eye detection within it). In fact all face detectors manifest a certain false 
detection rate that must be dealt with. 

Figure 5. Examples of eye patterns for the eye detector (first row) and locator (second row) 

4.1 Wavelet selection 

The difficulty intrinsic to the task of eye localization requires an accurate choice of a suitable 
representation of the eye pattern. It has been observed that the wavelet representation is 
more favorable than the direct representation as it leads to a smaller generalization error 
[Huang and Wechsler, 1999]. Haar-like wavelets permit to describe visual patterns in terms 
of luminance changes at different frequencies, at different positions and along different 
orientations.
Before the wavelet decomposition, each eye patch undergoes an illumination normalization 
process (a contrast stretching operation) and is then reduced to 16×16 pixels.4 The 
decomposition is realized via an overcomplete bi-dimensional FWT (Fast Wavelet Transform) 
[Campadelli et al., 2006a] that produces almost four times as many coefficients with respect 
to the standard FWT. This redundancy is desirable as we want to increase the cardinality of 
the feature “vocabulary” before going through the selection procedure. 
In order to carry out the feature selection, we follow the idea proposed in [Oren et al., 1997] 
to apply a normalization step, which allows us to distinguish two sub-categories of wavelet 
coefficients:  and . Both retain precious information: the first class gathers the 
coefficients that capture the edge structure of the pattern, while the second class contains the 
coefficients that indicate a systematic absence of edges (in a certain position, at a certain 
frequency and along a certain orientation). What is more important, the normalization step 
naturally defines a way to (separately) order the two categories, thus providing a way to 
assess the relative importance of the respective coefficients (for the technical details refer to 
[Campadelli et al., 2006b]). 
Once ordered the normalized coefficients, we define an error function to drive the selection 
process. We can measure the expressiveness of the coefficients by measuring how well they 
reconstruct the pattern they represent. We wish to find the set of optimal coefficients 

(2)

                                                                

4 Such a dimension represents a trade off between the necessity to maintain low the computational cost 
and to have sufficient details to learn the pattern appearance.
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where E is the mean eye pattern.5 U is the uniform pattern (with all pixels set to the mean 
luminance of E) and Ew is the reconstruction obtained by retaining the set w of the wavelet 
coefficients and . The first term of the objective function represents 
the error made by the reconstruction, while the second term intends to bound the amount of 
detail we are adding to the pattern representation (the value  is a trade-off to balance 
between these two opposite goals). The ordering of the coefficients avoids to optimize over 
all the possible subsets of : w is incremented by iteratively adding new coefficients 
according to their ordering. 
We experimentally observed that the trend of the objective function is rather insensitive to 
variations of  in the interval [0.5, 1]; we set it to 0.8. As it can be expected, the norm of the 
reconstruction maximally varies increasing the number of w+ retained, while it is almost 
unaffected by the number of selected w–. Due to this consideration, the selected 

are such that they correspond to a local minimum of the objective function 
(2.), with the additional constraint .
Figure 6 shows the coefficients selected for the pattern representation of each classifier. For 
the eye detector the process retains 95 wavelet coefficients that well characterize the general 
eye shape (the highest frequency coefficients are not considered). The representation 
associated with the eye locator keeps 334 coefficients, therefore the application of the second 
classifier is more costly than the first one.  

Figure 6. From left to right: the mean eye pattern, its wavelet decomposition and the 
selected features (red contour) of the two eye patterns. High intensities correspond to strong 
edges, low intensities indicate uniform regions 

4.2 Eye detection 

The module for eye detection takes in a face map output by a generic face detector and 
produces a first, rough localization of the eye centers. Its core component is a strong 
statistical classifier that is capable of distinguishing the eye appearance from that of the 
other facial features; for this purpose we employ a binary Support Vector Machine (SVM), 
that is the state-of-the-art model for many classification tasks [Vapnik, 1995]. The 
classification is carried out on examples represented via a set of 95 selected wavelet filter 
responses, as described in the previous section. 
The training of the SVM has been carried out on a total of 13591 examples extracted from 
1416 images: 600 belonging to the FERET database (controlled images of frontal faces), 416 
to the BANCA database (to model different illumination conditions and the closed eyes), 
and 600 taken from a custom database containing many heterogenous and uncontrolled 

                                                                

5 Defined simply by averaging the gray levels of 2152 eye patterns. 
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pictures of various people (useful to model pose variations, non-neutral face expressions 
and random background examples). The positive class is built to contain eye examples 
cropped to a square of side equal to the inter-ocular distance. The negative class is 
populated by the other facial features (nose, mouth, chin, cheeks, forehead, etc.) and by 
some examples extracted from the background of images (respectively 3 and 2 for every 
positive). The definition of the two classes is driven by the notion that the eye detection 
module must be applied most of the time within the face region, therefore a negative 
example in this context is actually a facial feature distinct from the eyes. However, as face 
detectors sometimes detect some false positives, it is useful to enrich the definition of the 
negative class by adding random negative patterns. 
The machine is defined as follows: we employed a C-SVM (regulated by the error-
penalization parameter C) based on the RBF kernel (parameterized by  , which 
regulates the amplitude of the radial supports). The tuning of the two hyper-parameters C
and  has been done in order to maximize the precision × recall6 on a test set of 6969 examples 
disjoint from the training set, but generated according to the same distribution. This 
procedure selected C = 6 and   = 4.0 × 10–4, which yielded a SVM of 1698 support vectors 
(let us call it SVM1) and a 3.0% of misclassifications on the test set. This error can be 
considered an empirical estimate of the generalization error of the binary classifier. 
Once trained, the SVM1 is integrated into a pattern search strategy that avoids a multiscale 
scan: we infer the size of a hypothetical eye present in that region from the size of the face 
detector output.7 However, any face detector is subject to a certain error distribution on the 
size of its detections (either over-estimating or under-estimating the true face size), so the 
inferred eye scale cannot be fully trusted. We account for this uncertainty by considering a 
range of three scales; the evaluation of a candidate point P comes down to evaluating three 
examples centered in it: the one at the inferred scale (xP ), plus two examples (xP– and xP+ ) 
extracted in a way to account for an error distribution of the face size that is between half 
and twice the true size. This is a very reasonable requirement for a good face detector and 
permits to treat almost all of its outputs. If SVM1(x) = 0 is the equation of the decision 
function (hyperplane) separating the two classes, then we can treat the functional margin 
SVM1(x) as a “measure” of the confidence with which the SVM classifies the example x.
Thus we define the function 

as the strength of the candidate point P.
Moreover, in order to make the search more efficient, we avoid an exhaustive scan of the 
candidate points: first comes the identification of points lying on edges, then they are 
subsampled with a step that depends on the scale of the face region;8 we consider as 
detections the points for which (P) > 0, and we group them according to their proximity in 

                                                                

6 If TP = true positives, FN = false negatives, FP = false positives 

7 This relation has been estimated for each employed face detector and applied consistently. 
8 The subsampling step is defined as , where the “radius” of a region is simply .
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the image;9 each group of point candidates is then represented by its centroid (the eye 
center) obtained weighting each point P with its (P). 
Ideally we should have just two eye centers detected for each face, however sometimes it 
happens that the eye classifier detects also one or more false positives. To deal with this, we 
introduce a selection criterion that exploits the margin of the classifier and assumes the 
substantial verticality of the face pose. Doing so, we manage to select the eye positions, and 
to discard the false detections, by choosing the couple of centers (ci, cj) that maximizes  

where (ci)y is the y coordinate of the center ci. As we do not want to enforce the perfect 
verticality of the face, the square root at denominator is introduced to give more importance 
to the strength of the eye centers with respect to their horizontal alignment. 
Figure 7 visualizes the data flow of the eye detection module. 

Figure 7. Eye detector outline 

4.3 Eye localization 

The module for eye localization is conceived to be applied in cascade to the eye detection 
one, when it is desirable a greater localization precision of the detected positions. The 
general architecture of this module is very similar to the previous one, therefore we can 
concentrate on the description of the main differences. 
While the eye detector must distinguish the global eye shape from that of other facial 
patterns, the eye locator must work at a much finer detail level: the goal here is to start from 
a rough localization and refine it by bringing it closer to the exact eye center location. 
Bearing in mind this objective, at this stage we consider a richer pattern representation (334 
wavelet coefficients) that permits a finer spacing resolution. The positive examples 

                                                                

9 Two detections are “close”, and hence must be aggregated, if their Euclidean distance is smaller than 
five times the subsampling step. This multiple is not arbitrary, as it corresponds to about half the 
distance between the eye corners.
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correspond to a smaller receptive field (half of the inter-ocular distance) and the negative 
examples are generated by small, random displacements of the subimages used for the 
extraction of the positive ones (10 negative examples for each positive). 
The C-SVM with RBF kernel is first tuned in the same way as before, selecting C = 1.35 and  

= 3.6 × 10–4. The training is then carried on over 22647 examples, producing a SVM of 3209 
support vectors (SVM2 from now on) that exhibits a misclassification rate of 2.5% on a test 
set of 11487 examples. 
The output of the eye detection module is used for the initialization of the eye localization 
module. The pattern search proceeds only in a small neighborhood of the starting locations, 
but this time we do an exhaustive scan as we do not want to loose spacial resolution. The 
search is done at only one scale, inferred averaging the three scales previously considered 
and weighting them according to their respective SVM1 margin (the factor  is due to the 
smaller receptive field): 

where

Finally the SVM2 evaluations are thresholded at 0, determining a binary map consisting of 
one or more connected regions. The refined eye center is found at the centroid of the 
connected region that weights the most according to the SVM2 margin. 
Figure 8 visualizes the data flow of the eye localization module. 

Figure 8. Eye locator outline 

We note here that the computational cost of each single SVM evaluation is linearly 
proportional to the number of support vectors. Therefore, in order to reduce the 
computational time of our application, it would be desirable to approximate the hyperplane 
associated to the SVM by reducing the number of its supports, without deteriorating its 
separation abilities. Some research has been devoted to optimal approximation techniques 
for support vector reduction, which usually require to specify aforetime the desired number 
of supports to retain at the end of the reduction process [Burges, 1996, Schölkopf et al., 
1999]. However there is no general rule regarding how many vectors can be suppressed 
before compromising the performance of a SVM classifier; this quantity clearly depends on 
the difficulty of the classification task. Another approach consists in fixing a threshold on 
the maximum marginal difference of the old support vectors with respect to the new 
hyperplane [Nguyen and Ho, 2005]. This perspective is particularly interesting as it enables 
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to specify a stop quantity that is no more arbitrary, on the contrary it allows to limit the 
oscillation of the decision surface.
We have reimplemented the technique described in [Nguyen and Ho, 2005] and applied it 
only to the SVM2 because a reduction of this machine would be of great benefit with regards 
to the computational time: in fact it is composed of almost twice as many support vectors 
than the SVM1, and it is evaluated at many more candidate points. What is more, while a 
reduction of the SVM1 strongly influences the eye detection rate, a reduced SVM2 only 
degrades the localization precision, and in a much more progressive way. The results of the 
reduction experiments are given in the next section. 

4.4 Eye localization results 

The experiments have been carried out on images taken from the following datasets: 
XM2VTS, BANCA, FRGC v.1.0, BioID and FERET (see Appendix 8. for the full specification 
of the datasets composition). All these images depict one subject shot with vertical, frontal 
pose, eyes closed or open, presence or absence of spectacles; none of these images has been 
used for the training of the SVM classifiers. On color images (XM2VTS, BANCA, FRGC) the 
face detection has been carried out using the method in [Campadelli et al., 2005], while 
when the input images are gray scale (BioID, FERET), the detection is performed by a re-
implementation of [Viola and Jones, 2001]. 

Figure 9. The cumulative distributions of eye detection and localization over different 
databases

The graphs in Figure 9 display the performance of the eye detector (SVM1), the eye locator 
(SVM2) and, when available, we report the performance achieved by the methods presented 
by [Hamouz et al., 2005] (denoted as “1 face on the output” in the original article) and 
[Cristinacce and Cootes, 2006] (Constrained Local Models, CLM). Regarding CLM, the 
curves plotted on the BioID and XM2VTS graphs have been extrapolated from the results 
kindly provided by the authors of the method. 
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The numbers reported in parenthesis on the graphs represent the Area Under the Curve 
(AUC), therefore they give a global estimation of the performance of each localization 
method over that particular dataset. Regarding eye detection, the SVM1 alone permits to 
achieve rates of 99.0%, 95.5%, 95.6%, 97.1% and 97.8% over the datasets BANCA, BioID, 
FERET, FRGC and XM2VTS respectively (deye  0.25). As expected, the addition of the 
second classifier greatly improves the precision of the detection and the curves are 
systematically above the rates declared by Hamouz et al. Regarding CLM, we note that it is 
very effective in localizing the eyes over the BioID database, while on the XM2VTS it 
achieves a lower rate.10

Also the works by [Jesorsky et al., 2001], [Ma et al., 2004b], [Tang et al., 2005] and [Niu et al., 
2006] use the error measure deye in order to assess the quality of eye localization. The first 
work exhibits a localization performance that is lower than that reported by Hamouz et al. 
The second one presents a cumulative curve that looks similar to the performance of the 
SVM1 but it is obtained referring to a mix of databases with no intersection with the ones we 
considered, making impossible a direct comparison. The third paper reports results on the 
BioID, tabulating only the values corresponding to deye  0.1 and deye  0.25 (91.8% and 98.1% 
respectively), while omitting the curve behavior under this value. Finally, the last work 
presents results on XM2VTS and BioID; we do not report them in figure since the values are 
not clearly tabulated, however we note that the performance on XM2VTS is comparable to 
ours, while on the BioID their results are significantly better. 
Other works face the same problem, while adopting a different metrics. For instance [Wang 
et al., 2005] adopt a normalized mean error (not the maximum) and give an error of 2.67% 
on the entire FRGC. By adopting this measure on the considered FRGC subsets we observe 
an error of 3.21%. Analogously, [Fasel et al., 2005] provide the localization results on the 
BioID in terms of the mean relative error, this time expressed in iris units. Noting that the 
iris diameter is slightly shorter than the 20% of the inter-ocular distance, their measurement 
corresponds to a mean error (relative to the inter-ocular distance) of 0.04, while we report a 
mean relative error of 0.031. The method described by [Everingham and Zisserman, 2006] 
carries out the experiments on the FERET database: in the 90% of images the mean relative 
error is reported to be smaller or equal to 0.047, which is remarkable (for the same level of 
precision, on the FERET we count about the 81% of images). 
We also present in Figure 10 the histograms of x, y, s,   (recall Sec. 3.) made by our eye 
localization module on all the datasets previously considered; for comparison, we report in 
Figure 11 the results of the CLM algorithm on the available datasets (BioID, XM2VTS). 
Referring to the FR algorithm DCT/GMM proposed by [Rodriguez et al., 2006], we observe 
that each error histogram generated by the coarse-to-fine technique is entirely included 
within the declared error tolerance (rotation error  [-10°, 10°], translational error  [-0.2, 
0.2], scale error  [0.8, 1.2]). In the spirit of their article, we conclude that our application 
would be appropriate for the initialization of DCT/GMM. 

The speed was not the main focus of our research, giving that nowadays there exist 
dedicated architectures which would allow to obtain a real-time application. Running java 
interpreted code on a Pentium 4 with 3.2GHz, we report the computational time of the two 

                                                                

10 The authors attribute this behavior to the major similarity of BioID images to the images used to train 
CLM.
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modules: on average eye detection requires about 4 seconds on faces with an inter-ocular 
distance of 70 pixels, while eye localization takes about 12 seconds. 
We have investigated the possibility of reducing the cardinality of the SVM2. As already 
pointed out, the entity of the support vectors reduction is proportional to the threshold 
imposed on the maximum marginal difference; in particular we have carried out the 
experiments by fixing the threshold at 0.5 and 1. The value 0.5 is chosen to interpolate between 
0 and 1 in order to sketch the trend of the performance reduction vs. the SV reduction. 

Figure 10. The histograms of the horizontal, vertical, scale and rotation error of the eye 
localization module (SVM2) 

Thresholds 1 and 0.5 led respectively to a reduction of the original SVM2 from 3209 SVs to 
529 and 1716. As the computational cost of the eye locator is three times bigger than that of 
the eye detector, and as it is linearly dependent on the number of SVs, these reductions 
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roughly correspond to a global application speed-up of 60% and 35% respectively. There is a 
clear trade-off between the entity of the reduction and the accuracy of the localization: the 
performance of the localization module, measured on a randomly chosen subset (400 
images) of the XM2VTS, and expressed in terms of AUC, decreased by about 3.3% and 0.6% 
respectively (See graph 12.). This is quite a good result, especially regarding the latter 
experiment. On the other hand, if this deterioration of the localization precision is not 
acceptable for a certain face processing application, then the original SVM2 should be used 
instead. 

Figure 11. The histograms of the horizontal, vertical, scale and rotation error of the CLM 
algorithm 

Figure 12. Support vectors reduction experiment 
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5. From eye centers to fiducial points 

In this section we show how, given the eye centers, we derive a set of 27 characteristic points 
(fiducial points): three points on each eyebrow, the tip, the lateral extremes and the vertical 
mid-point of the nose, the eye and lip corners, their upper and lower mid-points, the mid-
point between the two eyes, and four points on the cheeks (see Figure 13). 
This module has been conceived to work on still color images of good quality, acquired with 
uniform illumination, where the face is almost frontal and the subject assumes either a 
neutral or a slightly smiling expression. 
The method proceeds in a top-down fashion: given the eye centers, it derives the eye, nose 
and mouth subimages on the basis of simple geometrical considerations, and extracts the 
corresponding fiducial points (green points in Figure 13) as described in the following. 
Finally, in order to enrich the face description, further fiducial points (red points in Figure 
13) are inferred on the basis of the position of the extracted points. 

Figure 13. A face is described by 27 fiducial points: 13 are directly extracted from the image 
(in green), 14 are inferred from the former ones (in red) 

5.1 Eyes 

The eyes are described by a parametric model which is a simplified version (6 parameters 
instead of 11) of the deformable template proposed in [Yuille et al., 1992]. 
The eye model is made of two parabolas, representing the upper and lower eye arcs, and 
intersecting at the eye corners (see Figure 14); the model parameters, ,
are: the model eye center coordinates (xt, yt), the eye upper and lower half-heights a and c,
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the eye half-width b, and the rotation angle t expressing the rotation of the model with 
respect to the horizontal axis. 
The fundamental step to obtain good results is a very precise initialization of the template 
parameters. To this end, the eye center coordinates, (xc, yc), derived by the SVM2, are used as 
initial values for (xt, yt). In order to find a good initial estimate for the parameters a, b, c, we 
carried out a statistical study on 2000 images to evaluate the relation between the inter-
ocular distance d and both the semi-width, b and the semi-height of the eye, a and c,
obtaining very stable results: the mean values are 5.6 and 12 respectively, with small 
variance values (0.8 and 1.2), making these evaluations reliable and useful to set the initial 
values of the parameters a, b, c correspondingly. The last parameter, , is set initially to the 
estimated face tilt. 

Figure 14. Deformable eye template 

In order to adapt the generic template to a specific eye, we minimize an energy function Et

that depends on the template parameters (prior information on the eye shape) and on 
certain image characteristics (edges and the eye sclera). The characteristics are evaluated on 
the u plane of the CIE-Luv11 space, since in this color plane the information we are looking 
for (edges and eye sclera) are strengthened and clearer (see Figure 15 b,c). More precisely: 

where:

1.
2. ,

being Rw the upper and lower parabolas, and e the edge image obtained applying the 
Sobel filter to the eye subimage. 

3. ,
where Rw is the region enclosed between the two parabolas, and i is a weighted image 
called eye map, and determined as follows: 
• threshold the u plane with a global threshold: 

th = 0.9 × max(u)

                                                                

11 Uniform color space introduced by the CIE (Commission Internationale de l’Eclairage) to properly 
represent distances between colors [Wyszecki and Stiles, 1982].
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• adapt the threshold until the pixels set to 1 are symmetrically distributed around 
the eye center. 

• for every pixel p 

The function is optimized adopting a search strategy based on the steepest descent, as 
suggested in Yuille’s work; once obtained the eye contour description, we derive the two 
eye corners and the upper and lower mid-points straightforwardly (see Figure 15). 

5.2 Nose 

The nose is characterized by very simple and generic properties: the nose has a “base” the 
gray levels of which contrast significantly with the neighboring regions; moreover, the nose 
profile can be characterized as the set of points with the highest symmetry and high 
luminance values; therefore we can identify the nose tip as the point that lies on the nose 
profile, above the nose baseline, and that corresponds to the brightest gray level. These 
considerations allow to localize the nose tip robustly (see Figure 16). 

Figure 15. Eye points search: a) eye subimage b) edge image c) eye map d) initial template 
position e) final template position f ) fiducial points 

Figure 16. Examples of nose processing. The black horizontal line indicates the nose base; 
the black dots along the nose are the points of maximal symmetry along each row; the red 
line is the vertical axis approximating those points; the green marker indicates the nose tip 

5.3 Mouth 

Regarding the mouth, our goal is to locate its corners and its upper and lower mid-points. 
To this aim, we use a snake [Hamarneh, 2000] to determine the entire contour since we 
verified that they can robustly describe the very different shapes that mouths can assume. 
To make the snake converge, its initialization is fundamental; therefore the algorithm 
estimates the mouth corners and anchors the snake to them: first, we represent the mouth 
subimage in the YCbCr color space, and we apply the following transformation: 

MM = (255 - (Cr - Cb)) Cr 2
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MM is a mouth map that highlights the region corresponding to the lips; MM is then 
binarized putting to 1 the 20% of its highest values; the mouth corners are determined 
taking the most lateral extremes (see Figure 17). 

Figure 17. Mouth corners estimation: a) mouth subimage b) mouth map c) binarized mouth 
map d) mouth corners 

Figure 18. Snake evolution: a) snake initialization b) final snake position c) mouth fiducial 
points

The snake we used to find the mouth contour is composed of an initial set S of 4 points: the 
mouth corners and 2 points taken as a function of both the mouth subimage dimensions and 
of the mouth corner positions (see Figure 18 a). To better describe the contour, the size of S
is automatically increased, while the snake is being deformed, by adding points where the 
contour presents high curvature values. 
In order to deform the snake, a force Ftot is applied to each point P = (x, y) S:

It is constituted of both external and internal forces. Fext is external and deforms the snake in 
order to attract it to the mouth contour extracted from MM

while TF , FF , IF are internal forces that constrain the snake to stay continuous and smooth  
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where  is the vector in P(x, y) normal to the snake. 
The algorithm adds points and deforms the snake until the global force Ftot is lower than a 
certain tolerance for a fixed number of consequent steps. Once obtained the mouth contour 
description, we derive the fiducial points straightforwardly. Figure 18 reports some results; 
we notice that the described method achieves good results both on closed and open mouths. 

5.4 Evaluation of the fiducial points precision 

In order to quantitatively evaluate the precision of the extracted fiducial points (FP), we 
adopt the error measure dFP that can be considered an extension of deye to a bigger set of 
features

where  is the localized position of a fiducial point and P is the corresponding ground 
truth. Notice that dFP is a statistics different from deye as it averages the localization errors 
instead of taking their maximum. On one hand this is a less demanding criterion, however it 
is a more representative measure of a larger set of features. 
Unfortunately, such performance evaluation is rarely given in the related literature. As we 
have been provided with the localization output of the CLM method on the XM2VTS 
database, we are able to compare it with our own. On the 9 fiducial points that are common 
to both methods (eye corners, nose tip, mouth corners and mid-points), we obtain a dFP

equal to 0.051 while CLM achieves 0.056. Regarding solely our method, if we take into 
account also the 4 eye mid-points, the precision considerably improves to 0.045. The 
remaining 14 fiducial points are not considered for the performance evaluation because they 
are inferred from the other 13 and their precision is correlated. 
Furthermore, a disjoint analysis of the precision achieved over each fiducial point highlights 
that the nose tip is the most critical one (mean error of 0.07), while the points lying around 
the eyes are the most precisely determined (mean error of 0.03). 

6. Face recognition experiment 

We set up a simple face recognition experiment to investigate the behavior of two different 
FRTs when initialized on real outputs of our feature extraction method. The techniques, 
LAIV and CAS, have been chosen in such a way to represent two different processing 
paradigms: the former is based on local features, the latter treats the information at the 
global face level. For this experiment we do not consider any more the CSU baseline 
methods considered in Sec. 3. since they are not state-of-the-art FRTs, being their purpose 
only comparative. Instead, LAIV and CAS are very recent methods which are reported to 
score high recognition rates. 
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The experiment has two aims: to compare the absolute performance achieved by either 
method; to analyze the relative performance decay of each FRT in function of the eye 
localization precision. 

LAIV-FRT: This technique is a feature-based FRT described in [Arca et al., 2006]. Given the 
eye positions, it uses the technique described in Sec. 5. to automatically locate the position of 
27 fiducial points. Each fiducial point is characterized by extracting square patches centered 
in them and convolving those with the Gabor filter bank described in [Wiskott et al., 1999]. 
The resulting 40 coefficients are complex numbers, and the jet J is obtained by considering 
only the magnitude part. Thus, the face characterization consists of a jets vector of 40 × 27 
real coefficients. 
The recognition task becomes the problem of finding a suitable similarity measure between 
jets. The LAIV technique introduces the idea of considering only the set of points for which 
the corresponding jets have high similarity. In particular, to recognize a test image t, it is 
compared one-to-one with each image i belonging to the gallery G, producing a similarity 
score, and it is recognized as the subject i* which obtained the highest score: 
• for each image i G and each fiducial point k = 0, .., 26, compute the similarity measure 

between pairs of corresponding Jets: 

where z = 0, ..., 39 and Jt,k is the Jet in the test image corresponding to the kth fiducial 
point.

• for each fiducial point k, order the values {Si,k} in descending order, and assign to each 
of them a weight wi,k as a function of its ordered position pi,k:

where , and c is a normalization factor. 
•  for each gallery image i, the similarity score is obtained as a weighted average of the 

pairwise jet similarity, limited to the set BestPoints of  + 1 = 14 points with highest 
weight:

This technique gives better results than considering the average of all similarities, since it 
allows to discard wrong matches on single points: if some fiducial points are not precisely 
localized either in the test or in the gallery image, they will have low similarity measures 
and will not belong to the set BestPoints, so they will not be used for recognition. 
CAS-FRT: We consider here a custom reimplementation of the method proposed by [Zhang 
et al., 2005]; the authors have successively developed the technique in [Shan et al., 2006], 
which however requires an extremely long learning phase. 



Face Recognition 52

Just like LAIV-FRT, CAS does not need any training procedure to construct the face model. 
First it proceeds to normalize each face to a size of 80×88 pixels, obtained by means of an 
affine transformation of the original image so that the eye centers are brought in predefined 
positions and their distance is 40 pixels. The knowledge of the eye locations is sufficient to 
compute this transformation. 
Secondly, a multi-scale face representation is obtained by convolving the normalized face 
with the same bank of 40 Gabor filters as before, this time computed pixelwise on the whole 
face; the result is a set of 40 Gabor magnitude pictures (GMPs). Since the Gabor magnitude 
changes very slowly with the displacement, the information in the GMPs is further 
enhanced by applying the local binary pattern (LBP) operator [Ojala et al., 2002], to obtain 40 
local Gabor binary pattern maps (LGBP maps). Each LGBP map is spatially divided into non-
overlapping regions (with a 4×8 pixel size), then the histograms of all regions are computed 
and concatenated in a histogram sequence (LGBPHS) that models the face (see Figure 19 for a 
visual representation of the whole procedure). 

Figure 19. The face pre-processing of CAS-FRT 

Finally, the technique of histogram intersection is used to measure the similarity between 
different face models to achieve face recognition. 

Analogously to what done in Sec. 3., the recognition experiments are carried out on the 
XM2VTS. However, as both LAIV-FRT and CAS-FRT need no training, now it is possible to 
use all sessions but one (used as gallery) as probe set. 
Table 1. reports the face recognition rate of LAIV-FRT and CAS-FRT when initialized 
respectively on the eye ground truth positions, and on the localization output by the eye 
detector and locator. 

FR rate 
Initialization 

LAIV-FRT CAS-FRT

ground truth 95.1% 96.4% 

eye detector 92.3% 82.8% 

eye locator 93.5% 87.9% 

Table 1. The face recognition rate of LAIV-FRT and CAS-FRT with different initializations 
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It can be noted that CAS-FRT performs better than LAIV-FRT (96.4% vs. 95.1%) when it is 
manually and precisely initialized, but its performance drops dramatically when an 
automatic eye localization method is used. On the contrary, LAIV-FRT proves to be more 
robust with respect to localization errors; indeed, it can overcome slight mis-initializations. 
It can be stated that LAIV-FRT behaves globally better than CAS-FRT as it is more robust in 
the spirit of Eq. (1). 
This difference in performance is probably due to the global nature of CAS initialization: if 
the eye centers estimation is mistaken, the error will propagate to the rest of the face regions 
due to the global affine transformation. Also in the case of LAIV-FRT the error affects the 
computation, but in a more local sense: first of all, this FRT relies on the measured inter-
ocular distance to scale the Gabor filters, however the histogram of the scale error is quite 
narrow (see the third graph of the last row of Figure 10); secondly, a slightly wrong 
initialization of the employed templates is often recovered by the template matching 
algorithms. Anyways, even when a full recovery is not attained, the selection criterion of the 
BestPoints set allows to discard the unreliable fiducial points and LAIV-FRT still manages to 
recognize the face in a number of cases. On the other hand, it should be observed that the 
presence of the intermediate module described in Sec. 5., and the discard operated by the 
selection criterion, weaken the dependency between the eye localization precision and the 
recognition rate, so that the performance results on the different initializations are very 
similar. 
The same phenomenon explains the results of the experiment reported in Figure 2 regarding 
artificially perturbed manual annotations: all the considered CSU face recognition 
techniques start from a global representation of the face and hence are greatly affected by 
misalignments. 

7. Conclusion 

The subject of this chapter is the presentation of a novel method for the automatic and 
precise localization of facial features in 2D still images. The method follows the top-down 
paradigm and consists of subsequent steps to decompose the initial problem in increasingly 
easier tasks: assuming a rough localization of the face in the image, first comes the 
application of an eye detector with the aim of discriminating between real face regions and 
possible false positives. The accuracy of the detection is nearly optimal. Successively, an eye 
locator is applied on a small neighborhood of the detector output to improve the localization 
precision. Finally, the eye center positions are used to derive 27 facial fiducial points, either 
extracted directly from the image or inferred on the basis of simple geometrical 
considerations. 
The eye localization module has been extensively tested on five publicly available databases 
with different characteristics to remark its generality. In the overall, the results are 
comparable to or better than those obtained by the state-of-the-art methods. The 
performance evaluation is carried out according to two objective performance measures in 
order to favor the comparison with other techniques. Concerning the fiducial point 
localization, results on the XM2VTS show high precision. 
In the last years many research works have pointed out the importance of facial feature 
localization as the fundamental step for the initialization of other methods, mostly face 
recognition techniques. In general, not all types of error affect the subsequent processing in 
the same way: for instance scale errors usually affect a FR technique more than translational 
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misalignment. Moreover, face recognition techniques manifest a different tolerance to the 
localization error depending on the nature of their initialization. We conducted some 
experiments which suggest that, as the localization precision decreases, the recognition rate 
decays more rapidly for those methods which start from a global face representation. 
However, since different FR techniques exhibit a different robustness to certain types and 
amount of error, there exists no absolute threshold for precise localization. The authors of 
face recognition techniques should investigate the robustness of their methods with respect 
to misalignments, in order to state the error tolerance that they assume when declaring the 
face recognition rate. 
Both the obtained localization results and the survey of recent eye localization techniques 
clearly show that we are far from perfect localization and there is still room for 
improvement.

8. Appendix: datasets 

This appendix details the definition of the considered public databases, specifying for each 
of them which images have been used to carry out the experimental tests. In alphabetical 
order:
• The [BANCA DB, web] of English people consists of three sections referred to as 

Controlled, Adverse and Degraded. The latter is not considered as the images are 
particularly blurred, making the step of precise eye localization useless. Regarding the 
former:
• Controlled: it consists of 2080 images each one representing one person placed in 

front of the camera and standing on a uniform background. The database collects 
pictures of 52 people of different ethnic groups (Caucasian, Indians, Japanese, 
Africans, South-Americans), acquired in 4 different sessions (10 images per subject 
in each session). The illumination conditions vary from daylight to underexposed, 
while no evident chromatic alteration is present. 

• Adverse: like the Controlled section it consists of 2080 images, each one 
representing one person placed in front of the camera and looking down as if 
reading, while in this section the background is non-uniform. The image quality 
and illumination are not very good. 

The selected test set is composed of the first image of each subject in each section, for a 
total of 416 images. 

• The [BioID DB, web] is formed of 1521 gray scale images of close-up faces. The number 
of images per subject is variable, as it is the background (usually cluttered like in an 
office environment). 
The tests reported in the previous sections refer to the whole database. 

• The [FERET DB, web] database consists of 10 gray level images per person organized 
according to the out of plane rotation: 0°, ±15°, ±25°, ±40° or ±60°; regarding the sole 
frontal views the set contains two images per subject, one smiling, one with neutral 
expression.
The considered test set consists of 1000 images randomly selected from the images with 
rotation up to ±15°. 
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• The [FRGC DB, web] database version 1.0 collects 5658 high resolution images of 275 
subjects in frontal position, arranged in two sections: controlled and uncontrolled. The 
images are organized in subject sessions: each contains 4 images acquired in controlled 
conditions (uniform background and homogeneous illumination) and 2 in uncontrolled 
conditions (generic background and varying illumination conditions). In both 
conditions, half of the images represent the subject while smiling, the remaining half 
with neutral expression. The number of sessions varies from subject to subject, between 
1 and 7. 
The considered test set is composed of both 473 controlled and 396 uncontrolled 
images. These numbers are obtained by taking, for each subject, the first controlled 
image of the first two sessions (when the second is present). 

• The [XM2VTS DB, web] consists of 1180 high quality images of single faces acquired in 
frontal position and with homogeneous background; some of the subjects wear 
spectacles. The pictures are grouped into 4 sessions of 295 subjects each. 
The conducted tests refer to the whole database. 
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1. Introduction 

Face recognition has recently received significant attention (Zhao et al. 2003 and Jain et al. 
2004). It plays an important role in many application areas, such as human-machine 
interaction, authentication and surveillance. However, the wide-range variations of human 
face, due to pose, illumination, and expression, result in a highly complex distribution and 
deteriorate the recognition performance. In addition, the problem of machine recognition of 
human faces continues to attract researchers from disciplines such as image processing, 
pattern recognition, neural networks, computer vision, computer graphics, and psychology. 
A general statement of the problem of machine recognition of faces can be formulated as 
follows: Given still or video images of a scene, identify or verify one or more persons in the 
scene using a stored database of faces. 
In identification problems, the input to the system is an unknown face, and the system 
reports back the determined identity from a database of known individuals, whereas in 
verification problems, the system needs to confirm or reject the claimed identity of the input 
face.
The solution to the problem involves segmentation of faces (face detection) from cluttered 
scenes, feature extraction from the face regions, recognition or verification. Robust and 
reliable face representation is crucial for the effective performance of face recognition system 
and still a challenging problem. 
Feature extraction is realized through some linear or nonlinear transform of the data with 
subsequent feature selection for reducing the dimensionality of facial image so that the 
extracted feature is as representative as possible. 
Wavelets have been successfully used in image processing. Its ability to capture localized 
time-frequency information of image motivates its use for feature extraction. The 
decomposition of the data into different frequency ranges allows us to isolate the frequency 
components introduced by intrinsic deformations due to expression or extrinsic factors (like 
illumination) into certain subbands. Wavelet-based methods prune away these variable 
subbands, and focus on the subbands that contain the most relevant information to better 
represent the data. 
In this paper we give an overview of wavelet, multiresolution representation and wavelet 
packet for their use in face recognition technology. 



Face Recognition 60

2. Introduction to wavelets 

Wavelets are functions that satisfy certain mathematical requirements and are used in 
presenting data or other functions, similar to sines and cosines in the Fourier transform. 
However, it represents data at different scales or resolutions, which distinguishes it from the 
Fourier transform. 

2.1 Continuous wavelet transform 

Wavelets are formed by dilations and translations of a single function  called mother 
wavelet so that the dilated and translated family 

is a basis of . The normalization ensures that  is independent of the scale 
parameter a and the position parameter b. The function is assumed to satisfy some 
admissibility condition, for example, 

(1)

where  is the Fourier transform of . The admissibility condition (1) implies  

(2)

The property (2) motivates the name wavelet. The “diminutive” appellation comes from the 
fact that can be well localized with arbitrary fine by appropriate scaling. For any 

 , the continuous wavelet transformation (CWT) is defined as  

However, in signal processing, we often use discrete wavelet transform (DWT) to represent 
a signal f(t) with translated version of a lowpass scaling function  and the dilated and 
translated versions of mother wavelet  (Daubechies, 1992). 

where the functions  and , form an 
orthonormal basis of .

The partial sum of wavelet    can be interpreted as the approximation of f
at the resolution 2j. The approximation of signals at various resolutions with orthogonal 
projections can be computed by multiresolution which is characterized by a particular 
discrete filter that governs the loss of information across resolutions. These discrete filters 
provide a simple procedure for decomposing and synthesizing wavelet coefficients at 
different resolutions (Mallat, 1999). 
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where { hk }, { gk } are discrete filter sequences, they satisfy respectively 

The two-channel filter bank method parallelly filters a signal by the lowpass filters h and 
highpass filter g followed by subsampling. The filter h removes the high frequencies and 
retains the low frequency components, the filter g removes the low frequencies and 
produces high frequency components. Together, they decompose the signal into different 
frequency subbands, and downsampling is used to keep half of the output components of 
each filter. For the wavelet transform, only the lowpass filtered subband is further 
decomposed. 

2.2 Two-dimensional wavelet transform 

The two-dimensional wavelet can also be constructed from the tensor product of one-
dimensional and by setting: 

where  are wavelet functions. Their dilated and translated 

family  and  forms an 
orthonormal basis of . For every , it can be represented as 

Similar to one-dimensional wavelet transform of signal, in image processing, the 
approximation of images at various resolutions with orthogonal projections can also be 
computed by multiresolution which characterized by the two-channal filter bank that 
governs the loss of information across resolutions. The one-dimensional wavelet 
decomposition is first applied along the rows of the images, then their results are further 
decomposed along the columns. This results in four decomposed subimages  L1, H1, V1, D1. 

These subimages represent different frequency localizations of the original image which 
refer to Low-Low, Low-High, High-Low and High-High respectively. Their frequency 
components comprise the original frequency components but now in distinct ranges. In each 
iterative step, only the subimage L1 is further decomposed. Figure 1 (Top) shows a two-
dimensional example of facial image for wavelet decomposition with depth 2. 
The wavelet transform can be interpreted as a multiscale differentiator or edge detector that 
represents the singularity of an image at multiple scales and three different orientations — 
horizontal, vertical, and diagonal (Choi & Baraniuk, 2003). Each image singularity is 
represented by a cascade of large wavelet coefficients across scale (Mallat, 1999). If the  
singularity is within the support of a wavelet basis function, then the corresponding wavelet 
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coefficient is large. Contrarily, the smooth image region is represented by a cascade of small 
wavelet coefficients across scale. Some researchers have studied several features of wavelet 
transform of natural images (Mallat, 1999) (Vetterli & Kovaèeviæ, 1995) (Choi & Baraniuk, 
2003):
• Multiresolution: Wavelet transform analyzes the image at different scales or 

resolutions.
• Locality: Wavelet transform decomposes the image into subbands that are localized in 

both space and frequency domains. 
• Sparsity: A wavelet coefficient is large only if the singularities are present in the 

support of a wavelet basis function. The magnitudes of coefficients tend to decay 
exponentially across scale. Most energy of images concentrate on these large 
coefficients. 

• Decorrelation: Wavelet coefficients of images tend to be approximately decorrelated 
because of the orthonormal property of wavelet basis functions. 

These properties make the wavelet domain of natural image more propitious to feature 
extraction for face recognition, compared with the direct spatial-domain. 

2.3 Wavelet-packet 

There are complex natural images with various types of spatial-frequency structures, which 
motivates the adaptive bases that are adaptable to the variations of spatial-frequency. 
Coifman and Meyer (Coifman & Meyer 1990) introduced an orthonormal multiresolution 
analysis which leads to a multitude of orthonormal wavelet-like bases known as wavelet 
packets. They are linear combinations of wavelet functions and represent a powerful 
generalization of standard orthonormal wavelet bases. Wavelet bases are one particular 
version of bases that represent piecewise smooth images effectively. Other bases are 
constructed to approximate various-type images of different spatial-frequency structures 
(Mallat, 1999). 

Figure 1. (Top) Two-dimensional wavelet decomposition of facial image with depth 2. 
(Bottom) Two-dimensional wavelet packet decomposition of facial image with depth 2 
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As a generalization of the wavelet transform, the wavelet packet coefficients also can be 
computed with two-channel filter bank algorithm. The two-channel filter bank is iterated  
over both the lowpass and highpass branch in wavelet packet decomposition. Not only L1 is 
further decomposed as in wavelet decomposition, but also H1, V1, D1 are further   
decomposed. This provides a quad-tree structure corresponding to a library of wavelet 
packet basis and images are decomposed into both spatial and frequency subbands, as 
shown in Fig 1. 

3. Preprocessing: Denoising 

Denoising is an important step in the analysis of images (Donoho & Johnstone 1998, Starck 
et al. 2002). In signal denoising, a compromise has to be made between noise reduction and 
preserving significant signal details. Denoising with the wavelet transform has been proved 
to be effective, especially the nonlinear threshold-based denoising schemes. Wavelet 
Transform implements both low-pass and high-pass filters to the signal. The low-frequency 
parts reflect the signal information, and the high-frequency parts reflect the noise and the 
signal details. Thresholding to the decomposited high-frequency coefficients on each level 
can effectively denoise the signal. 
Generally, denoising with wavelet consists of three steps: 
• Wavelet Decomposition. Transform the noisy data into wavelet domain. 
• Wavelet Thresholding. Apply soft or hard thresholding to the high-frequency 

coefficients, thereby suppress those coefficients smaller than certain amplitude. 
• Reconstruction. Transform back into the original domain. 
In the whole process, a suitable wavelet, an optimal decomposition level for the hierarchy 
and one appropriate thresholding function should be considered (Mallat 1999). But the 
choice of threshold is the most critical. 

3.1 Wavelet Thresholding 

Assuming the real signal  f [n] of size N is contaminated by the addition of a noise. This 
noise is modeled as the realization of a random process W[n]. The observed signal is  

The signal f is estimated by transforming the noisy data X with a decision operator Q. The 
resulting estimator is 

The goal is to minimize the error of the estimation, which is measured by a loss function. The 
square Euclidean norm is a familiar loss function. The risk of the estimator of  f is the 
average loss: 

The noisy data 

 X =  f + W (3) 

is decomposed in a wavelet basis . The inner product of (3) with bm gives  
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where .
A diagonal estimator of f from (3) can be written 

where m are thresholding functions. 
A wavelet thresholding is equivalent to estimating the signal by averaging it with a kernel 
that is locally adapted to the signal regularity. A filter bank of conjugate mirror filters 
decomposes a discrete signal in a discrete orthogonal wavelet basis. The discrete wavelets 

are translated modulo modifications near the boundaries. The 
support of the signal is normalized to [0, 1] and has N samples spaced by N–1. The scale 
parameter 2j thus varies from 2L = N–1 up to  2J <1: 

A thresholding estimator in this wavelet basis can be written 

where T is a hard thresholding or a soft thresholding. 
A hard thresholding estimator is implemented with 

A soft thresholding estimator is implemented with 

The threshold T is generally chosen so that there is a high probability that it is just above the 
maximum level of the noise. When WB is a vector of independent Gaussian random 
variables of variance 2 , the maximum amplitude of the noise has a very high probability of 
being just below . So we often choose the threshold . In this case, 
the soft thresholding guarantees with a high probability that 

. The estimator is at least as regular as f because its 
wavelet coefficients have a smaller amplitude. This is not true for the hard thresholding 
estimator, which leaves unchanged the coefficients above T , and which can therefore be 
larger than those of f because of the additive noise component. 
Face images with noise can be estimated by thresholding their wavelet coefficients. The 
image f [n1, n2] contaminated by a white noise is decomposed in a separable two-
dimensional wavelet basis. Figure 2 (a) is the original image, Figure 2 (b) is the noise image. 
Figure 2 (c, d) are obtained with a hard thresholding and a soft thresholding in a Symmlet 4 
wavelet basis. 
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Figure 2. (a) Original image, (b) Noisy image (SNR = 19.95), (c) Estimation with a hard 
thresholding in a separable wavelet basis (Symmlet 4), (SNR = 22.03),. (d) Soft thresholding 
(SNR = 19.96) 

The threshold   is not optimal, especially, when the noise W is not white, the 
variance of the noise depends on each vector bm of the basis. Thresholding estimators can be 
adapted.

3.2 Multiscale SURE Thresholds 

Piecewise regular signals have a proportion of large coefficients  that increases 
when the scale 2j increases. Indeed, a singularity creates the same number of large 
coefficients at each scale, whereas the total number of wavelet coefficients increase when the 
scale decreases. To use this prior information, one can adapt the threshold choice to the scale 
2j. At large scale 2j, the threshold Tj should be smaller in order to avoid setting to zero too 
many large amplitude signal coefficients, which would increase the risk. 

3.3 Translation Invariance 

Thresholding noisy wavelet coefficients create small ripples near discontinuities. Indeed, 
setting to zero a coefficient  subtracts  from f , which introduces oscillations 
whenever  is non-negligible. These oscillations are attenuated by a translation 
invariant estimation, consequently, can significantly improve the SNR. Thresholding 
wavelet coefficients of translated signals and translating back the reconstructed signals 
yields shifted oscillations created by shifted wavelets that are set to zero. The averaging 
partially cancels these oscillations, reducing their amplitude. Design of a translation 
invariant pattern recognition based on wavelets is still demanded. 

4. Wavelets for feature extraction 

Feature extraction in the sense of some linear or nonlinear transform of the data with 
subsequent feature selection is commonly used for reducing the dimensionality of facial 
image so that the extracted feature is as representative as possible. The images may be 
represented by their original spatial representation or by frequency domain coefficients. 
Features that are not obviously present in one domain may become obvious in the other 
domain. Unfortunately, Heisenberg uncertainty theorem implies that the information can 
not be compact in both spatial and frequency domain simultaneously. So, neither approach 
is ideally suited for all kinds of feature distribution. It motivates the use of the wavelet 
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transform which represents both the spatial and frequency domain simultaneously. 
Moreover, multiresolution analysis makes it more appropriate to represent and extract 
features across different scales. 
The wavelet transform or the wavelet packet transform have been used for feature 
extraction in face recognition. These are used in three ways: 
• Direct use of wavelet coefficients. 
• From combination of wavelet coefficients. 
• Searching the best feature in the wavelet packet library. 

4.1 Direct use of wavelet coefficients 

The simplest application of the wavelet transform for face recognition uses directly wavelet 
coefficients as features. The wavelet transform can locally detect the multiscale edges of 
facial images, the lineament edge information exists in the lowest spatial-frequency 
subband, while finer edge information presents in the higher spatial-frequency subband. 
The waveletface (Chien & Wu, 2002) is a wavelet based approach. It uses the wavelet 
transform to decompose the image data into four subimages via the low-pass and high-pass 
filters with respect to the column vectors and the row vectors of array pixels. Then the low 
spatial-frequency subimage is selected for further decomposition. The three-level lowest 
spatial-frequency subimage with a matrix of (nrow/8) x (ncol/8) is extracted as the feature 
vector, referred to as waveletface, where nrow x ncol is the resolution of facial image. 
Generally, low frequency components represent the basic figure of an image, which is less 
sensitive to image variations. These components form the most informative subimage 
gearing with the highest discriminating power. The waveletface can be expressed by a form 
of linear transformation: y= WTwavelet x, where WTwavelet x is composed of impulse responses of 
the low pass filter h. Different from some statistics based methods, such as eigenface and 
fisherface, see (Zhao et al 2003), the waveletface can be independently extracted without the 
effect of new enrolled users. Waveletface is an efficient method because no extra 
computation is needed. 

4.2 From combinations of wavelet coefficients 

The direct use of wavelet coefficients may not extract the most discriminative features for 
two reasons: 
• There is much redundant or irrelevant information contained in wavelet coefficients. 
• Can not recover new meaning underlying features which has more discriminative power. 
In order to overcome the deficiency of direct use of wavelet coefficients, it is possible to 
construct features from the combinations of wavelet coefficients to produce a low-
dimensional manifold with minimum loss of information so that the relationships and 
structure in the data can be identified. These can be done in two ways: 
• Use the statistical quantum of wavelet coefficients in each spatial-frequency subband as 

discriminative features. 
• Employ traditional transforms (e.g., PCA, LDA, ICA, AM, Neural Networks) to 

enhance and extract discriminative features in one or several special spatial-frequency 
subbands. 
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4.2.1 Use the statistical measures as discriminative features 

The statistical measures, e. g., mean, variance, are usually helpful to represent features or 
characteristics of data, it is simple and requires less computation load. 
Garcia et al. (Garcia et al., 1998) present a wavelet-based framework for face recognition. 
Each face is described by a subset of subband filtered images containing wavelet coefficients 
after two-level wavelet packet transform. These coefficients characterize the face texture and 
a set of simple statistical measures are used to reduce dimensionality and characterize 

textural information, which forms compact and meaningful feature vectors .
After the extraction of all the vectors of the training set, only the components with a mean 
value above a predefined threshold are considered for feature vector formation. It is 
supposed that each component pair is independent from the other component pairs of the 
feature vector. Then, the Bhattacharrya distance between two feature vectors k and  l  is 
computed on a component-pair basis 

in order to classify the face feature vectors into person classes. 
In fact, other statistical measures, e. g., other kinds of moments can be used in the above 
wavelet-based framework for face recognition. Moreover, the discrete density function of 
whole wavelet coefficients in each subband can be evaluated. The similarity measure of 
density function can be computed by some relative entropy, such as Kullback-Leibler 
divergence or J-divergence. 

4.2.2 Employ traditional transform in special subbands 

Generally, the wavelet coefficients are deficient to be good discriminative features, a further 
discriminant analysis is adopted to recover new meaningful underlying features which has 
more discriminative power. The traditional transforms (e.g., PCA, LDA, ICA, AM, Neural 
Networks) are very popular for their simplicity and practicality. They can be performed on 
one or several special spatial-frequency subbands which may be chosen by certain criterion. 
We (Feng et al. 2000) proposed a wavelet subband approach in using PCA for human face 
recognition. Three-level wavelet transform is adopted to decompose an image into different 
subbands with different frequency components. A midrange frequency subband is selected 
for PCA representation. The experiments show that it has low computation and higher 
accuracy, comparing with using original PCA directly in spatial domain. 
In (Dai & Yuen, 2006) we used a wavelet enhanced regularized discriminant analysis to 
solve the small sample size problem and applied it to human face recognition. We analyzed 
the role of the wavelet transform, low-pass filtering will reduce the dimension of input data 
but meanwhile increases the magnitude of the within-class covariance matrix so that the 
variation information plays too strong a role and the performance of the system will become 
poorer. It also overcomes the difficulty in solving a singular eigenvalue problem in 
traditional LDA. Moreover, a wavelet enhanced regularization LDA system for human face 
recognition is proposed to adequately utilize the information in the null space of withinclass 
scatter matrix (Dai & Yuen, 2003). 
Ekenel et al. (Ekenel & Sankur, 2005) introduced a ternary-architecture multiresolution face 
recognition system. They used the 2D discrete wavelet transform to extract multiple 
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subband face images. These subband images contain coarse approximations of the face as 
well as horizontal, vertical and diagonal details of faces at various scales. Subsequently, The 
PCA or ICA features are extracted from these subbands. They exploit these multiple 
channels by fusing their information for improved recognition. Their experiments show that 
it has good performance, especially against illumination perturbations. 
In ( Zhang et al., 2004), they proposed a modular face recognition scheme by combining the 
techniques of wavelet subband representations and kernel associative memories. By the 
wavelet transform, face images are decomposed and the computational complexity is 
substantially reduced by choosing a lower spatial-frequency subband image. Then an kernel 
associative memory (KAM) model are built up for each subject, with the corresponding 
prototypical images without any counter examples involved. Multiclass face recognition is 
thus obtained by simply holding these associative memories. When a probe face is 
presented, the KAM model gives the likelihood that the probe is from the corresponding 
class by calculating the reconstruction errors or matching scores. 
Illumination compensation is always a problem important but difficult to solve in face 
recognition. The wavelet transform decomposes the data into different frequency ranges 
which allows us to isolate the frequency components introduced by illumination effects into 
certain subspaces. We can use the subspaces that do not contain these illumination-based 
frequency components to better represent our data, so as to eliminate the influence of the 
illumination changes, before a face image is recognized. In (Zhang et al., 2005), a face 
compensation approach based on wavelet and neural network is proposed. A rough linear 
illumination compensation was first performed for the given face image, which can only 
compensate the lower frequency features and the effect is limited. The higher frequency 
features are not be compensated. But it can reduce the learning pressure of the neural 
network, accelerate the convergent rate and improve the learning accuracy as well as the 
extensibility of the network. The method can compensates the different scale features of the 
face image by using the multi-resolution characteristic of the wavelet and the self-adaptation 
learning and good spread ability of BP neural network. Their experiments show that it can 
solve the problem of illumination compensation in the face recognition process. 

4.3 Search local discriminant basis/coordinates in wavelet packet library 

As a generalization of the wavelet transform, the wavelet packet not only offers us an 
attractive tool for reducing the dimensionality by feature extraction, but also allows us to 
create localized subbands of the data in both space and frequency domains. A wavelet 
packet dictionary provides an over-complete set of spatial-frequency localized basis 
functions onto which the facial images can be projected in a series of subbands. The main 
design problem for a wavelet packet feature extractor is to choose which subset of basis 
functions from the dictionary should be used. Most of the wavelet packet dictionary 
methods that have been proposed in the literature are based on algorithms which were 
originally designed for signal compression such as the best basis algorithm (Coifman & 
Wicherhauser, 1992), or the matching pursuit algorithm (Mallat & Zhang, 1993). 
Saito and Coifman introduced the local discriminant basis (LDB) algorithm based on a best 
basis paradigm, searching for the most discriminant subbands (basis) that illuminates the 
dissimilarities among classes from the wavelet packet dictionary (Coifman & Satio, 1994) 
(Satio & Coifman, 1995). It first decomposes the facial images in the wavelet packet 
dictionary, then facial image energies at all coordinates in each subband are accumulated for 
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each class separately to form a spatial-frequency energy distribution per class on the 
subband. Then the difference among these energy distributions of each subband is 
measured by a certain “distance” function (e.g., Kullback-Leibler divergence), a complete 
local discriminant basis (LDB) is selected by the difference-measure function using the best 
basis algorithm (Coifman & Wicherhauser, 1992), which can represent the distinguishing 
facial features among different classes. After the basis is selected, the loadings of their 
coordinates are fed into a traditional classifier such as linear discriminant analysis (LDA) or  
classification tree (CT). Finally, the corresponding coefficients of probes are computed and 
fed to the classifier to predict their classes. 
Unfortunately, the energies may not be so indicative for discrimination sometimes, because 
not all coordinates in the LDB are powerful to distinguish different subjects. Many less 
discriminant coordinates may add up to a large discriminability for the LDB. An example of 
artificial problem was used to validate that it may be fail to select the right basis function as a 
discriminator (Saito & Coifman, 2002). So Saito and Coifman suggested a modified version of 
the LDB (MLDB) algorithm which uses the empirical probability distributions instead of the 
space-scale energy as their selection strategy to eliminate some less discriminant coordinates in 
each subband locally (Saito & Coifman, 2002). It estimates the probability density of each class 
in each coordinate in all subbands. Then the discriminative power of each subband is 
represented by the first N0 most discriminant coordinates in terms of the “distance” among the 
corresponding densities (e.g., Kullback-Leibler divergence among the densities). This 
information is then used for selecting a basis for classification as in original LDB algorithm. 
Although the MLDB algorithm may overcome some shortage of LDB, the selection of 
coordinates is only limited to each subband so that the coordinates in different subbands are 
still incomparable. Therefore, the MLDB algorithm gives an alternative to the original LDB. 
This LDB concept has become increasingly popular and has been applied to a variety of 
classification problems. Based on LDB idea, Kouzani et al. proposed a human face 
representation and recognition system based on the wavelet packet method and the best 
basis selection algorithm (Kouzani et al. 1997). An optimal transform basis, called the face 
basis, is identified for a database of the known face images. Then it is used to compress all 
known faces within the database in a single pass. For face recognition, the probe face image 
is transformed, and the compressed face is then compared against the database. The best 
filter and best wavelet packet decomposition level are also discussed there. 
Since features with good discriminant property may locate in different subbands, it is 
important to find them among all subbands instead of certain specific subbands. We 
proposed a novel local discriminant coordinates (LDC) method based on wavelet packet for 
face recognition to compensate for illumination, pose and expression variations (Liu et al. 
2007). The method searches for the most discriminant coordinates from the wavelet packet 
dictionary, instead of the most discriminant basis as in the LDB algorithm. The LDC idea 
makes use of the scattered characteristic of best discriminant features. In the LDC method, 
the feature selection procedure is independent of subbands, and only depends on the 
discriminability of all coordinates, because any two coordinates in the wavelet packet 
dictionary are comparable for their discriminability which is computed by a maximum a 
posterior logistic model based on a dilation invariant entropy. LDC based feature extraction 
not only selects low frequency components, but also middle frequency components whose 
judicious combination with low frequency components can improve the performance of face 
recognition greatly. 
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4.4 Robust issue 

It is known that a good feature extractor of face recognition system is claimed to select as 
more as possible the best discriminant features which are not sensitive to arbitrary 
environmental variations. Nastar et al. (Nastar & Ayach, 1996) investigated the relationship 
between variations in facial appearance and their deformation spectrum. They found that 
facial expressions and small occlusions affect the intensity manifold locally. Under 
frequency-based representation, only high-frequency spectrum is affected. Moreover, 
changes in pose or scale of a face and most illumination variations affect the intensity 
manifold globally, in which only their low-frequency spectrum is affected. Only a change in 
face will affect all frequency components. So there are no special subbands whose all 
coordinates are not sensitive to these variations. 
In each subband, there may be only segmental coordinates have enough discriminant power 
to distinguish different person, the remainder may be sensitive to environmental changes, 
So some methods based on the whole subband may also use these sensitive features which 
maybe affect their performance for face recognition. 
Moreover, there may be no special subbands containing all the best discriminant features, 
because the features not sensitive to environmental variations are always distributed in 
different coordinates of different subbands locally. So methods based on the segmental 
subbands may lose some good discriminant features. 
Furthermore, in different subbands, the amount and distribution of best discriminant 
coordinates are always different. Many less discriminant coordinates in one subband may 
add up to a larger discriminability than another subband whose discriminability is added 
up with few best discriminant coordinates and residual small discriminant coordinates. So 
the few best discriminant coordinates may be discarded by some methods which search for 
the best discriminate subbands, but usually only the few best discriminant coordinates are 
needed.
So the best discriminant information selection should be independent of their seated 
subbands, and only depends on their discriminability for face recognition. In addition, there 
may be some redundancy or collinearity in features which will affect the performance for 
face recognition. However, another limitation of using wavelet for face recognition is that 
the wavelet transform has no property of translation invariance. Mallat (Mallat, 1996) 
discussed that the wavelet representation not only contains spatial and frequency 
information, but also phase information. When the phase information varies with small 
translations, it will cause difficulties with matched filtering applications. For achieving 
translation invariance, it should contain some redundant information in the representing 
features.
The wide-range variations of human face, due to pose, illumination, and expression, require 
the wavelet transform to extract features that are translation invariant and to a certain extent 
scale invariant. This constitutes a trade-off between the amount of possible invariance and 
the sparseness of the wavelet representation. So a robust wavelet feature extractor should 
select a best discriminant features group with appropriate redundancy or co-linearity. 
However, searching such a wavelet feature extractor is a difficult task and needs further 
research.
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5. Conclusion 

Wavelets have been successfully used in image processing. Their ability to capture localized 
spatial-frequency information of image motivates their use for feature extraction. We give 
an overview of using wavelets in the face recognition technology. Due to limit of space the 
use of Gabor wavelets is not covered in this survey. Interested readers are referred to section 
8.3 for references. 

6. Acknowledgements 

This project is supported in part by NSF of China (60175031, 10231040, 60575004), the 
Ministry of Education of China (NCET-04-0791), NSF of GuangDong (05101817) and the 
Hong Kong Research Grant Council(project CityU 122506). 

7. References 

Chien, J. T. & Wu, C. C. (2002). Discriminant waveletfaces and nearest feature classifiers for 
face recognition, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 24, No. 
12, (Dec. 2002) pp. 1644–1649. 

Choi, H. & Baraniuk, R. G. (2003). Wavelet Statistical Models and Besov Spaces, In: Nonlinear 
Estimation and Classification, Denison, D. D.; Hansen, M. H., et al. (Eds.), pp. 9-29, 
Springer-Verlag, NewYork. 

Coifman, R. R. & Meyer, Y. (1990). Orthonormal wavelet packet bases, Preprint. 
Coifman, R. R. & Wicherhauser, M. V. (1992). Entropy-based algorithm for best basis 

selection, IEEE Trans. Infor. Theory, Vol. 38, No. 2, (March, 1992) pp. 713–718. 
Dai, D. Q. & Yuen, P. C. (2003). Wavelet-based 2-parameter regularized discriminant 

analysis for face recognition, In: AVBPA 2003, LNCS 2688, J. Kittler and M.S. Nixon 
(Eds.), pp. 137–144, Springer-Verlag, Berlin Heidelberg. 

Dai, D. Q. & Yuen, P. C. (2006). Wavelet based discriminant analysis for face recognition, 
Applied Mathematics and Computation, 175(April 2006), 307-318 

Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM, New York, 1992. 
Donoho D. L. & Johnstone I. M. (1998). Minimax estimation via wavelet shrinkage, Annals of 

Statistics, 26 (3) (JUN 1998) pp. 879-921. 
Ekenel, H. K. & Sanker, B. (2005). Multiresolution face recognition, Image and Vision 

Computing, Vol. 23, (May 2005) pp. 469–477. 
Feng, G. C., Yuen, P. C. & Dai, D. Q. (2000). Human face recognition using PCA on wavelet 

subband, Journal of Electronic Imaging, Vol. 9, No. 2, (April 2000) pp. 226–233. 
Garcia, C., Zikos, G. & Tziritas, G. (1998). A wavelet-based framework for face recognition, 

Proc of the Workshop on Advances in Facial Image Analysis and Recognition 
Technology, 5th European Conference on Computer Vision (ECCV'98) , pp. 84-92, 
Freiburg Allemagne. 

Jain A. K., Ross R. & Prabhakar S. (2004) , An introduction to biometric recognition, IEEE 
Trans. on Circuits and Systems for Video Technology, Vol. 14, no. 1 (Jan. 2004), pp. 4-20. 

Kouzani, A. Z., He, F. & Sammut, K. (1997). Wavelet packet face representation and 
recognition, IEEE Int Conf. Systems, Man, and Cybernetics, Vol. 2, (Oct. 1997) pp. 
1614–1619. 



Face Recognition 72

Liu C. C., Dai D. Q. & Yan H. (2007). Local discriminant wavelet packet coordinates for face 
recognition, Journal of Machine Learning Research, Vol. 8 (May 2007) 1165-1195. 

Mallat, S. & Zhang, Z. (1993). Matching pursuit in a time_frequency dictionary, IEEE 
Transactions on Signal Processing, Vol. 41, pp. 3397–3415. 

Mallat, S. (1996). Wavelets for a vision, Proc. IEEE, Vol. 84, No. 4, pp. 604-614.  
Mallat, S. (1999). A Wavelet Tour of Signal Processing, Academic Press (2nd Edition), ISBN : 0- 

12-466606-X , San Diego. 
Nastar, C. & Ayach, N. (1996). Frequency-based nonrigid motion analysis, IEEE Trans. 

Pattern Analysis and Machine Intelligence, Vol. 18, (Nov. 1996) pp. 1067–1079. 
Saito, N. & Coifman, R. R. (1994). Local discriminant bases, Proc. SPIE 2303, pp 2–14.  
Saito, N. & Coifman, R. R. (1995). Local discriminant bases and their applications, J. Math, 

Imaging Vision, Vol. 5, No. 4, pp. 337–358. 
Saito, N., Coifman, R. R., Geshwind, F. B. & Warner, F. (2002). Discriminant feature 

extraction using empirical probability density estimation and a local basis library, 
Pattern Recognition, Vol. 35, (Dec. 2002) pp. 2841–2852. 

Starck J. L., Candes E. J. , Donoho D. L. (2002). The curvelet transform for image denoising, 
IEEE Transactions on Image Processing 11 (6)( JUN 2002) pp. 670-684 

Vetterli, M. & Kovaèeviæ, J. (1995). Wavelets and Subband coding, Prentice Hall, Englewood 
Cliffs, NJ. 

Zhang, B. L., Zhang, H. H. & Ge, S. S. (2004). Face recognition by applying wavelet subband 
representation and kernel associative memory, IEEE Trans. Neural Networks, Vol. 15, 
No. 1, (Jan 2004) pp. 166–177. 

Zhang, Z. B., Ma, S. L. & Wu, D. Y. (2005). The application of neural network and wavelet in 
human face illumination compensation, Proc. Advances in Neural Networks, pp. 828– 
835.

Zhao W., Chellappa R. Phillips P. J. & Rosenfeld A. (2003). Face recognition: A literature 
survey, ACM Comput. Surv. Vol. 35, no. 4, (Dec. 2003) pp. 399-459. 

8. Further readings 

8.1 Face detection 

Huang, L. L. & Shimizu, A. (2006). A multi-expert approach for robust face detection, Pattern 
Recognition, Vol. 39, No. 9, (SEP 2006) pp. 1695-1703. 

Liu, C. J. (2003). A Bayesian discriminating features method for face detection, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 6, (JUN 2003) 
pp. 725-740. 

Le, D. D. & Satoh, S. (2006). A multi-stage approach to fast face detection, IEICE Transactions 
on Information and Systems, E89D No. 7, (JUL 2006) pp. 2275-2285. 

Shih, P. C. & Liu, C. J. (2006). Face detection using discriminating feature analysis and 
Support Vector Machine, Pattern Recognition, Vol. 39, No. 2, (FEB 2006) pp. 260-276. 

Wang, J. W. & Chen, W. Y. (2006). Eye detection based on head contour geometry and 
wavelet subband projection, Optical Engineering, Vol. 45, No. 5, (MAY 2006). 



Wavelets and Face Recognition 73

8.2 Face recognition 

Bebis, G.; Gyaourova, A.; Singh, S. & Pavlidis, I. (2006). Face recognition by fusing thermal 
infrared and visible imagery, Image and Vision Computing, Vol. 24, No. 7, (JUL 2006) 
pp. 727-742. 

Kwak, K. C. & Pedrycz, W. (2004). Face recognition using fuzzy integral and wavelet 
decomposition method, IEEE Transactions On Systems Man And Cybernetics Part B 
Cybernetics, Vol. 34, No. 4, (AUG 2004) pp. 1666-1675. 

Kruger, V. & Sommer, G. (2002). Wavelet networks for face processing, Journal of the Optical 
Society of America A-Optics Image Science and Vision, Vol. 19, No. 6, (JUN 2002) pp. 
1112-1119.

Li, B. & Liu, Y. H. (2002). When eigenfaces are combined with wavelets, Knowledge-Based 
Systems, Vol. 15, No. 5-6, JUL 2002 pp. 343-347. 

Ngo, D. C. L.; Teoh, A. B. J. & Goh, A. (2006). Biometric hash: High-confidence face 
recognition, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 16, 
No. 6 (JUN 2006) pp. 771-775. 

Pal, H. S.; Ganotra, D. & Neifeld, M. A. (2005). Face recognition by using feature-specific 
imaging, Applied Optics, Vol. 44, No. 18, (JUN 2005) pp. 3784-3794. 

Perlibakas, V. (2004). Face recognition using principal component analysis and wavelet 
packet decomposition, Informatica, Vol. 15, No. 2, pp. 243-250. 

Rajwade, A. & Levine, M. D. (2006). Facial pose from 3D data, Image and Vision Computing,
Vol. 24, No. 8, (AUG 2006) pp. 849-856. 

Shih, F. Y. & Cheng, S. X. (2005). Improved feature reduction in input and feature spaces, 
Pattern Recognition, Vol. 38, No. 5, (MAY 2005) pp. 651-659. Wavelets and face 
recognition 17 

Tay, D. B. H. (2002). Parametric Bernstein polynomial for least squares design for all other of 
3-D wavelet filter banks, IEEE Transactions on Circuits and Systems I-Fundamental 
Theory and Applications, Vol. 49, No. 6, (JUN 2002) pp. 887-891. 

Wijaya, S. L.; Savvides, M. & Kumar, B. V. K. V. (2005). Illumination-tolerant face 
verification of low-bit-rate JPEG2000 wavelet images with advanced correlation 
filters for handheld devices, Applied Optics, Vol. 44, No. 5, (FEB 2005) pp. 655-665. 

8.3 Using Gabor wavelets 

Arca, S.; Campadelli, P. & Lanzarotti, R. (2006). A face recognition system based on 
automatically determined facial fiducial points, Pattern Recognition, Vol. 39, No. 3, 
(MAR 2006) pp. 432-443. 

Gokberk, B.; Irfanoglu, M. O.; Akarun, L. & Alpaydin, E. (2005). Selection of location, 
frequency, and orientation parameters of 2D Gabor wavelets for face recognition, 
Advanced Studies in Biometrics, Vol. 3161, pp. 138-146. 

Jeon, I. J.; Nam, M. Y. & Rhee, P. K. (2005). Adaptive gabor wavelet for efficient object 
recognition, Knowledge-Based Intelligent Information and Engineering Systems, Part 2, 
Vol. 3682, pp. 308-318. 

Kamarainen, J. K.; Kyrki, V. & Kalviainen, H. (2006). Invariance properties of Gabor 
filterbased features - Overview and applications, IEEE Transactions on Image 
Processing, Vol. 15, No. 5, (MAY 2006) pp. 1088-1099. 



Face Recognition 74

Kim, D. S.; Jeon, I.; Lee, S. Y.; Rhee, P. K. & Chung, D. J. (2006). Embedded face recognition 
based on fast genetic algorithm for intelligent digital photography, IEEE
Transactions on Consumer Electronics, Vol. 52, No. 3, (AUG 2006) pp. 726-734. 

Liu, C. J. & Wechsler, H. (2002). Gabor feature based classification using the enhanced Fisher 
linear discriminant model for face recognition, IEEE Transactions on Image 
Processing, Vol. 11, No. 4, (APR 2002) pp. 467-476. 

Liu, C. J. & Wechsler, H. (2003). Independent component analysis of Gabor feature's for face 
recognition, IEEE Transactions on Neural Networks, Vol. 14, No. 4, (JUL 2003) pp. 919-
928.

Liu, C. J. (2004). Gabor-based kernel PCA with fractional power polynomial models for face 
recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, 
No. 5, (MAY 2004) pp. 572-581. 

Shen, L. L. & Bai, L. (2006). A review on Gabor wavelets for face recognition, Pattern Analysis 
and Applications, Vol. 9(2-3)(Oct. 2006), pp. 273-292.  

Shin, H. C.; Choi, H. C. & Kim, S. D. (2006). Directionally classified eigenblocks for localized 
feature analysis in face recognition, Optical Engineering, Vol. 45, No. 7, (JUL 2006). 

Singh, R.; Vatsa, M. & Noore, A. (2005). Textural feature based face recognition for single 
training images, Electronics Letters, Vol. 41, No. 11, (MAY 2005) pp. 640-641. 

Yan, S. C.; He, X. F.; Hu, Y. X.; Zhang, H. J.; Li, M. J. & Cheng, Q. S. (2004). Bayesian shape 
localization for face recognition using global and local textures, IEEE Transactions 
on Circuits and Systems for Video Technology, Vol. 14, No. 1, (JAN 2004) pp. 102-113. 

Yu, J. G. & Bhanu, B. (2006). Evolutionary feature synthesis for facial expression recognition, 
Pattern Recognition Letters, Vol. 27, No. 11, (AUG 2006) pp. 1289-1298. 

Yu, W. W.; Teng, X. L. & Liu, C. Q. (2006). Face recognition fusing global and local features, 
Journal of Electronic Imaging, Vol. 15, No. 1, (JAN-MAR 2006). 

Zhang, H. H.; Zhang, B. L.; Huang, W. M. & Tian, Q. (2005). Gabor wavelet associative 
memory for face recognition, IEEE Transactions on Neural Networks, Vol. 16, No. 1, 
(JAN 2005) pp. 275-278. 

Zheng, W. M.; Zhou, X. Y.; Zou, C. R. & Zhao, L. (2006). Facial expression recognition using 
kernel canonical correlation analysis (KCCA), IEEE Transactions on Neural Networks,
Vol. 17, No. 1, (JAN 2006) pp. 233-238. 



5

Image Compression Effects in Face Recognition 
Systems

Kresimir Delac, Mislav Grgic and Sonja Grgic 
University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb 

Croatia

1. Introduction 

With the growing number of face recognition applications in everyday life, image- and 
video-based recognition methods are becoming important research topic (Zhao et al., 2003). 
Effects of pose, illumination and expression are issues currently most studied in face 
recognition. So far, very little has been done to investigate the effects of compression on face 
recognition, even though the images are mainly stored and/or transported in a compressed 
format. Still-to-still image experimental setups are often researched, but only in 
uncompressed image formats. Still-to-video research (Zhou et al., 2003) mostly deals with 
issues of tracking and recognizing faces in a sense that still uncompressed images are used 
as a gallery and compressed video segments as probes. 
In this chapter we analyze the effects that standard image compression methods - JPEG 
(Wallace, 1991) and JPEG2000 (Skodras et al., 2001) - have on three well known subspace 
appearance-based face recognition algorithms: Principal Component Analysis - PCA (Turk 
& Pentland, 1991), Linear Discriminant Analysis - LDA (Belhumeur et al., 1996) and 
Independent Component Analysis - ICA (Bartlett et al., 2002). We use McNemar's 
hypothesis test (Beveridge et al., 2001; Delac et al., 2006) when comparing recognition 
accuracy in order to determine if the observed outcomes of the experiments are statistically 
important or a matter of chance. Following the idea of a reproducible research, a 
comprehensive description of our experimental setup is given, along with details on the 
choice of images used in the training and testing stage, exact preprocessing steps and 
recognition algorithms parameters setup. Image database chosen for the experiments is the 
grayscale portion of the FERET database (Phillips et al., 2000) and its accompanying 
protocol for face identification, including standard image gallery and probe sets. Image 
compression is performed using standard JPEG and JPEG2000 coder implementations and 
all experiments are done in pixel domain (i.e. the images are compressed to a certain 
number of bits per pixel and then uncompressed prior to use in recognition experiments). 
The recognition system's overall setup we test is twofold. In the first part, only probe images 
are compressed and training and gallery images are uncompressed (Delac et al., 2005). This 
setup mimics the expected first step in implementing compression in real-life face 
recognition applications: an image captured by a surveillance camera is probed to an 
existing high-quality gallery image. In the second part, a leap towards justifying fully 
compressed domain face recognition is taken by using compressed images in both training 
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and testing stage (Delac, 2006). We will show that, contrary to common opinion, 
compression does not deteriorate performance but it even improves it slightly in some cases. 
We will also suggest some prospective lines of further research based on our findings. 

2. Image compression basics 

First let us briefly explain some basic concepts needed to fully understand the rest of the 
chapter. Image compression will be introduced with scarce details and an interested reader 
is referred to cited papers for further exploration. 
There are two standard image compression schemes that are of interest here: JPEG (Wallace, 
1991) and JPEG2000 (Skodras et al., 2001). These image compression standards are widely 
used in many applications and are expected to be employed in face recognition as well. 
Generally, compression seems to be imperative for any reasonable implementation where a 
large quantity of images need to be stored and used. Both JPEG and JPEG2000 use the 
general transform coding scheme shown in Figure 1. 

Figure 1. Basic steps of transform coding (compression) of images 

The images are first transformed into a form (domain) more suitable for compression. 
Transforms used are the Discrete Cosine Transform (DCT) in JPEG and Discrete Wavelet 
Transform (DWT) in JPEG2000. This procedure assigns values to different spatial frequency 
components present in the image. Since the human visual system is less sensitive to higher 
frequencies, the coefficients representing such frequencies can be discarded, thus yielding 
higher compression rates. This is done through quantization and entropy coding, creating 
the compressed file as an output. Decompression follows the exact inverse procedure. JPEG 
and JPEG2000 are irreversible, meaning that the original image can not be reconstructed 
from the compressed file (this is because some coefficients were discarded). The distortions 
are introduced by coefficients quantization in JPEG and both quantization and entropy 
coding in JPEG2000. The resulting reconstructed images now have artifacts present, like the 
checker-board effect in JPEG images or the smear effect in JPEG2000 images. Some examples 
of these effects in face images can be seen in Figure 2. A closer look at these images and 
having the former analysis in mind will give us the feel of what actually happens. As the 
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transform coefficients that represent higher frequencies are more and more discarded (or are 
rounded to lower precision) with higher compression rates, the images become more and 
more low-pass filtered. This is quite obvious for the JPEG2000 example at 0.2 bpp where we 
can see that the finer details of the face (like wrinkles) are eliminated in the reconstructed 
image. It remains to be seen how will this low-pass filtering affect recognition results. 

Figure 2. Examples of image distortions introduced by JPEG or JPEG2000 compression 

The main tool for measuring the magnitude of compression is compression ratio, expressed in 
the form of bits per pixel (bpp). Given that the original (uncompressed) grayscale images that 
we will consider throughout this chapter are normally 8 bpp, the compression ratio of 1 bpp 
represents the 8:1 compression. In other words, the compressed file is eight times smaller 
than the original file (image). 
As can be seen in Figure 2, there is practically no difference between the original image and 
images compressed at 1 bpp, as far as the human visual system is concerned. This comes 
naturally from the basic idea that the creators of JPEG and JPEG2000 had in mind when 
creating the standards. Loosely speaking: as little visible distortions as possible. However, 
the difference can be objectively measured by Peak Signal to Noise Ratio (PSNR), calculated 
as:
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where n is the number of bits per pixel in the original image and RMS is the Root Mean 
Square Error defined as: 
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where Ii is pixel value in the original image, I’i is corresponding pixel value in the 
reconstructed image and N is the total number of pixels in the image. PSNR values for 
images in Figure 2. are shown in Table 1. We can see that JPEG and JPEG2000 behave 
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similarly at moderate compression rates (1 bpp and 0.5 bpp). More apparent differences 
arise at higher compression rates (0.3 bpp and 0.2 bpp), where JPEG2000 is clearly superior. 

1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 

JPEG 34.02 30.00 26.30 19.88 

JPEG2000 35.96 30.28 28.12 25.96 

Table 1. PSNR values in dB for images in Figure 2 

Similar conclusions on JPEG and JPEG2000 efficiency can be found in (Grgic et al., 2001). 
Through using additional objective image quality measures it was shown that DCT-based 
and DWT-based compression yield similar results at lower compression rates. At higher 
compression rates, DWT-based compression retains rather high quality while DCT-based 
compression quality deteriorates rapidly. In (Ebrahimi et al., 2004) authors showed that 
there is no significant difference in the quality of JPEG and JPEG2000 compressed images at 
lower and moderate compression rates. JPEG2000 was determined to be superior at higher 
compression rates. In (Santa-Cruz et al., 2000) authors concluded that JPEG2000 is both 
subjectively and objectively superior to JPEG. 
In the literature review that follows, we will see how compression effects were tested in face 
recognition so far and what still remains to be done. 

3. Related work 

Before proceeding to related work review, one basic term should be clarified. It has to 
emphasized that all the experiments described in this chapter, including the ones in the 
following literature review, are conducted in pixel domain. This actually means that the 
images are compressed and then uncompressed prior to being used in the experiments. This 
way the actual influence that the distortion introduced by compression has on recognition 
rate is measured. 
There has been little investigation of the effects of image compression on face recognition 
systems do far. As will be seen, mostly JPEG compression is covered and mainly at a single 
compression ratio. 
In (Blackburn et al., 2001) the authors tried to measure the effects of image compression on 
face recognition systems by simulating the expected real-life setup: images of persons 
known to the system (gallery) were of high quality (non-compressed) and images of persons 
unknown to the system (probes) were taken in uncontrolled environment and compressed. 
Naturally, images were decompressed prior to recognition and thus we can say that 
experiments were conducted in the pixel domain. JPEG compression was used and face 
recognition system was tested using the FERET database and its dup1 (temporal changes) 
probe set. Images were compressed to 0.8, 0.4, 0.25 and 0.2 bpp. The authors conclude that 
compression does not affect recognition significantly across wide range of compression 
rates. Significant performance drop is noted at 0.2 bpp and below. Recognition rate is even 
slightly higher in some cases when using compressed images (compared to results using 
original images). 
Moon and Phillips (Moon & Phillips, 2001) tested the effects of standard JPEG compression 
and of a variant of wavelet compression with a PCA+L1 method. Probe images were in both 
cases compressed to 0.5 bpp, decompressed (so the experiments were conducted in pixel 
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domain) and then geometrically normalized. The training set of images was uncompressed. 
FERET database was used along with its standard probe sets (only fb and dup1 in this 
experiment). Results indicate no performance drop for JPEG compression and a slight 
increase for wavelet compression. Whether this increase in recognition rate is significant or 
not is unclear. 
JPEG2000 compression effects were tested in (McGarry et al., 2004) as part of the 
development of the ANSI INCITS 385-2004 standard: "Face Recognition Format for Data 
Interchange" (ANSI, 2004), later to become an ISO/IEC IS 19794-5 standard: "Biometric Data 
Interchange Formats - Part 5: Face Image Data" (ISO, 2004). The experiment included 
compression at a compression rate of 10:1, as recommended in (ANSI, 2004; ISO, 2004). A 
commercial face recognition system was used for testing a vendor database. Again, since 
there are no details on the exact face recognition method used in the tested system and no 
details on a database used in experiments, it is difficult to make any comparisons to this 
work. In a similar setup as in previously described papers, it was determined that there is no 
significant performance drop when using compressed probe images. Based on their 
findings, the authors conjecture that compression rates higher than 10:1 could be used. 
In (Wat & Srinivasan, 2004) the authors test the effects of JPEG compression on PCA and 
LDA face recognition methods using the same experimental setup as in (Blackburn et al., 
2001). Results are presented as a function of JPEG quality factor. This fact makes any 
comparison with these results very difficult since the same quality factor will yield different 
compression rates for different images, dependent upon the statistical properties of a given 
image. This is why we decided to used bits per pixel as a measure of compression ratio in 
our experiments. The authors used the FERET database and tested the standard probe sets 
against a standard gallery. Results indicate a slight increase in performance for the LDA 
method with the fc probe set. For all other probe sets and methods the results were 
practically the same as with uncompressed images. 
An initial detailed experiment of the effects of compression on face recognition was 
conducted in (Delac et al., 2005). We tested both JPEG and JPEG2000 compression effects on 
a wide range of subspace algorithm - metric combinations. Similar to other studies, we also 
concluded that compression does not affect performance significantly. We supported our 
conclusions with McNemar's hypothesis test. Some performance improvements were also 
noted, but none of them were statistically significant. 
Wijaya et al. in (Wijaya et al., 2005) performed face verification on images compressed to 0.5 
bpp by JPEG2000 and showed that high recognition rates can be achieved using correlation 
filters. Their conclusion was also that compression does not adversely effect performance. 
We can see that the described experiments were mainly done in the same setup: training 
and gallery images are uncompressed and probe images are compressed to various 
compression ratios. Most authors conclude that compression does not affect recognition rate 
significantly, but these conclusions still need to be statistically confirmed. Most of these 
experiments are limited to a single compression rate and a single recognition method. We 
will try to address some of these shortcomings in the experiments presented in this chapter. 

4. Experimental setups and results 

4.1 Database and protocol 

We use the standard FERET data set including the data partitions (subsets) for recognition 
tests, as described in (Phillips et al., 2000). The gallery consists of 1,196 images and there are 
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four sets of probe images that are compared to the gallery images in recognition stage. The 
fb probe set contains 1,195 images of subjects taken at the same time as gallery images with 
the only difference being that the subjects were told to assume a different facial expression. 
The fc probe set contains 194 images of subjects under different illumination conditions. The 
dup1 (duplicate I) set contains 722 images taken anywhere between one minute and 1,031 
days after the gallery image was taken, and dup2 (duplicate II) set is a subset of dup1
containing 234 images taken at least 18 months after the gallery image was taken. All images 
in the data set are of size 384 × 256 pixels and grayscale. 

4.2 Preprocessing 

Original FERET images were first spatially transformed (to get the eyes at the predefined 
fixed points) based upon a ground truth file of the eye coordinates supplied with the 
original FERET data. All images were then cropped to 128 × 128 pixels (using the eyes 
coordinates) and an elliptical mask was used to further eliminate the background. Finally, 
image pixel values were histogram equalized to the range of values from 0 to 255. These 
preprocessing steps were carried out on all images prior to preforming the experiments 
(including compression). 

4.3 Algorithms 

Three well known appearance-based subspace face recognition algorithms were used to test 
the effects of compression: Principal Component Analysis - PCA (Turk & Pentland, 1991), 
Linear Discriminant Analysis - LDA (Belhumeur et al., 1996) and Independent Component 
Analysis - ICA (Bartlett et al., 2002). It is important to mention that we use ICA Architecture 2
from (Bartlett et al., 2002) since ICA Architecture 1 was shown to be suboptimal for face 
identification tasks (Delac et al., 2005; Delac et al. 2006). For both LDA and ICA, a PCA 
dimensionality reduction was done as a preprocessing step. 
To train the PCA algorithm we used a subset of classes for which there were exactly three 
images per class. We found 225 such classes (different persons), so our training set consisted 
of 3 × 225 = 675 images (M = 675, c = 225). The effect that this percentage of overlap has on 
algorithm performance needs further exploration and will be part of our future work. PCA 
derived, in accordance with theory, M - 1 = 674 meaningful eigenvectors. We adopted the 
FERET recommendation and kept the top 40% of those, resulting in 270-dimensional PCA 
subspace W (40% of 674 = 270). It was calculated that 97.85% of energy was retained in those 
270 eigenvectors. This subspace was used for recognition as PCA face space and as input to 
ICA and LDA (PCA was the preprocessing dimensionality reduction step). ICA yielded a 
270-dimensional subspace, and LDA yielded only 224-dimensional space since it can, by 
theory, produce a maximum of c - 1 basis vectors. All of those were kept to stay close to the 
dimensionality of PCA and ICA spaces and thus make comparisons as fair as possible. 
Based on our previous findings in (Delac et al., 2005; Delac et al., 2006) we chose the 
following combinations of algorithms and metrics (one metric for each algorithm) to be used 
in these experiments: PCA+L1, LDA+COS and ICA+COS. These combinations yielded the 
highest recognition rates in our previous experiments. 

4.4 Measurement methods 

Performance of face recognition systems (algorithms, methods) will be presented as rank 
one recognition rate, as described in (Phillips et al., 2000). Let T represent the training set, G
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gallery and P probe set of images. T and G can be the same set but this is not a good testing 
practice. The actual performance of an algorithm is always rated relative to how well the 
images in P are matched to images in G. This is the basis of automatic face recognition. 
Intuitively, it is obvious that P and G should be disjoint; otherwise, the stated problem 
becomes trivial. We will use the identification scenario in our experiments. To calculate the 
recognition rate for a given probe set P, for each probe image Pi, we need to sort all the 
gallery images by decreasing similarity, yielding a list L = {L1, L2, ... , LK}, where K is the total 
number of subjects in the gallery (assuming that there is one image per subject, K also 
becomes the number of images and the size of the gallery). Now L1 is the gallery image most 
similar to the given probe image (according to the algorithm), L2 is the next closest match 
and expanding this to Lk being the kth closest gallery match. Rank one recognition rate 
answers a simple question: is the top match correct? If L1 (labeled as the closest gallery 
match to the given probe image) is really the correct answer, we say that the algorithm 
correctly recognized the probe image. In other words, the algorithm successfully recognizes 
a probe image if the probe image and the top ranked gallery image in L are of the same 
subject. This is called rank one recognition rate (RR) and can be formally defined over the 
whole set of probe images P as follows: let R1 denote the number of correctly recognized 
probe images in L at k = 1 and |P| be the probe set size, then: 

P
RRR 1= . (3) 

A usual way to report rank one performance is to give it in a form of percentage. That way 
we actually say that some algorithm has e.g. 86% rank one recognition rate on a given 
gallery and probe set. Another possible formulation would be that there is 86% chance that 
the correct answer is the top match (the image L1).
To measure the significance of the differences in performance at two different compression 
ratios, we will use McNemar's hypothesis test (Beveridge et al., 2001; Delac et al., 2006). We 
think that, when comparing recognition algorithms, it is important (yet often neglected) to 
answer the following question: when is the observed difference in performance statistically 
significant? Clearly, the difference in performance of 1% or 2% could be due to pure chance. 
However, we felt the need to investigate these intuitive presumptions using standard 
statistical hypothesis testing techniques. Generally, there are two ways of looking at the 
performance difference (Yambor et al., 2002): 1) determine if the difference (as seen over the 
entire set of probe images) is significant, 2) when the algorithms behave differently, 
determine if the difference is significant. As argued in (Yambor et al., 2002), the first way to 
evaluate performance difference fails to take the full advantage of the standard face 
recognition protocol, so we will focus on the second way. In order to perform this test we 
recorded which of the four possible outcomes, when comparing two algorithms A1 and A2 
(SS – both successful, FF – both failed, FS – first one failed and the second one succeeded, SF 
– first one succeeded and the second one failed), is true for each probe image. Let NSS

represent the number of probe images for which SS outcome is true, NSF the number of 
probe images for which SF outcome is true, etc. We then formulated our hypotheses as: H0) 
the probability of observing SF is equal to the probability of observing FS; H1) the 
probability of observing SF is not equal to the probability of observing FS. H0 is the null 
hypothesis and H1 the alternative hypothesis. 
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In case where one algorithm performs better than another algorithm, H0 can be rejected if 
the observed difference in performance of the compared algorithms is statistically 
significant. Therefore, H0 is tested by applying a one-tailed test. Suppose that Pr(SF) and 
Pr(FS) are the probabilities of observing SF and FS outcomes under H0. For example, if it 
appears that Pr(SF) > Pr(FS), i.e. A1 performs better than A2, then we calculate: 

Pr (A1 better than A2 at least as many times as observed) = 
=

⋅
−

n

Ni

n

SF
)!in(!i

!n
2
1  (4) 

where n = NSF + NFS is the number of probe images for which only one algorithm incorrectly 
classify them. This probability is usually called p-value for rejecting H0 in favor of H1. H0 is 
rejected when the p-value is lower than some predefined threshold  (usually = 0.05, i.e. 
5%), and in this case we can conclude that the observed difference in performance of the compared 
algorithms is statistically significant.
We will report the outcomes of McNemar's test in our results as " " when there is no 
statistically significant difference when using images at a given compression ratio compared 
to using original images, " " the recognition ratio is significantly worse than with original 
images and " " when the recognition ratio using compressed images is significantly higher 
than with original images. 
Another handy tool that can be used here is the Normalized Recognition Rate (NRR),
defined as the ratio between recognition rate (RR) for compressed images and recognition 
rate for original images (Delac, 2006): 

original

compressed

RR
RR

NRR = . (5) 

So, at a given bitrate (number of bits per pixel), if NRR = 1, the performance is the same as 
with original images, if NRR < 1, performance is worse, and if NRR > 1, performance is 
better then with original images. We will present NRR curves (NRR as a function of 
compression ratio) for some interesting results just as an example of their possible usage. 
Full analysis of the results with NRR is out of scope of this chapter. 

4.5 Experiments 

As stated before, most of the experiments presented in the literature so far use the scenario 
where only probe images are compressed. We will here try to perform another experiment 
where all the images are compressed to a given compression ratio. This will be a good 
foundation for possible new area in face recognition research - face recognition in compressed 
domain. Compressed domain means that instead of decompressing the compressed images 
and then using (distorted) pixel values as input to face recognition methods, transformed 
coefficients are used as inputs. The decoding process should be interrupted after the entropy 
decoding and the obtained coefficients (DCT or DWT) used as inputs to classification 
methods. This way it is possible to achieve large computational time saves by avoiding the 
inverse DCT or DWT. 
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Figure 3. Experimental setup 1 (EXP1) 

Scenario that was used in studies so far (only probe images are compressed) will be 
addressed as EXP1 in further text and a block-scheme of this approach can be seen in Figure 
3. The setup where all images (training, gallery and probe) are compressed to the same 
compression ratio will be addressed as EXP2 and a block-scheme can be seen in Figure 4. 
The illustrations in Figure 3 and Figure 4 represent the training and recognition stage of a 
PCA, LDA or ICA-based system for a single probe image Px. T and G represent training and 
gallery sets of images, respectively. Original (uncompressed) images have 8 bpp and 
compressed images have a hypothetical value of n bpp. In the module min(d) the distance 
between the projected probe image px and the list of gallery images {g1, g2, … ,gMG} is 
calculated and a minimal distance is determined (MG is the number of images in the 
gallery). The identity of the person on a gallery image determined to be the closest to Px in 
the subspace is the identity of the unknown person returned by the system. This is a 
standard rank one identification scenario. 

Figure 4. Experimental setup 2 (EXP2) 
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4.6 Results 

The results for both experiments can be seen in Tables 2 through 9. The figures presented on 
tables represent rank one recognition rates. "McN" presents the result of McNemar's 
hypothesis test (result at a given compression ratio compared to the result using original 
uncompressed images). By looking at the results of McNemar’s test, we can immediately 
conclude that compression to 1 bpp and 0.5 bpp does not significantly influence the results 
in any method and/or experiment. This is consistent with previous studies and it 
additionally gives strong statistical basis for such a conclusion. In the following text we will 
give an analysis for each probe set in both experiments and present two possible real life 
applications of the conclusions drawn from this study. 

fb JPEG Orig. 1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 
RR 79,4 79,4 79,4 78,9 77,2 EXP1 McN - 
RR 79.4 78.9 79.4 79.0 75.4 

PCA+L1
EXP2

McN - 
RR 75.4 75.4 75.2 75.3 73.6 EXP1 McN - 
RR 75.4 75.5 75.5 74.5 72.6 

LDA+COS
EXP2

McN - 
RR 83.0 82.8 83.0 82.0 80.0 EXP1

McN - 
RR 83.0 83.1 83.0 82.2 75.6 

ICA+COS
EXP2

McN - 

Table 2. The results for JPEG compression, fb probe set (" " - no statistically significant 
difference compared to using original images; " " - RR significantly worse than with 
original images; " " - RR significantly higher than with original images) 

fc JPEG Orig. 1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 
RR 47.9 46.4 45.9 47.9 44.3 EXP1

McN - 
RR 47.9 50.0 49.5 51.0 42.3 

PCA+L1
EXP2

McN - 
RR 11.3 11.3 11.3 11.3 10.8 EXP1

McN - 
RR 11.3 11.3 11.3 11.9 11.3 

LDA+COS
EXP2

McN - 
RR 68.6 68.0 67.5 69.6 66.5 EXP1

McN - 
RR 68.6 67.5 68.6 66.5 57.7 

ICA+COS
EXP2

McN - 

Table 3. The results for JPEG compression, fc probe set  
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dup1 JPEG Orig. 1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 
RR 38.5 38.6 38.5 38.2 35.1 EXP1

McN - 
RR 38.5 39.2 39.2 38.8 35.7 

PCA+L1
EXP2 McN - 

RR 35.6 35.6 35.3 35.8 33.8 EXP1
McN - 
RR 35.6 35.6 35.3 35.7 33.4 

LDA+COS
EXP2

McN - 
RR 44.3 44.9 44.5 42.9 41.1 EXP1

McN - 
RR 44.3 45.3 44.5 43.6 36.4 

ICA+COS
EXP2

McN - 

Table 4. The results for JPEG compression, dup1 probe set 

dup2 JPEG Orig. 1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 
RR 19.7 20.1 20.1 19.2 15.8 EXP1 McN - 
RR 19.7 20.5 21.4 19.2 17.2 

PCA+L1
EXP2

McN - 
RR 12.8 12.8 12.8 13.6 12.4 EXP1 McN - 
RR 12.8 13.2 13.2 12.4 13.2 

LDA+COS
EXP2

McN - 
RR 30.8 32.0 30.7 29.9 27.3 EXP1 McN - 
RR 30.8 31.2 30.3 31.2 24.8 

ICA+COS
EXP2

McN - 

Table 5. The results for JPEG compression, dup2 probe set 

fb JPEG2000 Orig. 1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 
RR 79.4 79.4 79.6 79.1 78.6 EXP1 McN - 
RR 79.4 79.2 79.2 79.7 75.4 

PCA+L1
EXP2

McN - 
RR 75.4 75.4 75.3 75.2 75.0 EXP1 McN - 
RR 75.4 75.5 75.2 75.1 72.6 

LDA+COS
EXP2

McN - 
RR 83.0 83.1 83.1 83.0 83.4 EXP1 McN - 
RR 83.0 83.4 83.5 83.8 76.7 

ICA+COS
EXP2

McN - 

Table 6. The results for JPEG2000 compression, fb probe set 
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fc JPEG2000 Orig. 1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 
RR 47.9 46.4 46.4 45.9 45.8 EXP1 McN - 
RR 47.9 51.0 51.5 52.6 42.3 

PCA+L1
EXP2

McN - 
RR 11.3 11.3 11.3 10.8 11.3 EXP1

McN - 
RR 11.3 11.3 11.3 10.8 11.3 

LDA+COS
EXP2

McN - 
RR 68.6 69.0 68.5 68.5 68.6 EXP1

McN - 
RR 68.6 67.0 67.0 64.4 56.2 

ICA+COS
EXP2

McN - 

Table 7. The results for JPEG2000 compression, fc probe set 

dup1 JPEG2000 Orig. 1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 
RR 38.5 38.3 38.5 38.2 38.5 EXP1

McN - 
RR 38.5 38.8 38.9 38.0 35.7 

PCA+L1
EXP2 McN - 

RR 35.6 35.6 35.5 35.4 35.1 EXP1
McN - 
RR 35.6 35.5 35.5 35.3 33.4 

LDA+COS
EXP2 McN - 

RR 44.3 44.7 44.5 44.5 44.3 EXP1
McN - 
RR 44.3 45.0 43.8 42.4 35.5 

ICA+COS
EXP2

McN - 

Table 8. The results for JPEG2000 compression, dup1 probe set 

dup2 JPEG2000 Orig. 1 bpp 0.5 bpp 0.3 bpp 0.2 bpp 
RR 19.7 19.7 20.1 19.7 19.6 EXP1 McN - 
RR 19.7 20.5 19.7 18.8 17.9 

PCA+L1
EXP2

McN - 
RR 12.8 13.3 13.7 13.6 13.2 EXP1 McN - 
RR 12.8 13.2 13.7 13.7 13.2 

LDA+COS
EXP2

McN - 
RR 30.8 32.5 32.0 29.5 30.0 EXP1 McN - 
RR 30.8 32.5 30.8 29.1 22.7 

ICA+COS
EXP2

McN - 

Table 9. The results for JPEG2000 compression, dup2 probe set 
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5. Analysis 

5.1 Different expressions (fb)

All methods exhibit great stability for both JPEG and JPEG2000 compression and in both 
EXP1 and EXP2 setups (Table 2 and Table 6). Even though there are a few recognition rate 
increases when the images are mildly compressed, none of those increases are statistically 
significant. If we take a look at the example of visual deformations introduced by 
compression (Figure 2), this level of stability is quite surprising. In spite of the fact that an 
image compressed to 0.3 bpp using JPEG is virtually unrecognizable and, on average, has 
PSNR = 25 dB, there seems to be no effect on face recognition performance. If we have a 
closer look at the results in Table 2 and Table 6, we can see that both JPEG and JPEG2000 do 
not significantly deteriorate performance until 0.2 bpp. At 0.2 bpp all recognition methods 
experience significant performance drop. We can conclude that, for the different expressions 
task, all compression ratios above 0.2 bpp are acceptable and can be used in a face 
recognition system. Unfortunately, rarely are such easy tasks (ideal imaging conditions and 
face images varying only in facial expressions) put before the systems designers and this is 
why we have to consider other possible influences on recognition accuracy as well (different 
illuminations and temporal changes). 
JPEG2000 seems to be more efficient (in terms of image quality) if an image is to be 
presented to a human operator that has to make a final decision about someone’s identity. 
This is an expected scenario in high confidence applications, like law enforcement 
applications. In such an application, a list of the most likely matches are presented to the 
user which now has to make the final choice. JPEG2000 images seem to be visually less 
distorted at higher compression rates and thus more appropriate for such uses. JPEG images 
can also be used, but at moderate or low compression rates (0.5 bpp and above). 
The overall rank one recognition rates for the fb probe set are above 75%, which was 
expected and is consistent with previous studies of the same face recognition algorithms in 
pixel domain (Delac et al., 2006; Bartlett et al., 2002; Yambor et al., 2002; Beveridge et al., 
2001; Belhumeur et al., 1996). ICA+COS yielded highest recognition rates in both 
experiments. For JPEG - 83% at 0.5 bpp in EXP1 and 83.1% at 1 bpp in EXP2 and for 
JPEG2000 – 83.1% at 0.5 bpp in EXP1 and 83.8% at 0.3 bpp in EXP2. It is interesting to notice 
that overall best results was achieved at a surprisingly high compression of 0.3 bpp (≈ 26:1). 

5.2 Different illumination (fc)

The results for the fc probe set in both experiments can be seen in Table 3 and 7 and Figure 5 
and 6. If we take a look at the results of both experiments for JPEG compression (Table 3 and 
Figure 5), we can see that compression again does not deteriorate performance up to 0.3 
bpp. Only at 0.2 bpp the differences become statistically significant. These results are mainly 
quite similar to the fb probe set results. However, there are some differences, namely, the 
statistically significant recognition rate improvement for PCA+L1 with JPEG compression at 
0.3 bpp in EXP2, and consistent significant improvement for JPEG2000 compression at 1, 0.5 
and 0.3 bpp in EXP2. Both mentioned differences are clearly visible in Figure 5 and 6. In 
those figures the NRR curves are shown as a function of compression rate (in bpp) for all 
experiments with the fc probe set (Figure 5 for JPEG and Figure 6 for JPEG2000 
compression). As already mentioned, PCA+L1 exhibits some statistically significant 
improvements in these experiments and this is clearly visible as the curves in Figure 5 and 6 
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exceed the value of one in those cases. This is a good example of the advantages of 
presenting results of similar experiments using the NRR curve. 
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Figure 5. NRR curves for JPEG compression on the fc probe set (EXP1 top; EXP2 bottom) 
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Figure 6. NRR curves for JPEG2000 compression on the fc probe set (EXP1 top; EXP2 bottom) 
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Compression drastically improves the results for PCA+L1 algorithm in some cases. For 
LDA+COS and ICA+COS this effect is not that emphasized. One might actually expect even 
worse results for compression of images taken in different illumination conditions. The 
different illumination influences large portions of an image and sometimes even the whole 
image. This being so, it appears that illumination changes are represented by low 
frequencies in an image, thus low-pass filtering (such as JPEG or JPEG2000 compression) 
should not eliminate the differences between various images taken in different illumination 
conditions. However, in spite of this, all algorithms seem to be very stable across a wide 
range of compression rates and in both experimental setups. Nastar et al. (Nastar et al., 1997) 
showed that only the high-frequency spectrum is affected by changes in facial expression. 
They also conjecture that illumination changes mostly affect the whole image, thus being in 
the low-frequency part of the spectrum. It is interesting to notice that PCA+L1 yielded the 
highest recognition rates for both JPEG and JPEG2000 compression at a very high 
compression rate of 0.3 bpp. The effect that compression has on PCA+L1 results could be 
further explored by reconstructing the compressed images after projection to PCA subspace 
and comparing the reconstructed images to original images to capture the differences 
induced by compression. The overall best rank one recognition rates for the fc probe set are 
achieved by ICA+COS in both experiments. For JPEG - 69.6% at 0.3 bpp in EXP1 and 68.6% 
at 0.5 bpp in EXP2 and for JPEG2000 – 69% at 1 bpp in EXP1 and 67% at 1 and 0.5 bpp in 
EXP2.

5.3 Temporal changes (dup1 & dup2)

The results for probe sets that test the effect that aging of the subjects has on face recognition 
(dup1 and dup2) are shown in Tables 4, 5, 8 and 9. The trend of very stable results across a 
wide range of compression rates is still noticeable. Additionally, for these probe sets all 
three algorithms have statistically insignificant performance differences, even at 0.2 bpp. 
Slight (statistically insignificant) improvements are noticeable at almost all compression 
rates and for all algorithms. It appears that the low-pass filtering by compression contributes 
more to the overall stability of the results than to significant improvements. 
The overall best rank one recognition rates for the dup1 probe set are achieved by ICA+COS 
in both experiments. For JPEG - 44.9% at 1 bpp in EXP1 and 45.3% at 1 bpp in EXP2 and for 
JPEG2000 – 44.7% at 1 bpp in EXP1 and 45% at 1 bpp in EXP2. 
The overall best rank one recognition rates for the dup2 probe set are achieved by ICA+COS 
in both experiments. For JPEG - 32% at 1 bpp in EXP1 and 31.2% at 1 and 0.3 bpp in EXP2 
and for JPEG2000 – 32.5% at 1 bpp in EXP1 and 32.5% at 1 bpp in EXP2. 
Mild compression of 8:1 (1 bpp) seems to be very effective at improving face recognition 
from images taken at different points in time. The removal of fine details, such as wrinkles 
and even facial hair, obviously makes images of the same person more similar. 

5.4 Possible applications 

We will now try to answer a question of where could the results and conclusions presented 
here be used in real life. We will describe two very basic applications. Firstly, as was 
previously hinted, the obvious use is in law enforcement applications. An image of an 
unknown subject is presented to the system, that image is compared to all the images 
known to the system. There can be hundreds of thousands of such images and any storage 
requirements save in such application is of crucial importance. 
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Secondly, there has recently been an increased interest in using face recognition systems in 
mobile and handheld devices (Wijaya et al., 2005). In such applications the face of the 
subject is recorded using a camera mounted on a device and transaction/login is approved 
or rejected based on that image. Recognition is mostly done at the remote server side and 
images (or some extracted image features) are sent over a telecommunication network. If a 
device in question is a mobile phone, higher level image processing is usually 
computationally expensive so the whole image is sent. Cameras usually deliver images in an 
already compressed format and being able to use this feature and send a compressed file 
across the network would be a big advantage. 

6. Conclusion 

We can group the conclusions based on a level of compression and the probe sets into two 
parts: i) higher compression rates (0.5, 0.3 and in some cases even 0.2 bpp) seem to be 
suitable for recognizing faces with different expressions (fb probe set) and images taken in 
different illumination conditions (fc probe set); ii) lower compression rates (1 bpp) seem to 
be suitable for recognizing images taken at different points in time (dup1 and dup2 probe 
set). Taking this analysis into account, it seems that the current practice of deciding on the 
level of compression based on visual distortion of images is wrong. While the images 
compressed to 0.3 bpp are visually significantly distorted, the recognition results are in 
almost all experiments statistically indistinguishable from the results achieved by using 
uncompressed images. In many cases these results are slightly better and in some cases even 
significantly better than the ones achieved with uncompressed images. The correct criteria 
for selecting the optimal compression ratio would therefore be: the optimal compression 
rate is the one yielding the highest recognition rate at given circumstances (classification 
algorithm, task given etc.). It certainly seems reasonable to allow image compression up to 
0.5 bpp (a 16:1 compression) for face recognition purposes. 
JPEG2000 compression seems to have less effect on recognition results than JPEG. 
Significant performance improvements are not as often as with JPEG, but all methods 
exhibit remarkable stability when JPEG2000 was used. This conclusion is similar to the one 
presented in (Schaefer, 2004), where the first comprehensive study of the influence of JPEG 
and JPEG2000 compression on content-based image retrieval was conducted. Schaefer 
concludes that JPEG2000 gives better results at higher compression rates than JPEG. 
From the experiments presented in this chapter in can be concluded that compression does not 
significantly influence face recognition performance up to 0.3 bpp. In other words, there seems to 
be no reason not to store images in the compressed format. 0.3 bpp corresponds to 
compression ratio of about 26:1. Even using a more moderate compression of 1 bpp or 0.5 
bpp would be a great save in storage requirements while retaining high visual quality of the 
reconstructed images. As far as the usage scenario (only probe images are compressed or the 
whole systems works with compressed images) is concerned, no conclusion can be drawn as 
to which is more suitable. However, since the transition to fully compressed domain 
recognition seems plausible, in order to be able to directly compare the results in both 
domains, the second scenario (the whole systems works with compressed images at a given 
compression rate) should be used when experimenting. 
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1. Introduction  

After 9/11 tragedy, governments in all over the world started to look more seriously to the 
levels of security they have at their airports and borders. Countries annual budgets were 
increased drastically to have the most recent technologies in identification, recognition and 
tracking of suspects. The demand growth on these applications helped researchers to be able 
to fund their research projects. One of most common biometric recognition techniques is 
face recognition. Although face recognition is not as accurate as the other recognition 
methods such as fingerprints, it still grabs huge attention of many researchers in the field of 
computer vision. The main reason behind this attention is the fact that the face is the 
conventional way people use to identify each others.  
Over the last few decades, a lot of researchers gave up working in the face recognition 
problem due to the inefficiencies of the methods used to represent faces. The face 
representation was performed by using two categories. The First category is global approach
or appearance-based, which uses holistic texture features and is applied to the face or specific 
region of it. The second category is feature-based or component-based, which uses the 
geometric relationship among the facial features like mouth, nose, and eyes. (Wiskott et al., 
1997) implemented feature-based approach by a geometrical model of a face by 2-D elastic 
graph. Another example of feature-based was done by independently matching templates of 
three facial regions (eyes, mouth and nose) and the configuration of the features was 
unconstrained since the system didn’t include geometrical model (Brunelli & Poggio, 1993).   
Principal components analysis (PCA) method (Sirovich & Kirby, 1987; Kirby & Sirovich, 
1990) which is also called eigenfaces (Turk & Pentland, 1991; Pentland & Moghaddam, 1994) 
is appearance-based technique used widely for the dimensionality reduction and recorded a 
great performance in face recognition. PCA based approaches typically include two phases: 
training and classification. In the training phase, an eigenspace is established from the 
training samples using PCA and the training face images are mapped to the eigenspace for 
classification. In the classification phase, an input face is projected to the same eigenspace 
and classified by an appropriate classifier. Contrasting the PCA which encodes information 
in an orthogonal linear space, the linear discriminant analysis (LDA) method (Belhumeur et 
al., 1997; Zhao et al., 1998) which also known as fisherfaces method is another example of 
appearance-based techniques which encodes discriminatory information in a linear 
separable space of which bases are not necessarily orthogonal.  
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In this chapter, two face recognition systems, one based on the PCA followed by a 
feedforward neural network (FFNN) called PCA-NN, and the other based on LDA followed 
by a FFNN called LDA-NN, are explained. The two systems consist of two phases which are 
the PCA or LDA feature extraction phase, and the neural network classification phase. The 
introduced systems provide improvement on the recognition performances over the 
conventional LDA and PCA face recognition systems.  
The neural networks are among the most successful decision making systems that can be 
trained to perform complex functions in various fields of applications including pattern 
recognition, optimization, identification, classification, speech, vision, and control systems. 
In FFNN the neurons are organized in the form of layers. The FFNN requires a training 
procedure where the weights connecting the neurons in consecutive layers are calculated 
based on the training samples and target classes. After generating the eigenvectors using 
PCA or LDA methods, the projection vectors of face images in the training set are calculated 
and then used to train the neural network. These architectures are called PCA-NN and 
LDA-NN for eigenfaces and fisherfaces methods respectively.  
The first part of the chapter introduces PCA and LDA techniques which provide theoretical 
and practical implementation details of the systems. Both of the techniques are explained by 
using wide range of illustrations including graphs, flowcharts and face images. The second 
part of the chapter introduces neural networks in general and FFNN in particular. The 
training and test phases of FFNN are explained in detail. Finally the PCA-NN and LDA-NN 
face recognition systems are explained and the performances of the respective methods are 
compared with conventional PCA and LDA based face recognition systems. 

2. Principal Component Analysis   

Principal component analysis or karhunen-loève transformation (Papoulis, 2002) is standard 
technique used in statistical pattern recognition and signal processing for data reduction 
and Feature extraction (Haykin, 1999). As the pattern often contains redundant information, 
mapping it to a feature vector can get rid of this redundancy and yet preserve most of the 
intrinsic information content of the pattern. These extracted features have great role in 
distinguishing input patterns.  
A face image in 2-dimension with size N × N can also be considered as one dimensional 
vector of dimension N2. For example, face image from ORL (Olivetti Research Labs) 
database with size 112 × 92 can be considered as a vector of dimension 10,304, or 
equivalently a point in a 10,304 dimensional space. An ensemble of images maps to a 
collection of points in this huge space. Images of faces, being similar in overall 
configuration, will not be randomly distributed in this huge image space and thus can be 
described by a relatively low dimensional subspace. The main idea of the principle 
component is to find the vectors that best account for the distribution of face images within 
the entire image space. These vectors define the subspace of face images, which we call “face 
space”. Each of these vectors is of length N2, describes an N × N image, and is a linear 
combination of the original face images. Because these vectors are the eigenvectors of the 
covariance matrix corresponding to the original face images, and because they are face-like 
in appearance, we refer to them as “eigenfaces”.  
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Let the training set of face images be Γ1,Γ2,….,ΓM , then the average of the set is defined by 
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Ψ = Γ  (1) 

Each face differs from the average by the vector      

i iΦ =Γ −Ψ  (2) 

This set of very large vectors is then subject to principal component analysis, which seeks a 
set of M orthonormal vectors, Um , which best describes the distribution of the data. The kth 
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The vectors Uk and scalars λk are the eigenvectors and eigenvalues, respectively of the 
covariance matrix 
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where the matrix A =[Φ1 Φ2....ΦM]. The covariance matrix C, however is N2 × N2 real 
symmetric matrix, and calculating the N2 eigenvectors and eigenvalues is an intractable task 
for typical image sizes. We need a computationally feasible method to find these 
eigenvectors.
Consider the eigenvectors  iv  of ATA such that 

T
i i iA Av vμ=  (6) 

Premultiplying both sides by A, we have 

T
i i iAA Av Avμ=  (7) 

where we see that A iv are the eigenvectors and  μi are the eigenvalues of  C= A AT.
Following these analysis, we construct the M × M matrix L= ATA, where Lmn=ΦmTΦn , and 
find the M eigenvectors, iv , of L. These vectors determine linear combinations of the M
training set face images to form the eigenfaces UI .      
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With this analysis, the calculations are greatly reduced, from the order of the number of 
pixels in the images (N2) to the order of the number of images in the training set (M). In 
practice, the training set of face images will be relatively small (M << N2), and the 
calculations become quite manageable. The associated eigenvalues allow us to rank the 
eigenvectors according to their usefulness in characterizing the variation among the images.  
The eigenface images calculated from the eigenvectors of L span a basis set that can be used 
to describe face images. (Sirovich & Kirby, 1987, 1990) evaluated a limited version of this 
framework on an ensemble of 115 images (M = 115) images of Caucasian males digitized in 
a controlled manner, and found that 40 eigenfaces (M' = 40) were sufficient for a very good 
description of face images.  In practice, a smaller M' can be sufficient for identification, since 
accurate reconstruction of the image is not a requirement. In the framework of face 
recognition, the operation is a pattern recognition task rather than image reconstruction. The 
eigenfaces span an M' dimensional subspace of the original N2 image space and hence, the
M' significant eigenvectors of the L matrix with the largest associated eigenvalues, are 
sufficient for reliable representation of the faces in the face space characterized by the 
eigenfaces. Examples of ORL face database and eigenfaces after applying the eigenfaces 
algorithm are shown in Figure 1 and Figure 2, respectively.  

Figure 1. Samples face images from the ORL database 

A new face image (Γ) is transformed into its eigenface components (projected onto “face 
space”) by a simple operation,         
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( )T
k kw U= Γ −Ψ  (9) 

for k = 1,...,M'. The weights form a projection vector,   

[ ]1 2 '....T
Mw w wΩ =  (10) 

describing the contribution of each eigenface in representing the input face image, treating 
the eigenfaces as a basis set for face images. The projection vector is then used in a standard 
pattern recognition algorithm to identify which of a number of predefined face classes, if 
any, best describes the face. The face class Ωk can be calculated by averaging the results of 
the eigenface representation over a small number of face images of each individual. 
Classification is performed by comparing the projection vectors of the training face images 
with the projection vector of the input face image. This comparison is based on the 
Euclidean Distance between the face classes and the input face image. This is given in Eq. 
(11). The idea is to find the face class k that minimizes the Euclidean Distance.  Figure 3 
shows the testing phase of the PCA approach.       

( )k kε = Ω −Ω  (11) 

Where Ωk is a vector describing the kth faces class. 
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Figure 2. First 16 eigenfaces with highest eigenvalues 
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Figure 3.  PCA approach for face recognition 

3. Linear Discriminant Analysis  

Linear Discriminant analysis or Fisherfaces method overcomes the limitations of eigenfaces 
method by applying the Fisher’s linear discriminant criterion. This criterion tries to 
maximize the ratio of the determinant of the between-class scatter matrix of the projected 
samples to the determinant of the within-class scatter matrix of the projected samples.  
Fisher discriminants group images of the same class and separates images of different 
classes. Images are projected from N2-dimensional space to C dimensional space (where C is 
the number of classes of images). For example, consider two sets of points in 2-dimensional 
space that are projected onto a single line. Depending on the direction of the line, the points 
can either be mixed together (Figure 4a) or separated (Figure 4b). Fisher discriminants find 
the line that best separates the points. To identify an input test image, the projected test 
image is compared to each projected training image, and the test image is identified as the 
closest training image. 
As with eigenspace projection, training images are projected into a subspace. The test 
images are projected into the same subspace and identified using a similarity measure. What 
differs is how the subspace is calculated. 
Unlike the PCA method that extracts features to best represent face images; the LDA 
method tries to find the subspace that best discriminates different face classes as shown in 
Figure 4. The within-class scatter matrix, also called intra-personal, represents variations in 
appearance of the same individual due to different lighting and face expression, while the 
between-class scatter matrix, also called the extra-personal, represents variations in 
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appearance due to a difference in identity. By applying this method, we find the projection 
directions that on one hand maximize the distance between the face images of different 
classes on the other hand minimize the distance between the face images of the same class.  
In another words, maximizing the between-class scatter matrix Sb, while minimizing the 
within-class scatter matrix Sw in the projective subspace. Figure 5 shows good and bad class 
separation.

Figure 4. (a) Points mixed when projected onto a line. (b) Points separated when projected 
onto another line 

Figure 5. (a) Good class separation. (b) Bad class separation  

The within-class scatter matrix Sw and the between-class scatter matrix Sb are defined as 
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Where Γi
j is the ith sample of class j, μj is the mean of class j, C is the number of classes, Nj is 

the number of samples in class j.
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where μ represents the mean of all classes. The subspace for LDA is spanned by a set of 
vectors W = [W1, W2, … , Wd], satisfying       

arg max
T
b

T
W

W S WW
W S W

= =  (14) 

Figure 6. LDA approach for face recognition 

The within class scatter matrix represents how face images are distributed closely within 
classes and between class scatter matrix describes how classes are separated from each 
other. When face images are projected into the discriminant vectors W, face images should 
be distributed closely within classes and should be separated between classes, as much as 
possible. In other words, these discriminant vectors minimize the denominator and 
maximize the numerator in Equation (14). W can therefore be constructed by the 
eigenvectors of Sw-1 Sb. Figure 7 shows the first 16 eigenvectors with highest associated 
eigenvalues of Sw-1 Sb. These eigenvectors are also referred to as the fisherfaces. There are 
various methods to solve the problem of LDA such as the pseudo inverse method, the 
subspace method, or the null space method.  
The LDA approach is similar to the eigenface method, which makes use of projection of 
training images into a subspace. The test images are projected into the same subspace and 
identified using a similarity measure. The only difference is the method of calculating the 
subspace characterizing the face space. The face which has the minimum distance with the 
test face image is labelled with the identity of that image. The minimum distance can be 
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calculated using the Euclidian distance method as given earlier in Equation (11). Figure 6 
shows the testing phase of the LDA approach.       
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Figure 7. First 16 Fisherfaces with highest eigenvalues 

4. Neural Networks  

Neural networks, with massive parallelism in its structure and high computation rates, 
provide a great alternative to other conventional classifiers and decision making systems. 
Neural networks are powerful tools that can be trained to perform a complex and various 
functions in computer vision applications, such as preprocessing (boundary extraction, 
image restoration, image filtering), feature extraction (extract transformed domain features), 
associative memory (storing and retrieving information), and pattern recognition. 

4.1 Feedforward Neural Networks (FFNN) 

FFNN is suitable structure for nonlinear separable input data. In FFNN model the neurons 
are organized in the form of layers. The neurons in a layer get input from the previous layer 
and feed their output to the next layer. In this type of networks connections to the neurons 
in the same or previous layers are not permitted. Figure 8 shows the architecture of the 
system for face classification. 
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Figure 8. Architecture of  FFNN for classification 

4.2. Learning Algorithm (Backpropagation)  

Learning process in Backpropagation requires providing pairs of input and target vectors. 
The output vector o of each input vector is compared with target vector t. In case of 
difference the weights are adjusted to minimize the difference. Initially random weights and 
thresholds are assigned to the network. These weights are updated every iteration in order 
to minimize the cost function or the mean square error between the output vector and the 
target vector.
Input for hidden layer is given by 
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The units of output vector of hidden layer after passing through the activation function are 
given by 
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In same manner, input for output layer is given by 

1

m
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=

=  (17) 

and the units of output vector of output layer are given by 

1

1 exp( )
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k
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For updating the weights, we need to calculate the error. This can be done by    

2

1

1
( )

2

k

i i
i

E o t
=

= −  (19) 

If the error is minimum than a predefined limit, training process will stop; otherwise 
weights need to be updated. For weights between hidden layer and output layer, the change 
in weights is given by 

ij i jw hαδΔ =  (20) 

where α is a training rate coefficient that is restricted to the range [0.01,1.0], hj is the output 
of neuron j in the hidden layer, and δi  can be obtained by 

( ) (1 )i i i i it o o oδ = − −  (21) 

oi and ti represents  the real output and target output at neuron i in the output layer 
respectively.
Similarly, the change of the weights between hidden layer and output layer, is given by 

ij Hi jw xβδΔ =  (22) 

where β is a training rate coefficient that is restricted to the range [0.01,1.0], xj is the output of 
neuron j in the input layer, and δHi  can be obtained by 

1

(1 )
k

Hi i i j ij
j

x x wδ δ
=

= −  (23) 

xi is the output at neuron i in the input layer, and summation term represents the weighted 
sum of all δj  values corresponding to neurons in output layer that obtained in equation (21). 
After calculating the weight change in all layers, the weights can simply updated by 

( ) ( )ij ij ijw new w old w= + Δ  (24) 

5. Performance Analysis and Discussions 

5.1. Training and Testing of Neural Networks 

Two neural networks, one for PCA based classification and the other for LDA based 
classification are prepared. ORL face database is used for training and testing. The training 
is performed by n poses from each subject and the performance testing is performed by 10-n
poses of the same subjects.  
After calculating the eigenfaces using PCA the projection vectors are calculated for the 
training set and then used to train the neural network. This architecture is called PCA-NN. 
Similarly, after calculation of the fisherfaces using the LDA, projection vectors are calculated 
for the training set. Therefore, the second neural network is trained by these vectors. This 
architecture is called LDA-NN (Eleyan & Demirel, 2005, 2006). Figure 9 shows the schematic 
diagram for the neural network training phase.  
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When a new image from the test set is considered for recognition, the image is mapped to 
the eigenspace or fisherspace. Hence, the image is assigned to a feature vector. Each feature 
vector is fed to its respective neural network and the network outputs are compared.  

Figure 9. Training phase of both Neural Networks 

5.2. System Performance 

The performances of the proposed systems are measured by varying the number of faces of 
each subject in the training and test faces. Table 1 shows the performances of the proposed 
PCA-NN and LDA-NN methods based on the neural network classifiers as well as the 
performances of the conventional PCA and LDA based on the Euclidean Distance classifier. 
The recognition performances increase due to the increase in face images in the training set. 
This is obvious, because more sample images can characterize the classes of the subjects 
better in the face space. The results clearly shows that the proposed recognition systems, 
PCA-NN and LDA-NN, outperforms the conventional PCA and LDA based recognition 
systems. The LDA-NN shows the highest recognition performance, where this performance 
is obtained because of the fact that the LDA method discriminate the classes better than the 
PCA and neural network classifier is more optimal classifier than the Euclidean Distance 
based classifier. The performance improvement in PCA versus PCA-NN is higher than the 
LDA versus LDA-NN. For example, when there are 5 images for training and 5 images for 
testing, the improvement is 7% in PCA based approach and 4% in the LDA based approach. 
These results indicate that the superiority of LDA over PCA in class separation in the face 
space leaves less room for improvement to the neural network based classifier. 

Training
Images 

Testing
Images PCA PCA-NN LDA LDA-NN 

2 8 71 75 78 80 
3 7 73 76 82 84 
4 6 77 80 87 89 
5 5 78 85 87 91 
6 4 89 90 93 93 
7 3 92 94 95 95 
8 2 94 95 96 97 

Table 1. Performance of conventional PCA & LDA versus proposed PCA-NN & LDA-NN 

1st Person Images

2nd Person Images

Kth Person Images

Mth Person Images

PCA 
Feature
Vectors

Neutral Network 
PCA-NN 

LDA
Feature
Vectors

Neutral Network 
LDA-NN 

0
1

0

Kth person

Kth person
1

0

0
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6. Conclusions 

In this chapter, two face recognition systems, the first system based on the PCA 
preprocessing followed by a FFNN based classifier (PCA-NN) and the second one based on 
the LDA preprocessing followed by another FFNN (LDA-NN)  based classifier, are 
introduced. The feature projection vectors obtained through the PCA and LDA methods are 
used as the input vectors for the training and testing of both FFNN architectures. The 
proposed systems show improvement on the recognition rates over the conventional LDA 
and PCA face recognition systems that use Euclidean Distance based classifier. Additionally, 
the recognition performance of LDA-NN is higher than the PCA-NN among the proposed 
systems.  
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Figure 10. Recognition rate vs. number of training faces  
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1. Introduction 

As a result of statistical learning theory, support vector machines (SVMs)[23] are effective 
classifiers for the classification problems. SVMs have been successfully applied to various 
pattern classification problems, such as handwritten digit recognition, text categorization 
and face detection, due to their powerful learning ability and good generalization ability. 
However, SVMs require to solve a quadratic optimization problem and need training time 
that are at least quadratic to the number of training samples. Therefore, many large-scale 
problems by using traditional SVMs are too hard to be solved. To overcome this difficulty, 
Lu and colleagues have proposed a min-max modular support vector machine (M3-SVM) 
and part-versus-part task decomposition method [16]. A very important advantage of M3-
SVMs over traditional SVMs is that a two-class problem can be further decomposed into a 
series of two-class subproblems. 
The M3-network model [15] has been applied successfully to many real-world applications 
such as part-of-speech tagging [17], single-trial EEG signal classification [18], prediction of 
protein subcellular multi-locations [26], face recognition [2, 13] and text categorization [14]. 
The basic idea behind M3-network is the “divide and conquer” strategy. The task 
decomposition scheme of M3-network is based on class relations, and the instances in the 
same class can be further decomposed randomly [15], according to parallel hyperplanes [24], 
or prior knowledge [13]. The learning procedure of each subproblems is independent, and 
therefore parallel learning can be implemented easily. The combination strategy follows two 
principles, the minimization principle and the maximization principle [15]. 
We explore the use of M3-SVMs in multi-view face recognition. Multi-view face recognition 
is a more challenging task than frontal view face recognition. Face recognition techniques 
have been developed over the past few decades. But many of those existing face recognition 
techniques, such as Eigenfaces and Fisher-faces [22, 1], are only effective for frontal view 
faces. The difficulties of multi-view face recognition is obvious because of the complicated 
nonlinear manifolds existing in the data space. Using M3-SVMs, we can decompose the 
                                                                
1 To whom correspondence should be addressed. This work was supported in part by the National 
Natural Science Foundation of China under the grants NSFC 60375022 and NSFC 60473040, and The 
Microsoft Laboratory for Intelligent Computing and Intelligent Systems of Shanghai Jiao Tong 
University. 
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whole complicated problem of multi-view face recognition into several relatively simpler 
two-class sub-problems. Every individual two-class sub-problem becomes less complicated 
than the original problem and it can be solved effectively. In addition, we use a SVM based 
discriminative feature selection (SVM-DFS) method [3] for feature selection in multi-view 
face recognition. 

2. Part-Versus-Part Task Decomposition 

For human beings, the only way to solve a complex problem is to divide it into smaller, 
more manageable subproblems. Breaking up a problem helps human beings deal with 
complex issues involved in its solution [18]. This “divide-and- conquer” strategy is also 
helpful to neural networks and machine learning approaches for dealing with complex 
learning problems. Our goal in this Section is to introduce a part-versus-part task 
decomposition method for training multi-class SVMs. 
Let be the given training data set for a K-class classification problem, 

(1)

where is the input vector, is the set of training inputs, is 
the desired output, is the set of desired outputs, and L is the total number of training data. 
We have suggested that a K-class problem defined by (1) can be divided into K(K–1) = 2
two-class subproblems [15], each of which is given by 

(2)

where and  are the training inputs belonging to class i and class j,
respectively, i is the set of training inputs belonging to class i, Li denotes the number of 

data in  and .
In this Chapter, the training data in a two-class subproblem are called positive training data 
if their desired outputs are +1. Otherwise, they are called negative training data. The two-
class subproblems defined by (2)  
are called pair-wise classification in the machine learning literature [5,11]. We would like to 
emphasize that decomposition of a K-class problem into K(K–1) /2 two-class subproblems 
defined by (2) is unique for a given training data set because of the uniqueness of  for 
i=1,...,K.
Although the two-class subproblems defined by (2) are smaller than the original K-class
problem, this partition may not be adequate for parallel computation and fast learning. To 
speed up learning, all the large and imbalanced two-class subproblems should be further 
divided into relatively smaller and more balanced two-class subproblems. 
Assume that i is partitioned into Ni subsets in the form  

(3)

where 1 Ni Li and .
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Various methods can be used for partitioning i into Ni subsets [15]. A simple and 
straightforward approach is to divide i randomly. The subsets ij might be disjoint or 
joint. Without loss of generality and for simplicity of description, we assume throughout 
this Chapter that the random decomposition method is used and the subsets ij are disjoint 
from each other, i.e., ij ik = for i =1,...,K, j and k=1,...,Ni, and j k.
In practical applications of SVMs, an appropriate value of Ni might depend on two main 
factors, such as the number of training data belonging to each class and the available 
computational power. In the simulations presented in this Chapter, we randomly divide i

into Ni subsets ij, which are roughly the same in size. The number of subsets Ni for class i

is determined according to the following rule:  

(4)

where is the desired number of training data fort wo-class subproblems, is a threshold 
parameter (0< <1) for fine-tuning the number of subsets, denotes the largest integer less 
than or equal to z, denotes the smallest integer larger than or equal to z, the function of f
mod(z1/z2) is employed to produce the decimal part of z1/z2, and z1 and z2 are two positive 
integers, respectively. 
After partitioning i into Ni subsets, every two-class subproblem ij defined by (2) can be 
further divided into Ni × Nj relatively smaller and more balanced two-class subproblems as 
follows: 

(5)

where l (iu) iu and l (jv) jv are the training inputs belonging to class  i and class j , 

respectively,  and . It should  be noted that all the two-
class subproblems have the same number of input dimensions as the original K-class 
problem. Comparing the two-class subproblems defined by (5) with the two-class 
subproblems obtained by the pairwise-classification approach, we can see that each of the 
two-class subproblems defined by (5) containsonly apart of data of each class. Hence, the 
decomposition method is called part-versus-part method [16]. 
According to the above discussion, the part-versus-part task decomposition method can be 
described as Table 1. 
After task decomposition, each of the two-class subproblems can be treated as a completely 
independent, non-communicating problem in the learning phase. Therefore, all the two-
class subproblems can be e ciently learned in a massively parallel way. 
From (2) and (5), we see that a K-class problem can be divided into 

(6)
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two-class subproblems. The number of training data for each of the two-class subproblems 
is about 

(7)

Since  is independent of the number of classes K, the size of each of the 
two-class subproblems is much smaller than the original K-class problem for reasonable Ni

and Nj.

Step 1: Set the values of and .
Step 2: Divide a K-class problem  into  two-class subproblems ij using (2). 
Step 3: If the sizes of all Tij are less than , then stop the procedure here. Otherwise, continue 

with the following steps. 
Step 4: Determine the number of training input subsets Ni for i=1,...,K using (4).
Step 5: Divide the training input set i into Ni subsets ij using (3).  
Step 6: Divide the two-class subproblem ij into Ni × Nj relatively smaller and simpler two 

class subproblems  using (5).

Table 1. The part-versus-part task decomposition method 

3. Min-Max Modular Support Vector Machine 

Before using M3-SVMs, for a K-class problem, we should divide the K-class problem into 
K(K  1)/2 two-class sub-problems according to one-against-one strategy or divide a K-class 
problem into K two-class subproblems according to one-against-all strategy. In this work, 
we use one-against-one strategy. The work procedure of M3-SVMs consists of three steps: 
task decomposition, SVMs training and module combination. First, every two-class problem 
is decomposed into relatively smaller two-class problems. Then, every smaller two-class 
SVM is trained. At last, all of the modules are integrated into a M3-SVM to obtain the final
solutions to the original problem.  

3.1 Support Vector Machine 

Support vector machine is a machine learning technique that is well-founded in statistical 
learning theory. The SVM algorithm formulates the training problem as a problem that 
finds, among all possible separating hyperplanes, one hyperplane that maximizes the 
distance between the closest elements of the two classes. In practice, this is determined 
through solving a quadratic programming problem. SVMs have a general form of decision 
function for an input x as: 

(8)

where i are Lagrange parameters obtained in the optimization step, yi are class labels, and 
K(·,·) is the kernel function. The kernel function can be various types. 
The linear kernel function is K(x,y)=x·y; the radial-basis function kernel function is 

and the polynomial kernel function is K(x,y)=(x·y+1)n .
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3.2 Module Combination 

After training, all the individual SVMs are integrated into aM3-SVM with the MIN unit and 
the MAX unit according to the following two combination principles: the minimization 
principle and the maximization principle [15,16]. 
Minimization Principle: Suppose a two-classproblem  were divided into P relatively 
smallert wo-class subproblems, i for i=1,...,P, and also suppose that all the two-class 
subproblems have the same positive training data and di erent negative training data. If the 
P two-class subproblems are learned by the corresponding P individual SVMs, Mi for 
i=1,...,P, then the combination of the P trained SVMs with a MIN unit will produce the 
correct output for all the training inputs in , where the function of the MIN unit is to find a 
minimum value from its multiple inputs. The transfer function of the MIN unit is given by 

(9)

where x denotes the input variable. 
Maximization Principle: Suppose a two-classproblem  were divided into P relatively 
smaller two-class subproblems, i for i=1,...,P, and also suppose that all the two-class 
subproblems have the same negative training data and di erent positive training data. If the 
P two-class subproblems are learned by the corresponding P individua lSVMs, Mi for 
i=1,...,P, then the combination of the P trained SVMs with a MAX unit will produce the 
correct output for all the training input in , where the function of the MAX unit is to find a 
maximum value from its multiple inputs. The transfer function of the MAX unit is given by 

(10)

For example, a two-class problems defined by (2) is further divided into N+ ×N  relatively 
smaller two-class subproblems. After learning all of these two-class subproblems with 
SVMs, the trained N+ × N  individual SVM modules are integrated into a M3-SVM with N+
MIN units and one MAX unit as follows:  

(11)

and

(12)

where denotes the transfer function of the trained SVM corresponding to the two-

class subproblem , and  denotes the transfer function of a combination of N
SVMs integrated by the MIN unit. Figure 1 illustrates the structure of a M3-SVM.  
Suppose that a 1-out-of-K scheme were used for output representation. Let Y denote the 
actual output vector of the M3-SVM for a K-class classification problem, and let  denote 
the transfer function of the entire M3-SVM.  We may then write  

(13)
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According to the minimization and maximization principles, the  SVMs, Mij (x) for 
i=1,...,K and j=i+1,...,K, and the corresponding  inversions Mrs(x) for r=2,...,K and s=1,...,r

 1, are integrated as  

(14)

where i (x) for i=1,...,K denotes the discriminant function, which discriminates the patterns 
of class i from those of th eremaining classes, and the term  denotes the inversion of 
Mri (x). 
It is easy to implement with Mri (x) and an INV unit. The function of the INV unit is 
to invert its single input; the transfer function of the INV unit is given by 

(15)

where , , p ,and q are the upper and lower limits of input value input, and output, 
respectively. For example,  and  are set to +1 and -1, respectively, for support vector 
classifiers in the simulations below.  

Figure 1. Structure of a M3-SVM consisting of N+ × N  individual SVMs, N+ MIN units, 
and one MAX unit 
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The relationship among Mrs(x), , and the INV unit can be expressed as 

(16)

Similarly, the discriminant function i (x) of the Min-Max SVM, which consists of  
 network modules, and the corresponding inversions can be 

expressed as  

(17)

where the term  denotes the inversion of 
. It should be noted that only the inversions of network 

modules Mi j (x) are used for constructing the M3-SVMs, and there are no inversions for 
SVMs .
Summarizing the discussion mentioned above, the module combination procedure can be 
described as Table 2. 

Step 1: If no SVMs  exist, go to Step 3. Otherwise, perform the following steps. 
Step 2: Integrate Ni × Nj SVMs  for u = 1,.. , Ni, v=1,..., Nj, i =1,..., K, and j=i+1,...,K,

into a module Mi j (x) with Ni MIN units and one MAX unit according to (11) and 
(12).

Step 3: Integrate K (K– 1)/2 modules and the corresponding K (K– 1)/2 inversions with K
MIN units according to (14). 

Table 2. The module combination procedure 

From the module combination procedure above, we see that individual trained SVMs can be 
simply integrated into a M3-SVM with MIN, MAX and/or INV units. Since the module 
combination procedure is completely independent of both the structure of individual 
trained SVMs and their performance, we can easily replace any trained SVMs with desired 
ones to achieve better generalization performance. In contrast to the task decomposition 
procedure mentioned earlier, the module combination procedure proceeds in a bottom-up 
manner. The smaller trained SVMs arei ntegrated into larger modules first, and then the 
larger modules arei ntegrated into a M3-SVM.  
After finishing module combination, the solutions to the original K-class problem can be 
obtained from the outputs of the entire M3-SVM as follows:  

(18)

where  is the class that the M3-SVM assigns to the input x.
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Once the size of each of the SVMs is fixed, the space complexity of the entire M3-SVM is 
determined according to (14) and (17). Table 3 shows the number of individual SVM 
modules and integrating units required to construct a M3-SVM for a K-class problem. 

4. Discriminative Feature Selection  

We use a SVM-based discriminative feature selection (SVM-DFS) [3] method for multi-view 
face recognition in this study.  

Table 3. Number of SVM modules and integrating units required to build the M3-SVM for a 
K-class problem (K>2)

4.1 Feature Selection in Binary Classification  

In the linear case of binary classification, the decision function equation (8) can be reformed 
as

(19)

where w obtained from 

(20)

The inner product of weight vector w=(w1,w2,...,wn) and input vector x=(x1,x2,...,xn)
determines the value of f(x). Intuitively,the input features in a subset of (x1,x2,...,xn) that are 
weighted by the largest absolute value subset of (w1,w2,...,wn) influence most the 
classification decision. If the classifier performs well, the input features subset with the 
largest weights should correspond to the most informative features. Therefore, the weights 
|wi| of the linear decision function can be used as feature ranking criterion [7] [8] [25] [3] 
[10] [4] [20] [9] [19]. According to the feature ranking criterion, we can select the most 
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discriminative features for the binary classification task. However, this way for feature 
ranking is a greedy method and we should look for more evidences for feature selection. 
Support vectors can be used as evidence for feature ranking [3] [10] [4], because support 
vectors can be used to count for di erent distributions of the features in the training data. 
Assume the distance between the optimal hyperplane and the support vectors is , the 
optimal hyperplane can be viewed as a kind of -margin separating hyperplane which is 
located in the center of margin ( , ). According to [23], the set of -margin separating 
hyperplanes has the VC dimension h bounded by the inequality 

(21)

where R is the radius of a sphere which can bound the training vectors x X. Inequality (21) 
points out the relationship between margin  and VC dimension: a larger  means a smaller 
VC dimension. Therefore, in order to obtain high generalization ability, we should still 
maintain margin large after feature selection. However, because the dimensionality of 
original input space has been reduced after featur eselection, the margin is usually to shrink 
and what we can do is trying our best to make the shrink small to some extent. Therefore, in 
feature selection process, we should preferentially select the features which make more 
contribution to maintaining the margin large. This is another evidence for feature ranking. 
To realize this idea, a coe cient ck is introduced, 

(22)

where SV+ denotes the support vectors belong to positive samples, SV– denotes the support 
vectors belong to negative samples, l+ denotes the number of SV+, l–denotes the number of 
SV–, and xi,k denotes the kth feature of support vector i in input space Rn. The larger ck

indicates that the kth feature of input space can make more contribution to maintaining the 
margin large. Therefore, ck can assist |wk| for feature ranking. The solution is that, 
combining the two evidences, we can order the features by ranking ck |wk|.
In the nonlinear case of binary classification, a cost function J is computed on training 
samples for feature ranking. DJ(i) denotes the change in the cost function J caused by 
removing a given feature or, equivalently, by bringing its weight to zero. DJ(i) can be used 
as feature ranking criterion. In [7], DJ(i) is computed by expanding J in Taylor series to 
second order. At the optimum of J, the first order term can be neglected, yielding 

(23)

where the change in weight  corresponds to removing feature i.
For the nonlinear SVMs with the nonlinear decision function f(x), the cost function J being 
minimized is 

(24)
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where H is the matrix with elements yh yk K (xh,xk),  is Lagrange parameter vector 
=( 1, 2,..., n), and v is a n dimensional vector of ones [7]. To compute the change in cost 

function caused by removing input component i, one leaves the ’s unchanged and one 
recomputes matrix H. This corresponds to computing K(xh ( i), xk ( i)), yielding matrix 
H( i), where the notation ( i) means that component i has been removed. Thus, the feature 
ranking criterion for nonlinear SVMs is 

(25)

Computation of DJ(i) is a little more expensive than that in the linear case. However, the 
change in matrix H must be computed for support vectors only, which makes it a ordable 
for small numbers of support vectors.  
For the convenience of representation, in both linear and nonlinear cases of binary 
classification, we denote feature ranking criterion as ri for the ith feature in the input space 
Rn. In linear case of binary classification, ri is  

(26)

In nonlinear case of binary classification, ri is  

(27)

Using feature ranking criterion ri, we can select most discriminative features for binary 
classification task. 

4.2 Feature Selection in Multi-class Classification  

In the case of multi-class classification, we use one-versus-all method for multi-class SVMs. 
Multi-class classification problem is much more di cult than the binary one especially 
when the data are of high dimensionality and the sample size is small. The classification 
accuracy appears to degrade very rapidly as the number of classes increases [12]. Therefore, 
feature selection in multi-class classification is more challenging than that in binary case. We 
should be more careful when extending feature selection from binary case to multi-class 
case. Using the statistical relationship between feature ranking and the multiple sub-models 
of multi-class SVMs, we propose the SVM-DFS method for features election. 
One-versus-all multi-class SVMs constructs K decision functions where K is the number of 
classes. The jth decision function fj (x) is constructed with all of the examples in the jth class 
with positive labels, and all other examples with negative labels. The fj (x) is a binary 
classification sub-model for discriminating the jth class from the all other classes. When fj (x)
has the maximum value among all the sub-models, fj (x) has determined the classification 
result that the jth class is true. The ri j, calculated from fj (x), denotes the feature ranking 
criterion of the ith feature according to the binary classification sub-model fj (x). There are 
sure event E and impossible event Ø in probability theory. Let j denote the event that the 
jth class is true. According to probability theory, events 1, 2,..., k constitute a partition of 
the sample space 

(28)
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and

(29)

P ( j) is the prior probability that the jth class is true. Define a random event Si as “the ith
feature is selected as discriminative feature”. Let P(Si| j) denote the conditional probability 
of Si given that j occurred. When event j occur, the jth binary classification sub-model fj (x)
has the maximum value among all the sub-models and it is just uniquely e ective for 
determining the final classification result 

(30)

on the premise that the fj (x) is correct. Under the condition that the jth binary classification 
sub-model fj (x) is e ective, we can calculate P(Si| j) through the feature ranking criterion rij

(31)

According to the theorem on the total probability, P(Si) can be calculated through P(Si| j)
and P( j)

(32)

Then, P(Si) can be used as feature ranking criterion for the whole multi-class classification 
problem. The solution is that we can order the features by ranking P(Si) and select the 
features which have larger value of P(Si). In Table 4, we present an outline of the SVM-DFS 
algorithm. 
In the algorithm, T and Mt are two user defined constants. T is the number of the iteration 
steps. Usually, T should not be too small. Mt is the number of the features to be selected in 
the t iteration step. Mt can be evaluated by retraining the SVM classifiers with the Mt

selected features. Mt should be set to such a value that the margin i of each retrained SVM 
sub-model fi (x) is large enough 

(33)

where w(i) denotes the weight vector of sub-model fi (x).According to [23], 

(34)

where j
(i) denotes Lagrange parameter of sub-model fi (x). Define a coe cient L:

(35)
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• Input: 
Training examples

X0 = {x1, x2,...xl} T

• Initialize:  
Indices for selected features: s=[1,2,...n]
Train the SVM classifier using samples X0

• For t=1,...,T:
1. Compute the ranking criteria P(Si) according to the trained SVMs 
2. Order the features by decreasing P(Si), select the top Mt features, and eliminate the 

other features 
3. Updates by eliminating the indices which not belong to the selected features 
4. Restrict training examples to selected feature indices  

X=X0(:,s)

5. Train the SVM classifier using samples X  
• Outputs:

The small set of critical features and the final SVM classifier  

Table 4. The outline of the SVM-DFS algorithm 

We can use coe cient L to evaluate Mt. Mt should be set to such a value that the value of L is 
small enough. After the Mt discriminative features have been selected through SVM-DFS, 
the SVM models have to be retrained using the training data. 

5. Experiments

We use the UMIST database [6], am ulti-view face database consisting of 575 gray-scale 
images of 20 subjects. Each of the subjects covers a wide range of poses from profile to 
frontal views. Figure 2 depicts some sample images of a subject in the UMIST database. This 
is a classification problem of 20 classes. The overall database is partitioned into two subsets: 
the training set and test set. The training set is composed of 240 images of 20 persons: 12 
images per person are carefully chosen according to face poses. The remaining 335 images 
are used to form the test set. All input images are of size 112×92. We have used SVM-DFS 
discriminative feature selection method to reduce the dimensionality of feature space. All of 
the experiments were performed on a 3.0 GHz Pentium 4 PC with 1.0 GB RAM. 
After nonlinear dimensionality reduction [21], the distribution of face poses is shown in 
Figgure 3. From Figgure 3, we can see that the distribution of faces varies based on face 
poses. Following the observation from Figgure 3, we partition the set of training inputs for 
each class into four subsets by using the part-versus-part task decomposition strategy. As a 
result, the original 20-class classification problem has been decomposed into 3040 two-class 
subproblems. First, the origial 20-class classification problem has been decomposed into 
(20*(20-1))/2=190 two-class subproblems. Second, each two-class subproblem has been 
decomposed to 4*4=16 two-class subproblems. Therefore, the original problem has been 
decomposed into (20*(20-1))/2*4*4=3040 two-class subproblems. Every individual 
subproblem becomes less complicated than the original problem and it can be solved more 
effectively.
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Figure 2. Some face samples of one subject from the UMIST face database 

Figure 3. Distribution of face poses is shown after nonlinear dimensionality reduction (From 
Tenenbaum et al.[21]) 

 90 degree:  60 degree:  30 degree:  0 degree: 

Figure 4. Training face images for each class are divided into 4 subsets according to face 
poses
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Training time (s) 
Methods No.

features Parallel Serial 

Test
time (s) 

Correct rate 
(%)

SVMs (rbf kernel)  

300

200

150

100

30

25

25

20

0.862

0.748

0.703

0.685

13.588

12.654

11.865

11.269

1.522

0.976

0.757

0.478

92.8358

92.2388

90.1493

82.3881

M3-SVMs(rbfkernel)

300

200

150

100

20

15

10

10

0.531

0.447

0.386

0.359

15.273

13.413

12.587

12.165

1.647

1.215

0.873

0.526

93.1343

92.5373

91.3433

83.8806

Table 5. Test results on UMIST face database 

To evaluate the e ectiveness of the proposed method, the multi-view face recognition 
problem was learned by both M3-SVMs and standard SVMs. The one-versus-all method is 
used for training the standard SVMs. A radial-basis function kernel for SVMs is used, the 
parameter C=10000, and  is set to the optimal values. The experimental results are shown 
in Table 5. From Table 5, we can see that M3-SVMs can obtain better generalization 
performance than the standard SVMs when the original problem is decomposed into 3040 
two-class subproblems, and meanwhile the training time can be reduced in a parallel way. 
The parallel training is to train all the sub-modules at the same time in parallel. And the 
serial training is to train all the individual modules one-by-one in serial. In parallel training 
way, M3-SVMs can make the training speed faster comparing to the standard SVMs. The 
results in Table 5 also indicate that even though in low feature space after discriminative 
feature selection, M3-SVMs are still more accurate than the standard SVMs.  

6. Conclusions 

We have applied the min-max modular support vector machine and the part-versus-part 
task decomposition method to dealing with multi-view face recognition problems. We have 
demonstrated that face pose information can be easily incorporated into the procedure of 
dividing a multi-view face recognition problem into a series of relatively easier two-class 
subproblems. We have performed some experiments on the UMIST database and compared 
with the standard support vector machines. The experimental results indicate that the min-
max modular support vector machine can improve the accuracy of multi-view face 
recognition and reduce the training time. As a future work, we will perform experiments on 
large-scale face databases with various face poses. We believe that the min-max modular 
support vector machine with incorporating pose information into task decomposition will 
have more advantages over traditional support vector machines in both training time and 
recognition accuracy when a more number of training samples are available. 
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1. Introduction 

Human face recognition is an active area of research spanning several disciplines such as 
image processing, pattern recognition, and computer vision. Different techniques can be 
used to track and process faces (Yang et al, 2001), e.g., neural networks approaches (Férand 
et al., 2001, Rowley et al., 1998), eigenfaces (Turk & Pentland, 1991), and the Markov chain 
(Slimane et al., 1999). Most researches have concentrated on the algorithms of segmentation, 
feature extraction, and recognition of human faces, which are generally realized by software 
implementation on standard computers. However, many applications of human face 
recognition such as human-computer interfaces, model-based video coding, and security 
control (Kobayashi, 2001, Yeh & Lee, 1999) need to be high-speed and real-time, for 
example, passing through customs quickly while ensuring security. 
Liu (1998) realized an automatic human face recognition system using the optical correlation 
technique after necessary preprocessing steps. Buhmann et al. (1994) corrected changes in 
lighting conditions with an analog VLSI silicon retina in order to increase the face 
recognition rate. Matsumoto & Zelinsky (2000) implemented in real time a head pose and 
gaze direction measurement system on the vision processing board Hitachi IP5000.  
For the last years, our laboratory has focused on face processing and obtained interesting 
results concerning face tracking and recognition by implementing original dedicated 
hardware systems. Our aim is to implement on embedded systems efficient models of 
unconstrained face tracking and identity verification in arbitrary scenes. The main goal of 
these various systems is to provide efficient robustness algorithms that only require 
moderated computation in order 1) to obtain high success rates of face tracking and identity 
verification and 2) to cope with the drastic real-time constraints. 
The goal of this chapter is to describe three different hardware platforms dedicated to face 
recognition. Each of them has been designed, implemented and evaluated in our laboratory. 
In a first part, we describe a real time vision system that allows the localization of faces and 
the verification of their identity. This embedded system is based on image processing 
techniques and the radial basis function (RBF) neural network approach. The robustness of 
this system has been evaluated quantitatively on real video sequences. We also describe 
three hardware implementations of our model on embedded systems based, respectively, on 
field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and 
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digital signal processor (DSP) TMS320C62.We analyze the algorithm complexity and present 
results of hardware implementations in terms of resources used and processing speed. 
In a second part, we describe the main principles of a full-custom vision system designed in 
a classical 0.6 μm CMOS Process. The development of this specific vision chip is motivated 
by the fact that preliminary works have shown that simplified RBF networks gave 
interesting results but imposed a fast feature extraction to reduce the size of the input 
vectors of the RBF network. So, in order to unload a consequent calculation part of FPGA, 
we have decided to design an artificial retina embedding the extraction of input vectors of 
RBF network. For this purpose, a VLSI sensor is proposed to realize the image acquisition, to 
extract a window of interest in the whole image, to evaluate the RBF vectors as means 
values of consecutive pixels on lines and columns. A prototype based on this principle, has 
been designed, simulated and evaluated. 
In a third part, we describe a new promising approach based on a simple and efficient 
hardware platform that performs mosaicking of panoramic faces. Our objective is to study 
the panoramic face construction in real time. So, we built an original acquisition system 
composed of five standard cameras, which can take simultaneously five views of a face at 
different angles. Then, we chose an easily hardware-achievable algorithm, based on 
successive linear transformations, in order to compose a panoramic face from the five views. 
The method has been tested on a large number of faces. In order to validate our system, we 
also conducted a preliminary study on panoramic face recognition, based on the principal-
component method. Experimental results show the feasibility and viability of our system. 
This rest of the chapter is organized as follows. Section II, III and IV describe the three 
systems designed by our team. In each of these sections, we present the principles of the 
system, the description of the hardware platform and the main simulated and experimental 
results. Finally, the last section presents conclusion and future works. 

2. Real-time face tracking based on a RBF Neural Network 

Face recognition is a very challenging research problem due to variations in illumination, 
facial expression and pose. It has received extensive attention during the past 20 years, not 
only because of the potential applications in fields such as Human Computer Interaction, 
biometrics and security, but also because it is a typical pattern recognition problem whose 
solution would help in solving other classification problems. 
The recognition technique used in this first embedded system is based on Radial Basis 
Function (RBF) networks. The RBF neural networks have been successfully applied to face 
recognition. Rosenblum et al. (1996) developed a system of human expressions recognition 
from motion based on RBF neural network architecture. Koh et al. (2002) performed an 
integrated automatic face detection and recognition system using the RBF networks 
approach. Howell & Buxton (1998) compared RBF networks with other neural network 
techniques on a face recognition task for applications involving identification of individuals 
using low-resolution video information. The RBF networks give performance errors of only 
5%–9% on generalization under changes of orientation, scale, pose. Their main advantages 
are computational simplicity and robust generalization. Howell and Buxton showed that the 
RBF network provides a solution which can process test images in interframe periods on a 
low-cost processor. The simplicity and the robust generalization of the RBF networks 
approach, with its advantages due to the fact that it can be mapped directly into the existing 
neural networks chips lead us to elaborate our model using a RBF classifier. 
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We chose three commercial embedded systems for hardware implementations of face 
tracking and identity verification. These systems are based, respectively, on most common 
electronic devices: FPGA, zero instruction set computer (ZISC) chips, and digital signal 
processor (DSP) TMS320C62. We obtained processing speeds of, respectively, for three 
implementations: 14 images/s, 25 images/s, and 4.8 images/s. 

Figure 1. Radial basis function neural network 

2.1 Description of the RBF model 

The RBF neural network (Park & Sandberg, 1991) has a feedforward architecture with an 
input layer, a hidden layer, and an output layer as shown in Figure 1. The input layer of this 
network has N units for an N-dimensional input vector. The input units are fully connected 
to the hidden layer units, which are in turn connected to the J output layer units, where J is 
the number of output classes. RBF networks belong to the category of kernel networks. Each 
hidden node computes a kernel function on input data, and the output layer achieves a 
weighted summation of the kernel functions. Each node is characterized by two important 
associated parameters: 1), its center and 2) the width of the radial function. A hidden node 
provides the highest output value when the input vector is close to its center and this output 
value decreases as the distance from the center increases. Several distances can be used to 
estimate the distance from a center but the most common is the Euclidean distance d(x). The 
activation function of the hidden node is often a Gaussian function such that each hidden 
node is defined by two parameters: its center ci and the width of the radial function i.
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The training procedure undergoes a two-step decomposition: estimating ci and i and 
estimating the weights between the hidden layer and output layer. The estimation of these 
parameters is largely detailed in Yang & Paindavoine (2003). 

2.2 Description and test of our model 

Many face recognition algorithms require segmenting the face from the background, and 
subsequently extracting features such as eyes, nose, and mouth for further processing. We 
propose an integrated automatic face localization and identification model only using a 
classifier which responds to the question, “Does the input vector correspond or not the 
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person to be verified?” The idea behind this is to simplify the model and reduce 
computation complexity in order to facilitate hardware implementations.  

Figure 2. Structure of the face tracking and identity verification model 

Figure 2 represents the structure of our model. The size of faces in the scene varies from 
40 x 32 pixels to 135 x 108 pixels with four scales. The ratio between any two scales is fixed 
to 1.5 (Howel & Buxton, 1998).We first subsample the original scene and extract only the 
40 x 32 windows in the 4 subsampled images. Each pre-processed 40 x 32 window is then 
fed to RBF network as an input vector. After the training procedure, the hidden nodes 
obtained are partially connected to the output layer. In fact, the hidden nodes associated 
with one person are only connected to the output node representing this class. This 
technique reduces data dependencies and is computationally more efficient 
(Koh et al., 2002). The decision stage yields the presence, position, identity and scale of the 
faces using the maximal output values of the RBF neural network. 
In order to evaluate and validate our model, we made experiments based on video 
sequences of 256 images. In all sequences, the scene size is 288 x 352 pixels and they are 
zero, one, two, or three different faces presented (see. Figure 4). We have decided to verify 
two persons in these sequences. The 12 same training faces (see Figure 3) are used in order 
to compare the different configurations of the model. 

Figure 3. 2x12 learning faces 

First, in order to simplify future hardware implementations, the first phase has consisted in 
reducing the input vectors length of the RBF network. In the preprocessing stage, we use 
first all pixels of each 40 x 32 window to compose the feature vectors. Each pixel represents 
one component of the vector. So, the input vectors of RBF neural network have 
40 x 32 components. Second, we minimize the number of components in order to reduce the 
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computing time. We realize a subsampling preprocessing: sample one pixel out of 4, 8, and 
16 on each row of each window. We display some tested images (see Figure 4).  

Figure 4. Some results of face tracking and identity verification 

Results of face tracking and identity verification reveal that performances decreases quickly 
when the input vectors have 80 components. In fact, incorrect detection regularly appears 
when we use only one pixel out of 16 on each row of a window. The best results are 
obtained with one pixel out of four using the Euclidean distance d2(x) to compute the 
difference between an input vector and the centers (kernels) for each hidden node of the 
RBF neural network (see Eq. 2). The distance d1(x) is usually better when we use some noisy 
images (Sim et al., 2000). Another distance considers only the components whose difference 
between xn and cn is greater than a threshold δ. Here, the threshold δ has been regulated to 
10. The experiments show that we have the best result with the d0(x) distance. 
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Finally, we have evaluated some variations of the RBF kernel activation functions. The 
Gaussian function is usually taken as the kernel activation function (see. Eq. 1) where d(x) is 
the measured distance between the input vector x and the center c. Another approach is the 
use of a simplified activation, for example the replacement of the Gaussian function in the 
RBF network by a Heaviside function leading to a simplified hardware implementation. The 
width of this function is the width  associated to the corresponding center. 
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The number of no-detections has increased with the Heaviside function. The rate of correct 
results decreases from 98.2% to 93.4%. In fact, the RBF neural network using the Heaviside 
function restrains the capacity of generalization by lack of interactions between centers of a 
same class: the model only detects faces that are sufficiently close to training examples. 
Among all configurations of the model, the best performance has been obtained with 320 
components of input vectors (subsampling 1 pixel/4 on each row of a window), using 
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measured distance d0(x) and the Gaussian activation function: the success rate is 98.2%. 
Almost all the faces are well detected, localized, and identified in sequences of images. 

2.3 Hardware Implementations 

Hardware implementations of the RBF approach have been realized for different 
applications, on either FPGA (Pérez-Uribe & Sanchez, 1996), or neurochip (Skrbek, 1999). 
Commercial RBF products include the IBM ZISC chip and the Nestor Ni 1000 chip 
(Lindbalad et al., 1995). Here, our aim is to elaborate in real time an efficient model of 
unconstrained face tracking and identity verification in arbitrary scenes. Thus, hardware 
implementations have been realized on three embedded systems based on FPGA, ZISC chip, 
and DSP. We use industrial electronic systems: a MEMEC board, a General Vision 
Neurosight board, and a board based on DSP TMS320c6x developed in our laboratory. We 
discuss first for each case the architecture of the system. Then results are presented in terms 
of hardware resources used and processing speed. 

2.3.1 First Implementation based on FPGA 

This implementation is realized on a MEMEC industrial board comprising a FPGA Xilinx 
SpartanII-300, which contains 3072 slices and 16 memory blocks of 512 bytes each. We have 
implanted on the FPGA our model of face tracking and identity verification. This 
implementation creates an RBF neural network with 15 hidden nodes. Each hidden node 
stores a center vector of 320 components. The used measured distance is the distance d1(x). 
The activation function of each center is a Heaviside function whose associated width 
delimits the influence area of the center. Figure 5 shows the organization’s tasks and the 
coding of these tasks using VHDL description. The original video image is stored in an 
image memory bank with each pixel coded on a byte; the input vector extraction consists of 
calculating averages of four successive pixels on rows of the image. Each vector is fed to the 
15 hidden nodes of the RBF network which gives their respective responses in parallel. 

Figure 5. Organization’s tasks and coding in VHDL for the first implementation 

The Table 1 presents information on FPGA resources. The input vectors extraction needs 57 
slices in order to define the image memory access and the interaction logic with centers. A 
memory block (FIFO) is necessary to store input vectors to be tested. Each trained center 
needs one memory block and 29 slices for calculation (distance, activation function, 
decision). This implementation uses 827 “slices” (27% of total resources). Note that the 
number of centers is limited by the number of independent internal memory blocks. 
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 extraction 15 centers Interfaces & controls Total 

Number of slices used 57 435 335 827 

Slices used rate 2% 14.1% 10.9% 27% 

Number of Blocks RAM used 1 15 0 16 

Blocks Ram used rate 6% 94% 0% 100% 

Table 1. Results of the first implementation on the Memec Board 

The complete implementation is realized in parallel using the pipeline technique for each 
stage of the processing. The images size is 288 x 352 and contains 161 x 63 = 10 143 windows 
of 40 x 32 pixels each with a displacement scan step along the row and the column of 2. We 
realized, respectively, 49.65M additions, 48.8M subtractions, 370 944 divisions, and 142 002 
comparisons. The processing speed of this first implementation is 14 images per second with 
a success rate of 92% for face tracking and identity verification. 

Figure 6. Neurosight block diagram and board picture 

2.3.2 Second Implementation based on ZISC Chip 

We also made hardware implementation of our model using a commercial board linked to 
pattern recognition applications. This General Vision Neurosight board contains a CMOS 
sensor (288 x 352 pixels), a FPGA Xilinx SpartanII-50, two memory banks of 512KB each, as 
well as two specific ZISC chips (see Figure 6).  One ZISC chip contains 78 RBF-link nodes 
with a maximal length of input vectors N=64. The used measured distance and the 
activation function of each node are, respectively, the distance d1(x) and the Heaviside 
function. We adapt the complexity of the model to this embedded system. At first, we 
reduce the size of the original image by keeping only one line out four. This new image 
obtained (size 72 x 352) is then analyzed with a slippery window of 8 x 32. On each row of 
each window, we compute averages of eight consecutive four pixels blocks. Each window 
yields an input vector of 64 components to be analyzed by the ZISC chip. A total number of 
10 465 windows are tested which implies 10.16 M additions, 10.05 M subtractions, 92 736 
divisions, and 146 510 comparisons to be computed. We implement the input vectors 
extraction and all interfaces (memory access, ZISC access) on the FPGA Xilinx SpartanII. 
Figure 7 shows the  tasks on the Neurosight board and the different levels of control coded 
in VHDL. 
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Table 2 presents information on hardware resources used for this second implementation. 
The input vectors extraction implementation requires the same resources as those used with 
the MEMEC board. Here, we use only one ZISC chip (78 nodes maximum). The processing 
speed of this second implementation is 25 images/s with a success rate of 85.3% for face 
tracking and identity verification. 

Figure 7. Organization’s tasks and coding in VHDL for the second implementation 

 Extraction Interfaces & controls Total 

Total number of slices 768 768 768 

Number of slices used 57 235 292 

Slices used rate 7.4% 30.6% 38% 

Total number of Blocks RAM 8 8 8 

Number of Blocks RAM used 1 0 1 

Blocks Ram used rate 12.5% 0% 12.5% 

Table 2. Results of the second implementation on the Neurosight Board 

2.3.3 Third Implementation based on DSP 

DSPs are specific processors destined for signal and image processing. The C6x family is the 
last generation Texas Instruments DSP. They are available in fixed point (C62x and C64x) 
and floating point (C67x) versions, with CPU frequencies from 150 MHz to 1000 MHz. Our 
laboratory has developed a system based on a DSP TMS320 C6201B (see Figure 8). A CCD 
sensor sends 16-bit data to the DSP via a complex programmable logic device (CPLD). The 
DSP performs different processing and sends the resulting images to a PC via an USB bus. 
Two SDRAM memories are available to store images between the different processings.  
The hardware implementation of our model for face tracking is realized on this embedded 
system. The goal of the implementation has been to optimize in Assembler each stage of 
processing using, in parallel, the maximum number of DSP functional units.  
The used measured distance and the activation function of each node are, respectively, the 
distance d0(x) and a Gaussian function. Each vector of 320 components is fed to the 15 
hidden nodes of the RBF network. The number of windows to be analyzed and the numbers 
of additions and divisions for input vectors extraction are the same than in the first 
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implementation. A correct rate of 98.2% is obtained for face tracking and identity 
verification. 

Figure 8. Block diagram and board picture of the third embedded system 

Table 3 respectively shows experimental implementation results obtained using the DSP 
C6201 and simulation results obtained using the DSP C64x with the development tools, 
Code Composer Studio (Texas Instruments). 

Hardware Implementation on C6201 Simulation on C64x 

Langage C Assembler C Assembler 

Input vectors Extraction 4.14 ms 1.8 ms 1.2 ms 0.14 ms 

Distance calculation 211 ms 144 ms 58.8 ms 13.3 ms 

Gaussian function + Decision 67 ms  22.2  

Processing speed 3.5 im. /s 4.8 im. /s 12.1 im. /s 28.6 im. /s 

Table 3. Results of the third implementation on DSP 

2.4 Discussion on the three Hardware implementations 

We created a model that allows us to detect the presence of faces, to follow them, and to 
verify their identities in video sequences using a RBF neural network. The model’s 
robustness has been tested using video sequences. The best performance has been obtained 
with one subsampling of a pixel/4 for each row, the measured distance d0(x) and the 
Gaussian activation function. In fact, the subsampling preprocessing and the application of 
the d0(x) distance render the model less sensitive to face details and to the small differences 
between training examples and test windows, thus, we have the better generalization. 
We have demonstrated the feasibility of face tracking and identity verification in real time 
using existing commercial boards. We have implanted our model on three embedded 
systems. The success rate of face tracking and identity verification is, respectively, 92% 
(FPGA), 85% (ZISC), and 98.2% (DSP). Processing speeds obtained for images of size 
288 x 352 are, respectively, 14 images/s, 25 images/s, and 4.8 images/s.  
Our model integrating 15 hidden nodes allows us to distinguish two faces with a good 
performance (> 90% of success rate). Extending this model to recognition of more faces 
(> 10) necessitates a calculation power superior to 10 Giga flops and thus, new architectures 
must be developed. They can be developed using more effective components, for example, 
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FPGA Virtex 5 series or DSP TMS320C64, thus allowing a very rapid processing speed and 
better performance of face tracking and identity verification. 

3. Design of a CMOS sensor dedicated to the extraction of input vectors 

A system capable of doing face localization and recognition in real time has many 
applications in intelligent man-machine interfaces and in other domains such as very low 
bandwidth video conferencing, and video e-mail.  
This section describes the main principles of a vision system, allowing to detect 
automatically the faces presence, to localize and to follow them in video sequences. The 
preliminary works, described in the previous section, have shown that RBF networks gave 
interesting results (Yang & Paindavoine, 2003) but imposed a fast feature extraction to 
reduce the size of the input vectors of the RBF network. So, the main goal of the current 
project is the development and the characterisation of a specific CMOS sensor able to realize 
the image acquisition, to extract a window of interest in the whole image and to evaluate 
means values of consecutive pixels on lines and columns. 
A first image sensor with electronic shutter has been integrated in a 0.6 μm digital CMOS 
technology. The pixel cell consists of four transistors and a photodiode. Each pixel measures 
30 μm by 30 μm and has a fill factor of about 40%. Each selected pixel produces a current 
which is transferred to the column readout amplifiers and converted by a pipeline ADC to 
produce a digital output. The two analog and digital values are then multiplexed to the 
output of the sensor. This retina also includes a logic command in order to realize 
acquisition of subwindows with random size and position.  

3.1 Overview of the Chip Architecture 

An active pixel sensor (APS) is a detector array that has at least one active transistor within 
the pixel unit cell (Nakamura et al., 1997). Currently, active pixel sensor technology 
integrates electronic signal processing and control with smart camera function onto the 
same single chip as a high performance image sensor (Kemeny et al., 1997). CMOS image 
sensors with integrated signal processing have been implemented for a number of 
applications (Aw & Wooley, 1996). Most current CMOS sensors have been designed for 
video applications, and digital photography. Improvement continues to be made because 
current mode image sensors have several advantages for example, low power supply, 
smaller place, higher operation speed (Huang & Horsney, 2003, Tabet & Horsney, 2001). 
The following subsections describe the design of the image sensor using a standard 0.6 μm 
CMOS process. The design is based on the integration of four MOS transistors for each pixel, 
a column readout amplifier, a sequential control unit which includes variable input 
counters, decoders, multiplexers and finally an analog to digital converter. Results based on 
design and simulations are presented for each part of the circuit.  
The architecture of the proposed image sensor is shown in Figure 9. This figure first 
describes the core of the system represented by the m x m array of transistors active pixels. 
On the left, the second block, the row decoder is charged to send to each line of pixels the 
control signals allowing pixel resetting, shutter opening or closing, pixel readout, ... On the 
bottom of the circuit, the third block is made up of amplifiers, multiplexers and column 
decoders whose purpose is to detect, amplify and route the signal resulting from readout 
column to the output of the circuit. The automatic scan of the whole array of pixels or a 
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subwindow of pixels is implemented by a sequential control unit which generates the 
internal signals to the row and column decoders. Finally, the analog output voltages are 
proportional to the grey scale intensity of the image. They are passed to an analog to digital 
converter (ADC) (as seen on the right of the block diagram). This ADC allows the 
conversion of analog values in digitals values which will be later processed by a DSP or a 
FPGA outside the chip. 

Figure 9. Image Sensor Architecture 

3.2 Design of the Active Pixel Sensor 

We used a standard pixel as described in the left part of Figure 2 because it is a simple and 
stable design (Aw & Wooley, 1996, Coulombe et al., 2000). It consists of 3 PMOS transistors, 
a NMOS transistor for row access and a photodiode. m_1 is the shutter transistor, m_2 is the 
reset transistor, and the transistor m_3 acts as a transconductance buffer that converts the 
voltage at VPix into a current. The vertical column lines in the array are implemented using 
second-layer metal. First layer metal is used for the horizontal row lines. Third-layer metal is 
connected to Vss and covers all active areas of the pixel except the photodiodes. 

Figure 10. Pixel circuit schematic and results of simulation 

Prior to the image acquisition, m_1 and m_2 are on, resetting node VPhoto and VPix to the VReset

value. After reset, when m_1 is on and m_2 turned off, the charges generated by absorption 
of light are integrated onto the parasitic capacitances of the photodiode and the transistor 
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m_3. So, during the exposure period, voltage is accumulated at node VPhoto and Vpix. At the 
end of the exposure period, the shutter is closed by turning off m_1. Consequently, the 
photosignal is stored as a voltage on node Vpix. Finally, during readout, the row access 
transistor m_4 is turned on, and the drain current of m_3 is fed via the column line to the 
column readout amplifier. The right part of Figure 10 shows the main waveforms (VPix,
VPhoto, VShutter, VReset, VRow and VCol) obtained during the simulation of one pixel. The pixels in 
a row are reseted by holding both reset and shutter low, turning on m_1 and m_2. The 
voltages at nodes VPhoto and VPix are thereby reseted close to VReset.
During exposure, reset goes high (m_2 turns off) while shutter is unchanged at a low value 
(m_1 remains on). So, the photocurrent can be integrated onto the parasitic capacitances at 
VPhoto and VPix. At the end of the exposure period, shutter is closed by turning off m_1 and it 
is cutting off the photocurrent into the node VPix. ICol can be read on the column bus when 
m_4 is turned on (row is high). The voltage at the drain of m_3 falls from Vdd to the bias 
voltage of the column line, and this change couples a small negative offset into node VPix.
The drain current of m_3 is fed via the column line to the column readout amplifier. 

Figure 11. Column amplifier schematic and simulation results 

3.3 Design of the Column Amplifier 

The Fig 11 represents the electronic schematic of the column amplifier. The design of this 
amplifier provides a low impedance for the column lines, converts the readout current from 
the selected pixel into a voltage that is proportional to the integrated photovoltage in the 
pixel. The concept of using current mirror amplifier column is to amplify signal by 
duplication at the column level. Amplification is achieved by designing a current mirror 
m_20 and m_24 with ratio W/Lm_20 = n x W/Lm_24. The transistors m_22 and m_23 are added 
to enhance the output impedance of the current mirror. The circuit including m_17, m_18,
m_20 operates almost identically to a diode connected transistor, it is used to ensure that all 
the transistors bias voltages are matched to the output side (m_22, m_23, m_24). The 
transistors m_17, m_21 are used to bias the feedback circuit. The transistors m_26, m_27,
m_28, m_29, and m_30 make up a differential unity gain amplifier. Once the current signal 
has been amplified by column current miroir amplifier, its output is suitable for any 
subsequent current mode image processing, either in continuous time or integration mode. 
In our case, these outputs will be used as inputs for the feature extracting architecture 
dedicated to the mean evaluation of consecutive pixels. 
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The pixel with its column amplifier has been simulated for a large range of photodiode 
currents as seen on Figure 11. The output voltages are plotted as a function of input 
photocurrents. Good output linearity is observed, even at very low photocurrent. 

3.4 Design of the Sequential Control Unit 

A framework dedicated to the sequential readout of successive rows and columns has been 
designed. The system offers the availability to program the location and the size of any 
window of interest in the whole image. Advantages of a such technology are large: random 
access of any pixel or subwindow, increase of acquisition frequency, ... In our main goal of 
face tracking, these aspects are crucial because only windows of interest will be scanned by 
the sensor. Each line of pixels included in the subwindow follows the same sequence of 
reading but at different moments in order to multiplex the outputs. As seen previously, each 
pixel is controlled by 3 signals: reset, shutter, and select. The Figure 12 shows the readout 
sequence of 2 successive rows.  

Figure 12. Timing diagram of the rows control signals 

To implement the sequential control, we need counters with variable inputs: the first one for 
the starting position of the subwindow and the second one for its ending position. Our 
design is inspired by a 74HC163 counter from Philips Semiconductors. This circuit starts 
counting from a value which can be freely selected. It has been modified in order to add the 
second input corresponding to the stop value of the counting process. 
Associated with the counters, the control unit uses row decoders to active the pixels rows. 
The row decoder is adopted from (Baker et al., 1998). A long L MOS transistor is used to pull 
low the output of the decoder when that particular output is not selected. The result is that 
all decoder outputs are zero except for the output that is selected by the input address. Two 
inverters are used to drive the word line capacitance. Finally, a multiplexer is used to select 
and pass output voltages from the column amplifiers. We use a simple design based on 
pairs of transistors Nmos and Pmos. 

3.5 Design of the Analog to Digital Converter 

Most designs of video-rate analog to digital converters (ADC's) of 8 bit resolution are 
implemented through flash architectures and bipolar technologies (Lewis et al., 1992). In 
recent years, pipelined switched capacitor topologies have emerged as an approach to 
implement power efficient nyquist-rate ADCs that have medium-to-high resolution (10-13 
bits) at medium-to high conversion rates (Thomson & Wooley, 2001). Here, we present a 8 
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bit ADC operating at a 5 V supply that achieves a sample rate of about 20 Msamples/s. An 
experimental prototype of this converter has been implemented in a 0.6 μm CMOS process. 

Figure 13. Pipeline ADC Architecture and Associated Circuit 

Figure 13 shows the block diagram of a 1-bit per stage pipelined A/D converter. The 
pipelined ADC consists of N stages connected in series; two stages are only shown on the 
Figure 13. Each stage contains a sample and hold (S/H), a comparator, a subtractor and an 
amplifier with a gain of two. The pipelined ADC is an N-step converter, with 1 bit being 
converted per stage. The most significant bits are resolved by the first stages in the pipeline. 
The result of each stage is passed to the next stage in which the cycle is repeated. A pipeline 
stage is implemented by the conventional switched capacitor (Sonkusale et al., 2001) as 
shown in the Figure 13. Each stage consists of two capacitors C1 and C2 for which the values 
are nominally identical, an operational amplifier and a comparator. Each stage operates in 
two phases: a sampling phase and a multiplying phase. During the sampling phase φ1, the 
comparator produces a digital output Di. Di is equal to 1 if Vin > Vth and Di is 0 if Vin < Vth,
where Vth is the threshold voltage defined as the mean value between Vrefp and Vrefn. Vrefp is 
defined as the positive reference voltage and Vrefn as a negative reference voltage. During 
the multiplying phase, C2 is connected to the output of the operational amplifier and C1 is 
connected to either the reference voltage Vrefp or Vrefn, depending on the bit value Di. If Di = 
1, C1 is connected to Vrefp, resulting in the following remainder Vout(i) = 2 Vin (i) - DiVrefp.
Otherwise, C1 is connected to Vrefn, giving an output voltage Vout(i) = 2 Vin (i) - 

iD Vrefn.

Figure 14. Simulation of one stage A/D converter 
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The simulation of one stage A/D converter can be seen on the Figure 14 on which the 
computed bit, the remainder, the input value and the clock are presented from top to 
bottom. The input value is Vin = 3V involving the output bit Di obtains a high value. The 
remainder is then evaluated as the difference between 2Vin and Vrefp (ie 2 * 3 - 5 = 1V). 

Figure 15. Layout of the test chip 

3.6 Preliminary results 

We have presented here results from simulations intended to evaluate and validate the 
efficiency of our approach. Every element described in these sections has been designed on a 
standard 0.6 μm CMOS Process. Two test circuits have been sent in foundry to be fabricated 
in 2004 and 2005. Unfortunately, the first circuit has some bugs in the design of analog 
output multiplexer preventing any measure. The second circuit (see Figure 15) includes any 
of the individual structures depicted in the previous sections of this chapter, except the 
ADC. So, every structure has been validated by experimental measures, showing the 
validity of the concepts embedded in the chip design. 
Actual work focuses on the last part of the sensor ie the development of the feature 
extracting architecture dedicated to the mean evaluation of consecutive pixels. For this 
purpose, two main approaches are envisaged. First, the mean values of 4 consecutive pixels 
can be digitally computed and takes place after the ADC in the chip. This can be done by an 
adder of four 8-bit words producing a 10-bit result. The average of the four values can be 
easily extracted on the 8 MSB (Most Significant Bits) of the results. Second, the evaluation of 
the mean values can be made with the analog signals going out the column amplifiers. A 
dedicated circuit must take place between the column amplifiers and the ADC. Our main 
short-term perspective is to explore these two potential solutions, to design the 
corresponding chips and to evaluate their performances. 



Face Recognition 138

The next effort will be the fabrication of a real chip in a modern process such as a 130 nm 
CMOS technology. The main objective will be the design of a 256 x 256 pixel array with a 
pixel size of less than 10 μm x 10 μm. This chip will include all the necessary electronics 
allowing the extraction of parameters which can serve as inputs of a RBF neural network 
dedicated to face recognition. 

4. Development of a fast panoramic face mosaicking and recognition system 

Biometry is currently a very active area of research, which comprises several subdisciplines 
such as image processing, pattern recognition, and computer vision (Kung et al., 2005). The 
main goal of biometry is to build systems that can identify people from some observable 
characteristics such as their faces, fingerprints. Faces seem to have a particularly strong 
appeal for human users, in part because we routinely use facial information to recognize 
each other. Different techniques have been used to process faces such as neural network 
approaches (Howel & Buxton, 1998) eigenfaces (Turk & Pentland, 1991) and Markov chains 
(Slimane et al., 1999) As the recent DARPA-sponsored vendor test showed, most systems 
use frontal facial images as their input patterns (Phillips et al., 2003) As a consequence, most 
of these methods are sensitive to pose and lighting conditions. One way to override these 
limitations is to combine modalities (color, depth, 3-D facial surface, etc.) (Tsalakanidou et 
al., 2003, Hehser et al., 2003, Bowyer et al., 2004). 
Most 3-D acquisition systems use professional devices such as a travelling camera or a 3-D 
scanner (Hehser et al., 2003, Lu et al., 2004). Typically, these systems require that the subject 
remain immobile during several seconds in order to obtain a 3-D scan, and therefore these 
systems may not be appropriate for some applications, such as human-expression 
categorization using movement estimation, or real-time applications. Also, their cost can 
easily make these systems prohibitive for routine applications. In order to avoid using 
expensive and time-intensive 3-D acquisition devices, some face recognition systems 
generate 3-D information from stereo vision (Wang et al., 2003). Complex calculations, 
however, are needed in order to perform the required self-calibration and 2-D projective 
transformation (Hartly et al., 2003). Another possible approach is to derive some 3-D 
information from a set of face images, but without trying to reconstitute the complete 3-D 
structure of the face (Tsalakanidou et al., 2003). 
For the last ten years, our laboratory has worked on face processing and obtained results for 
2-D face tracking and recognition. The goal of the present section is to describe a system that 
is simple and efficient and that also can potentially process 3-D faces in real time. Our 
method creates panoramic face mosaics, which give some 3-D surface information. The 
acquisition system is composed of five cameras, which together can obtain simultaneously 
five different views of a given face. One of its main advantages is easy setup and very low 
cost. This section is organized as follows. First, we describe our acquisition system. Then, we 
describe the method for creating panoramic face mosaics using successive linear 
transformations. Next, we present experimental results on panoramic face recognition. 
Finally, we conclude and explore possible follow-ups and improvements. 

4.1 Acquisition system 

Our acquisition system is composed of five Logitech 4000 USB cameras with a maximal 
resolution of 640 x 480 pixels. The parameters of each camera can be adjusted 
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independently. Each camera is fixed on a height adjustable sliding support in order to adapt 
the camera position to each individual (see Figure 16). The acquisition program grabs 
images from the five cameras simultaneous (see Figure 16). These five images are stored in 
the PC with a frame data rate of 20 x 5 = 100 images per second. 

Figure 16. Acquisition system with 5 cameras and example of 5 images collected from a 
subject 

The human subject sits in front of the acquisition system, directly facing the central camera 
(camera 3). Different color markers are placed on the subject’s face. These markers are used 
later on to define common points between different face views. The positions of these color 
markers correspond roughly to the face fiduciary points. There are ten markers on each face, 
with at least three markers in common between each pair of face views. 

4.2 Panoramic Face Construction 

Several panoramic image construction algorithms have been already introduced. For 
example, Jain & Ross (2002) have developed an image-mosaicking technique that constructs 
a more complete fingerprint template using two impressions of the same finger. In their 
algorithm, they initially aligned the two impressions using the corresponding minutiae 
points. Then, this alignment was used by a modified version of the iterative closest point 
(ICP) algorithm in order to compute a transformation matrix that defines the spatial 
relationship between the two impressions. A resulting composite image is generated using 
the transformation matrix, which has six independent parameters: three rotation angles and 
three translation components about the x, y, and z axes.  
For faces, Liu & Chen (2003) have proposed using facial geometry in order to improve the 
face mosaicking result. They used a spherical projection because it works better with the 
head motion in both horizontal and vertical directions. They developed a geometric 
matching algorithm in order to describe the correspondences between the 2-D image plane 
space QUV and the spherical surface space Oαβ.
In general, the methods using nonlinear transformations and iterative algorithms obtain 
very correct results in terms of geometric precision. However, these methods require a large 
number of computations and therefore cannot be easily implemented in real time. Because 
ultimately we want to be able to build a real-time system, we decided to use simple (and 
therefore fast) linear methods. Our panoramic face construction algorithm is performed in 
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three stages: (1) marker detection and marker coordinate calculation, (2) transformation 
matrix estimation and image linear transformation, and (3) creation of panoramic face 
mosaics. 

4.2.1 Marker Detection and Marker Coordinate Calculation 

The first step of the algorithm corresponds to the detection of the markers put on the 
subject’s face. The markers were made of adhesive paper (so that they would stick to the 
subject’s face). We used three colors to create ten markers (four blue, three yellow, and three 
violet ones). In order to detect the markers, we used color segmentation based on the hue 
and saturation components of each image. This procedure allows strong color selectivity 
and small sensitivity to luminosity variation. First, color segmentation gives, from the 
original image a binary image that contains the detected markers. Then, in order to find the 
marker coordinates, we used a logical AND operation, which was performed between the 
binary image and a grid including white pixels separated by a fixed distance. This distance 
was chosen in relation to the marker area. A distance of 3 pixels allows us to capture all 
white zones (detected markers). Finally, we computed the centers of the detected zones. 
These centers give the coordinates of the markers in the image. 

4.2.2 Transformation-Matrix Estimation and Image Linear Transformation 

We decided to represent each face as a mosaic. A mosaic face is a face made by 
concatenation of the different views pasted together as if they were on a flat surface. So, in 
order to create a panoramic face we combine the five different views. We start with the 
central view and paste the lateral views one at a time. Our method consists of transforming 
the image to be pasted in order to link common points between it and the target image. We 
obtain this transformed image by multiplying it by a linear transformation matrix T. This 
matrix is calculated as a function of the coordinates of three common markers between the 
two images. C1 and C2 represent, respectively, the coordinates of the first and second 
images: 

111

'''

'''

)(CT
'''

'''

222

111

321

321

*

2

1*

21

321

321

2

321

321

1

==

×=== −

cba
cba

Tandyyy
xxx

Cwith

C
yyy
xxx

C
yyy
xxx

C

  (4) 

Then, we generalize this transformation to the whole image: x = a1x’ + b1y’ + c1 and 
y = a2x’ + b2y’ + c2. This linear transformation corresponds to a combination of image 
rotation, image translation, and image dilation. The two first images on Figure 17 represent 
an example of the linear transformation on the image 4. The right part of the figure depicts 
the superposition of image 3 (not transformed) and image 4 (transformed). 

4.2.3 Creation of Panoramic Face Mosaics 

We begin the panoramic face construction with the central view (image 3). From the 
superposition of the original image 3 and transformed image 4 (see Figure 17), we remove 
redundant pixels in order to obtain a temporary panoramic image 3-4 (see Figure 18, first 
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image). In order to eliminate redundant pixels, we create a cutting line that goes through 
two yellow markers. This panoramic image 3-4 temporarily becomes our target image. We 
repeat this operation for each view. First, image 2 is pasted on the temporary panoramic 
image 3-4 in order to obtain a new temporary panoramic image 2-3-4 (see Figure 18, second 
image). The corresponding transformation matrix is generated using three common violet 
markers. Then, we compute the transformation matrix that constructs image 2-3-4-5 (see 
Figure 18, third image) using two blue markers and one yellow marker. Finally, image 1 is 
pasted to the temporary panoramic image 2-3-4-5 with the help of two blue markers and one 
violet marker (see Figure 18, fourth image). 

Figure 17. From left to right, Image 4 before and after the linear transformation, original 
image 3 and superposition of transformed image 4 and original image 3 

Figure 18. Mosaicking results:  image 3-4, image 2-3-4, image 2-3-4-5, and , image 1-2-3-4-5 

Figure 19 displays some examples of the final panoramic face composition from five views. 
This composition preserves some of the face shape. For example, the chin of a human face 
possesses more curvature than other parts; therefore the bottom part of the panoramic face 
is composed of five views: 1, 2, 3, 4, and 5. On the other hand, three views (1, 3, and 5) 
suffice to compose the top part. Figure 19 shows final mosaic faces obtained after automatic 
contour cutting. For this, we first surround the panoramic face with a circle that passes by 
the extreme points of the ears in order to eliminate the background. Then, we replace 
segments of this circle by polynomial curves using extreme-point coordinates located with 
the help of the marker positions. Note that these ten markers allow us to link common 
points between five views. The coordinates of the markers are computed in the marker 
detection process and arranged in a table. Then, all ten markers are erased from all five 
views, using a simple image-processing technique (local smoothing). This table of marker 
coordinates is regenerated for each temporary panoramic image construction. The goal of 
marker elimination is to use panoramic faces for face recognition or 3-D face reconstruction. 
As compared to the method proposed by Liu & Chen (2003) panoramic faces obtained using 
our model are less precise in geometry. For example, Liu and Chen used a triangle mesh in 
order to represent a face. Each triangle possesses its own transformation parameters. In our 
system, a single transformation matrix is generated for a complete image. Liu and Chen 
have also established a statistical modeling containing the mean image and a number of 
“eigenimages” in order to represent the face mosaic. Our objective is to study an efficient 
and simple algorithm for later hardware implantations. Methods necessitating a large 
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calculation volume and a large memory space are not adapted to embedded systems. In 
order to test and validate our panoramic face mosaicking algorithm, we propose, in the next 
sections, a study of face recognition based on the eigenface model proposed by Turk & 
Pentland (1991). With our method, we created a panoramic face database composed of 12 
persons x 4 expressions x 2 sessions = 96 panoramic faces. The two acquisition sessions were 
performed over an interval of one month. The four expressions were: neutral, smile, 
deepened eyebrows, and eyes closed (see Figure 19). We implemented a face recognition 
procedure using this database. 

Figure 19. Examples of panoramic faces 

4.3 Face Recognition Description 

Over the past 25 years, several face recognition techniques have been proposed, motivated 
by the increasing number of real-world applications and also by the interest in modelling 
human cognition. One of the most versatile approaches is derived from the statistical 
technique called principal component analysis (PCA) adapted to face images 
(Valentin et al., 1994). Such a approach has been used, for example, by Abdi (1988) and 
Turk & Pentland (1991) for face detection and identification. PCA is based on the idea that 
face recognition can be accomplished with a small set of features that best approximates the 
set of known facial images. Application of PCA for face recognition proceeds by first 
performing a PCA on a well-defined set of images of known human faces. From this 
analysis, a set of K principal components is obtained, and the projection of the new faces on 
these components is used to compute distances between new faces and old faces. These 
distances, in turn, are used to make predictions about the new faces. Technically, PCA on 
face images proceeds as follows. The K face images to be learned are represented by K 
vectors ak, where k is the image number.  Each vector ak is obtained by concatenating the 
rows of the matrix storing the pixel values (here, gray levels) of the k’th face image. This 
operation is performed using the vec operation, which transforms a matrix into a vector (see 
Abdi et al. (1995) for more details). 
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The complete set of patterns is represented by a I x K matrix noted A, where I represents the 
number of pixels of the face images and K the total number of images under consideration. 
Specifically, the learned matrix A can be expressed as A = P Δ QT where P is the matrix of 
eigenvectors of AAT, Q is the matrix of eigenvectors of ATA, and Δ is the diagonal matrix of 
singular values of A, that is, Δ=Λ1/2, with Λ, the matrix of eigenvalues of AAT and ATA. The 
left singular eigenvectors P can be rearranged in order to be displayed as images. In general, 
these images are somewhat facelike (Abdi, 1988) and they are often called eigenfaces. Given 
the singular vectors P, every face in the database can be represented as a weight vector in 
the principal component space. The weights are obtained by projecting the face image onto 
the left singular vectors, and this is achieved by a simple inner product operation: 
PROJx=XTPΔ-1 where x is a facial vector, corresponding to an example face in the training 
process or a test face in the recognition process. Therefore, when a new test image whose 
identification is required is given, its vector of weights also represents the new image. 
Identification of the test image is done by locating the image in the known face database 
whose weights have the smallest Euclidean distance from the weight of the test image. This 
algorithm, employed by Turk and Pentland is called the nearest neighbor classification rule. 

4.4 Experimental results on Panoramic Face Recognition 

For these first tests, panoramic faces were analyzed using the original 240x320-pixel image 
(spatial representation) without preprocessing. The database consisted of 12 
persons x 4 expressions x 2 1sessions = 96 panoramic faces, and was divided into two 
subsets. One subset served as the training set, and the other subset as the testing set. As 
illustrated in Figure 19, all these panoramic faces possess a uniform background, and the 
ambient lighting varied according to the daylight. 
From the panoramic face database, one, two, three, or four images were randomly chosen 
for each individual in order to create the training set (number of patterns for learning per 
individual, p=1, 2, 3, 4). The rest of the panoramic faces were used in order to test the face 
recognition method. For example, when p=1, the total number of training examples is equal 
to 1 x 12 persons = 12, and the number of test samples for recognition is equal to 96 12=84. 
Therefore, for each individual, only one panoramic face is learned in order to recognize 
seven other images of this person. Several executions of our MATLAB program were run for 
each value of p, using randomly chosen training and testing sets. Then we computed the 
mean performance. Using the nearest neighbour classification rule, the panoramic face 
identity test is done by locating the closest image in the known face database. Therefore, the 
system can make only confusion errors (i.e., associating the face of one person with a test 
face of another). Correct panoramic face recognition rates go from 70 % when p=1 to 93.2% 
when p=4. 
We added a discriminant analysis stage in the face recognition process so as to determine 
the number of necessary eigenvectors. This analysis, called the jackknife 
(Yang & Robinson, 2001) reorders eigenvectors, not according to their eigenvalues, but 
according to their importance for identification. Specifically, we computed the ratio of the 
between-group inertia to the within-group inertia for each eigenvector. This ratio expresses 
the quality of the separation of the identity of the subject performed by this eigenvector. The 
eigenvector with the largest ratio performs the best identity separation, the eigenvector with 
the second largest ratio performs second best, etc. We observe that it suffices to use only 23 
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eigenvectors to reach the maximum recognition rate (93.2%). Additional eigenvectors do not 
add to the quality of the identification. 
We also tested the frequential behavior of our recognition system. We can observe that the 
frequential spectra of a panoramic face are well centered at low frequencies. This allows us 
to apply a lowpass filter in order to reduce the size of the data set to process. Only 
80 x 80 FFT amplitude values of low frequencies were used for the recognition system. 

Figure 20. (a) original image, (b) original image with added Gaussian noise, (c) FFT image 
using the spectrum amplitude of (b) and the phase of (a) and (d) FFT image using the 
spectrum amplitude of (a) and the phase of (b) 

We applied the same training and testing process as used in spatial representation. We 
obtain a better recognition rate with the frequential representation (97.5%) than with the 
spatial representation (93.2%). This advantage of the frequential representation is due to the 
fact that for face images, the spectrum amplitude is less sensitive to noise than the spectrum 
phase. We confirmed this interpretation by using a panoramic face image to which noise 
was added. Figure 20(a) shows a original panoramic face. Figure 20 (b) displays the same 
panoramic face image with added noise. We first obtained the FFTs of these two images and 
then their inverse FFTs in the two following manners: (1) using the spectrum amplitude of 
the noised image and the spectrum phase of the original image (see Figure 20-c) and (2) 
using the spectrum phase of the noised image and the spectrum amplitude of the original 
image (see Figure 20-d). 
These results show that the face obtained with the first configuration is closer to the original 
face than the face obtained with the second configuration. This confirms that the spectrum 
amplitude is less sensitive to noise than the spectrum phase. 

4.5 Panoramic face recognition with negative samples 

In order to evaluate the behavior of our system for unknown people, we added four people 
to the test database. These panoramic faces were obtained as described in Sec. 4.2. Table 4 
displays the performance of different tests. In order to reject these unknown faces, we 
established a threshold of Euclidean distance. Because we are working on applications of 
typical access control, where confusion is more harmful than nonrecognition, we decided to 
use a severe acceptance threshold in order to reject intruders. Note that the acceptance 
threshold is constant for all tests. Efficiency is defined as follows: 
• Recognition: Correct recognition of a panoramic face. 
• Nonrecognition: A panoramic face has not been recognized. 
• Confusion: A panoramic face is confused with an intruder. 
These performance results are obtained using the frequential representation and show that 
performance declines in comparison with tests without negative samples. 
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1 12 8 116 25.4 5.85 68.75 
2 24 13 104 12.74 4 83.26 
3 36 18 92 7.58 3.5 88.92 
4 48 24 80 4.82 2.8 92.38 

Table 4. Results of panoramic face recognition with negative samples  

4.6 Discussion 

In this section, we have proposed a fast and simple method for panoramic face mosaicking. 
The acquisition system consists of several cameras followed by a series of fast linear 
transformations of the images. The simplicity of the computations makes it possible to 
envisage real-time applications.  
In order to test the recognition performance of our system, we used the panoramic faces as 
input to a recognition system based on PCA. We tested two panoramic face representations: 
spatial and frequential. We found that a frequential representation gives the better 
performance, with a correct recognition rate of 97.46%, versus 93.21% for spatial 
representation. An additional advantage of the frequential representation is that it reduces 
the data volume to be processed and this further accelerates the calculation speed. We used 
negative samples for the panoramic face recognition system, and the correct recognition rate 
was 92.38%.Experimental results show that our fast mosaicking system provides relevant 3-
D facial surface information for recognition application. The obtained performance is very 
close or superior to published levels (Howell & Buxton, 1998, Slimane et al., 1999, 
Tsalakanidou et al., 2003). 
In the future, we plan to simplify our acquisition system by replacing the markers with a 
structured light. We also hope to use our system without markers. For this, we will detect 
control points on faces (corners, points of maximum curvature, etc.). Another line of 
development is to improve the geometry quality of our panoramic face mosaic construction 
(Liu & Chen, 2003, Puech et al., 2001). For this, we will use realistic human face models. We 
are also exploring processing panoramic face recognition using other classifiers with more 
variable conditions. 

5. Conclusions 

In this chapter, we have presented three dedicated systems to face recognition developed by 
our research team since 2002. Our main objective was motivated by the implementation on 
embedded systems of efficient models of unconstrained face tracking and identity 
verification in arbitrary scenes. The main goal of these various systems is to provide efficient 
algorithms that only require few hardware in order to obtain high success rates of face 
recognition with high real time constraints. 
The first system is a real time vision system that allows us to localize faces in video 
sequences and verify their identity. These processes are image processing techniques and 
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the radial basis function (RBF) neural network approach. The robustness of this system has 
been evaluated quantitatively on eight video sequences. We have also described three 
hardware implementations of our model on embedded systems based, respectively, on field 
programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital 
signal processor (DSP). For each configuration, we have analyzed the algorithm complexity 
and present results of implementations in terms of resources and processing speed. 
The main results of these first implementations have highlighted the need of a dedicated 
hardware such as an artificial retina embedding low level image processing in order to 
extract input vectors of the RBF neural network. Such a system could unload a consequent 
calculation part of FPGA. So, the second part of the chapter was devoted to the description 
of the principles of an adequate CMOS sensor. For this purpose, a current mode CMOS 
active sensor has been designed using an array of pixels that are amplified by using current 
mirrors of column amplifiers. This circuit is simulated using Mentor GraphicsTMsoftware 
with parameters of a 0.6 μm CMOS process. The circuit is able to realise captures of 
subwindows at any location and any size in the whole image and computes mean values of 
adjacent pixels which can serve as inputs of the RBF network. 
In the last section of this chapter, we present some new results on a system that performs 
mosaicking of panoramic faces. Our objective was to study the feasibility of panoramic face 
construction in real time. We built a simple acquisition system composed of five standard 
cameras, which together can take simultaneously five views of a face at different angles. 
Then, we chose an easily hardware-achievable algorithm, consisting of successive linear 
transformations, in order to compose a panoramic face from these five views. In order to 
validate our system, we also conducted a preliminary study on panoramic face recognition, 
based on the principal-component method. Experimental results show the feasibility and 
viability of our system and allow us to envisage later a hardware implementation. 
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1. Introduction 

This chapter presents a vision-based face and gesture recognition system for human-robot 
interaction. By using subspace method, face and predefined hand poses are classified from 
the three largest skin-like regions that are segmented using YIQ color representation system. 
In the subspace method we consider separate eigenspaces for each class or pose. Face is 
recognized using pose specific subspace method and gesture is recognized using the rule-
based approach whenever the combinations of three skin-like regions at a particular image 
frame satisfy a predefined condition. These gesture commands are sent to robot through 
TCP/IP wireless network for human-robot interaction. The effectiveness of this method has 
been demonstrated by interacting with an entertainment robot named AIBO and a 
humanoid robot Robovie. 
Human-robot symbiotic systems have been studied extensively in recent years, considering 
that robots will play an important role in the future welfare society [Ueno, 2001]. The use of 
intelligent robots encourages the view of the machine as a partner in communication rather 
than as a tool. In the near future, robots will interact closely with a group of humans in their 
everyday environment in the field of entertainment, recreation, health-care, nursing, etc. In 
human-human interaction, multiple communication modals such as speech, gestures and 
body movements are frequently used. The standard input methods, such as text input via 
the keyboard and pointer/location information from a mouse, do not provide a natural, 
intuitive interaction between humans and robots. Therefore, it is essential to create models 
for natural and intuitive communication between humans and robots. Furthermore, for 
intuitive gesture-based interaction between human and robot, the robot should understand 
the meaning of gesture with respect to society and culture. The ability to understand hand 
gestures will improve the naturalness and efficiency of human interaction with robot, and 
allow the user to communicate in complex tasks without using tedious sets of detailed 
instructions.   
This interactive system uses robot eye’s cameras or CCD cameras to identify humans and 
recognize their gestures based on face and hand poses. Vision-based face recognition 
systems have three major components: image processing or extracting important clues (face 
pose and position), tracking the facial features (related position or motion of face and hand 
poses), and face recognition. Vision-based face recognition system varies along a number of 
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dimensions: number of cameras, speed and latency (real-time or not), structural 
environment (restriction on lighting conditions and background), primary features (color, 
edge, regions, moments, etc.), etc. Multiple cameras can be used to overcome occlusion 
problems for image acquisition but this adds correspondence and integration problems.  
The aim of this chapter is to present a vision-based face and hand gesture recognition 
method. The scope of this chapter is versatile. Segmentation of face and hand regions from 
the cluttered background, generation of eigenvectors and feature vectors in training phase, 
classification of face and hand poses, recognizes the user and gesture. In this chapter we 
present a method for recognizing face and gestures in real-time combining skin-color based 
segmentation and subspace-based patterns matching techniques. In this method three larger 
skin like regions are segmented from the input images using skin color information from 
YIQ color space, assuming face and two hands may present in the images at the same time. 
Segmented blocks are filtered and normalized to remove noises and to form fixed size 
images as training images. Subspace method is used for classifying hand poses and face 
from three skin-like regions. If the combination of three skin-like regions at a particular 
frame matches with the predefined gesture then corresponding gesture command is 
generated. Gesture commands are being sent to robots through TCP-IP network and their 
actions are being accomplished according to user’s predefined action for that gesture. In this 
chapter we have also addressed multi directional face recognition system using subspace 
method. We have prepared training images in different illuminations to adapt our system 
with illumination variation.  
This chapter is organized as follows. Section 2 focuses on the related research regarding 
person identification and gesture recognition. In section 3 we briefly describe skin like 
regions segmentation, filtering and normalization techniques. Section 4 describes subspace 
method for face and hand poses classification. Section 5 presents person identification and 
gesture recognition method. Section 6 focuses on human-robot interaction scenarios. Section 
7 concludes this chapter and focuses on future research. 

2. Related Work 

This section briefly describes the related research on computer vision-based systems that 
include the related research on person identification and gesture recognition systems. 
Numbers of approaches have been applied for the visual interpretation of gestures to 
implement human-machine interaction [Pavlovic, 1997]. Major approaches are focused on 
hand tracking, hand poster estimation or hand pose classification. Some studies have been 
undertaken within the context of particular application: such as using a finger as a pointer to 
control TV, or manipulated Augmented desks. There are large numbers of household 
machine that can take benefit from the intuitive gesture understanding, such as: Microwave, 
TV, Telephone, Coffee maker, Vacuum cleaner, Refrigerator, etc. The aged/disable people 
can access such kind of machine if its have intuitive gesture understanding interfaces.  
Computer vision supports a wide range of human tasks including, recognition, navigation, 
communication, etc. Using computer vision to sense and perceive the user in an HCI or HRI 
context is often called vision-based interaction or vision-based interface (VBI). In recent 
years, there has been increased research on practical vision-based interaction methods, due 
to availability of vision-based software, and inexpensive and fast enough computer vision 
related hardware components. As an example of VBI, hand pose or gesture recognition 
offers many promising approaches for human-machine interaction (HMI). The primary goal 
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of the gesture recognition researches is to develop a system, which can recognize specific 
user and his/her gestures and use them to convey information or to control intelligent 
machine. Locating the faces and identifying the users is the core of any vision-based human-
machine interface systems. To understand what gestures are, brief overviews of other 
gesturer researchers are useful.  

2.1 Face Detection and Recognition 

In the last few years, face detection and person identification attracts many researchers due 
to security concern; therefore, many interesting and useful research demonstrations and 
commercial applications have been developed. A first step of any face recognition or vision-
based person identification system is to locate the face in the image. Figure 1 shows the 
example scenarios of face detection (partly of the images are taken from Rowley research 
paper [Rowley, 1997]). After locating the probable face, researchers use facial features (eyes, 
nose, nostrils, eyebrows, mouths, leaps, etc.) detection method to detect face accurately 
[Yang, 2000]. Face recognition or person identification compares an input face image or 
image features against a known face database or features databases and report match, if any.  
Following two subsections summarize promising past research works in the field of face 
detection and recognition. 

2.1.1 Face Detection 

Face detection from a single image or an image sequences is a difficult task due to variability 
in pose, size, orientation, color, expression, occlusion and lighting condition. To build a fully 
automated system that extracts information from images of human faces, it is essential to 
develop efficient algorithms to detect human faces. Visual detection of face has been studied 
extensively over the last decade. There are many approaches for face detection. Face 
detection researchers summarized the face detection work into four categories: template 
matching approaches, feature invariant approaches, appearance-based approaches and 
knowledge-based approaches [Yang, 2002]. Such approaches typically rely on a static 
background, so that human face can be detected using image differencing. Many researches 
also used skin color as a feature and leading remarkable face tracking as long as the lighting 
conditions do not varies too much [Dai, 1996], [Crowley, 1997]. 
Template Matching Approaches  
In template matching methods, a standard template image data set using face images is 
manually defined. The input image is compared with the template images and calculated 
correlation coefficient or/and minimum distances (Manhattan distance, Euclidian distance, 
Mahalanobis distance, etc.). The existence of face is determined using the maximum 
correlation coefficient value and/or minimal distance. For exact matching correlation 
coefficient is one and minimum distance is zero. This approach is very simple and easy to 
implement. But recognition result depends on the template images size, pose, orientation, 
shape and intensity. 
Sakai et. al. [Sakai, 1996] used several sub-templates for the eyes, nose, mouth and face 
contour to model a face which is defined in terms of line spaces. From the input images lines 
are extracted based on greatest gradient change and then matched against the sub-
templates. The correlation between sub-images and contour templates are computed first to 
locate the probable location of faces. Then matching with the other sub-templates is 
performed at the probable face location. 
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Tsukamoto et. al. [Tsukamoto, 1994] presents a qualitative model for face [QMF]. In their 
model each sample image is divided into N blocks and qualitative features (‘lightness’ and 
‘edgeness’) are estimated for each block. This blocked template is used to estimate 
“faceness” at every position of an input image. If the faceness measure is satisfied the 
predefined threshold then the face is detected. 
We have developed a face detection method using the combination of correlation coefficient 
and Manhattan distance features, calculated from multiple face templates and test face 
image [Hasanuzzaman, 2004a]. In this method three larger skin-like regions are segmented 
first. Then segmented images are normalized to match with the size and type of the 
template images. Correlation coefficient is calculated using equation (1),  

/t t tM Pα =  (1) 
where, Mt is total number of matched pixels (white pixels with white pixels and black pixels 
with black pixels) with the tth template, Pt is total number of pixels in the tth template and t, 
is a positive number. For exact matching αt is 1, but for practical environment we have 
selected a threshold value for αt (0<αt 1) through experiment considering optimal matching. 

(a) Single face detection 

(b) Multiple faces detection 
Figure 1. Examples of face detection scenarios [Rowley, 1997] 



Face and Gesture Recognition for Human-Robot Interaction 153

Minimum distance can be calculated by using equation (2), 

1
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= −  (2) 

where, I(x,y) is the input image and G1(x,y), G2(x,y),----------,Gt(x,y) are template images. For 
exact matching δt is 0, but for practical environment we have selected a threshold value for 
δt through experiment considering optimal matching. If the maximum correlation coefficient 
and the minimum distance qualifier support corresponding specific threshold values then 
that segment is detected as face and the center position of the segment is use as the location 
of the face. 
Miao et. al. [Miao, 1999] developed a hierarchical template matching method for multi-
directional face detection. At the first stage, an input image is rotated from -20º to +20º in 
step of 5º. A multi-resolution image hierarchy is formed and edges are extracted using 
Laplacian operator. The face template consists of the edges produced by six facial 
components: two eyebrows, two eyes, nose and mouth. Finally, heuristics are applied to 
determine the existence of face. 
Yuille et. al. [Yuille, 1992] used deformable template to model facial features that fit a priori 
elastic model to facial features. In this approach, facial features are described by 
parameterized template. An energy function is defined to link edges, peaks, and valleys in 
the input image to corresponding parameters in the template. The best fit of the elastic 
model is found by minimizing an energy function of the parameters.  
Feature Invariant Approaches 
There are many methods to detect facial features (mouth, eyes, eyebrows, lips, hair-line, etc.) 
individually and from their geometrical relations to detect the faces. Human face skin color 
and texture also used as features for face detection.  The major limitations with these 
feature-based methods are that the image features are corrupted due to illumination, noise 
and occlusion problem.  
Sirohey proposed a face localization method from a cluttered background using edge map 
(canny edge detector) and heuristics to remove and group edges so that only the ones on the 
face contour are preserved [Sirohey, 1993]. An ellipse is then fit to the boundary between the 
head region and the background. 
Chetverikov et. al. [Chetverikov, 1993] presented face detection method using blobs and 
streaks. They used two black blobs and three light blobs to represent eyes, cheekbones and 
nose. The model uses streaks to represent the outlines of the faces, eyebrows and lips. Two 
triangular configurations are utilized to encode the spatial relationship among the blobs. A 
low resolution Laplacian image is generated to facilitate blob detection. Next, the image is 
scanned to find specific triangular occurrences as candidates. A face is detected if streaks are 
identified around the candidates. 
Human faces have a distinct texture that can be separated them from other objects. 
Augusteijn et. al. [Augusteijn, 1993] developed a method that infers the presence of face 
thorough the identification of face like templates. Human skin color has been proven to be 
an effective feature for face detections, therefore many researchers has used this feature for 
probable face detection or localization [Dai 1996], [Bhuiyan, 2003], [Hasanuzzaman 2004b].  
Recently, many researchers are combining multiple features for face localization and 
detection and those are more robust than single feature based approaches. Yang and Ahuja 
[Yang, 1998] proposed a face detection method based on color, structure and geometry. 
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Saber and Tekalp [Saber, 1998] presented a frontal view-face localization method based on 
color, shape and symmetry. Darrel et. al. [Darrel, 2000] integrated stereo, color and pattern 
detection method to track the person in real time. 
Appearance-Based Approaches 
Appearance-based methods use training images and learning approaches to learn from the 
known face images. These approaches rely on the statistical analysis and machine learning 
techniques to find the relevant characteristics of face and non-face images. There are many 
researchers using appearance-based methods.
Turk et. al. [Turk, 1991] applied principal component analysis to detect and recognize face. 
From the training face images they generated the eigenfaces. Face images and non-face 
images are projected onto the eigenspaces; form feature vectors and clustered the images 
based on separation distance. To detect the presence of a face from an image frame, the 
distance between the known face space and all location in the images are calculated. If the 
minimum distance satisfied the faceness threshold values then the location is identified as 
face. These approaches are widely used by the many researchers. 
Knowledge-Based Approaches 
These methods use the knowledge of the facial features in top down approaches. Rules are 
used to describe the facial features and their relations. For example, a face is always consists 
of two eyes, one nose and a mouth. The relationship is defined using relative distances and 
positions among them. For example, the center of two eyes are align on the same line, the 
center points of two eyes and mouth form a triangular. Yang and Huang [Yang, 1994] used 
hierarchical knowledge-based method to detect face. In this method they used three layers 
of rules. At the first level, all possible face candidates are found by scanning a mask window 
(face template) over the input images, and applying a set of rules at each location. At the 
second level, histogram equalization and edge detection is performed on candidate faces. At 
the third level, using rules facial feature are detected individually and using the pre-
knowledge of their relation, detect the actual faces. Kotropoulous [Kotropoulous, 1997] and 
other also presented rule-based face localization method. 

2.1.2 Face Recognition 

During the last few years face recognition has received significant attention from the 
researchers [Zhao, 2003] [Chellappa, 1995]. Research on automatic machine- based face 
recognition has started in the 1970s [Kelly 1970]. Figure 2 shows an example of face 
recognition scenario. The test face image (preprocessed) is matched with the face images of 
known persons in the database. If the face is sufficient close (nearest and support predefined 
threshold) to any one of the face classes, then corresponding person is identified, otherwise 
the person is unknown. Zhao [Zhao, 2003] et. al. have summarized the past recent researches 
on face recognition methods with three categories: Holistic matching methods, Feature-
based matching methods and Hybrid methods. 
Holistic Methods 
These methods use the whole face region as the raw input for the recognition unit. One of 
the most widely used representations of the face recognition is eigenfaces, which are based 
on principal component analysis (PCA). The eigenface algorithm uses the principal 
component analysis (PCA) for dimensionality reduction and to find the vectors those are 
best account for the distribution of face images within the entire face image spaces. Using 



Face and Gesture Recognition for Human-Robot Interaction 155

PCA many face recognition techniques have been developed [Turk, 1991], [Lee, 1999], 
[Chung, 1999], etc. 

Known Face Images Test 
Image

Who is 
the
person? 

Person_4

Figure 2. Example of face recognition scenario 

Turk and Pentland [Turk, 1991] first successfully used eigenfaces for face detection and 
person identification or face recognition. In this method from the known face images 
training image dataset is prepared.  The face space is defined by the “eigenfaces” which are 
eigenvectors generated from the training face images. Face images are projected onto the 
feature space (or eigenfaces) that best encodes the variation among known face images. 
Recognition is performed by projecting a test image onto the “facespace” (spanned by the m 
number of eigenfaces) and then classified the face by comparing its position (Euclidian 
distance) in face space with the positions of known individuals. Figure 3 shows the example 
of 8 eigenfaces generated from 140 training face (frontal) images of 7 persons. In this 
example, the training faces are 60 60×  gray images. 
The purpose of PCA is to find out the appropriate vectors that can describe the distribution 
of face images in images spaces and form another face spaces. To form principal 
components m-numbers of eigenvectors are used based on the eigenvalues distribution. 
Eigenvectors and eigenvalues are obtained from the covariance matrix generated from 
training face images. The eigenvectors are sorted based on eigenvalues (higher-to-lower) 
and selected first m-number of eigenvectors to form principal components.   

Figure 3. Example of eigenfaces 

Figure 4 shows the example distribution of eigenvalues for 140 frontal face images. This 
graph explores the eigenvalues spectrum and how much variance the first m-vectors for. In 
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most cases the number of eigenvectors that account for variance somewhere in the 65%-90% 
range.
Independent component analysis (ICA) is similar to PCA except that the distributions of the 
components are designed to be non-Gaussian. The ICA separates the high-order moments of 
the input in addition to the second order moments utilized in PCA. Bartlett et. al. [Bartlett, 
1998] used ICA methods for face recognition and reported satisfactory recognition 
performance.
Face recognition system using Linear Discriminant Analysis (LDA) or Fisher Linear 
Discriminant Analysis (FDA) has also been very successful. In Fisherface algorithm by 
defining different classes with different statistics, the images in the learning set are divided 
in the corresponding classes [Belhumeur, 1997]. Then, the techniques similar to those used 
in eigenface algorithm are applied for face classification or person identification. 

Number of Eigenfaces 
Figure 4. Example of eigenvectors spectrum for 140 eigenfaces 
Feature-Based Matching Methods  
In these methods facial features such as the eyes, lips, nose and mouth are extracted first and 
their locations and local statistics (geometric shape or appearance) are fed into a structural 
classifier. Kanade developed one of the earliest face recognition algorithms based on 
automatic facial feature detection [Kanade, 1977]. By localizing the corner of the eyes, 
nostrils, etc., in frontal views, that system compares parameters for each face, which were 
compared (using Euclidian distance metric) against the parameters of known person faces. 
One of the most successful of these methods is the Elastic Bunch Graph Matching (EBGM) 
system [Wiskott, 1997]. Other well-known methods in these systems are Hidden Markov 
Model (HMM) and convolution neural network [Rowley, 1997]. System based on EBGM 
approach have been applied to face detection and extraction, pose estimation, gender 
classification, sketch image based recognition and general object recognition. 
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Hybrid Approaches 
These approaches use both holistic and features based approaches. These methods are very 
similar to human perception consider whole image and features individually at a time. 
Chung et. al. [Chung, 1999] combined Gabor Wavelet and PCA based approaches for face 
recognition and reported better accuracy than each of individual algorithm. Pentland et. al.
[Pentland, 1994] have used both global eigenfaces and local eigenfeatures (eigeneyes, 
eigenmouth and eigennose) for face recognition. This method is robust against face images 
with multiple views. 

2.2 Gesture Recognition and Gesture-Based Interface 

Gestures are expressive meaningful body motions i.e., physical movements of the hands, 
arms, fingers, head, face or other parts of the body with the intent to convey information or 
interact with the environment [Turk, 2000]. People all over the world use their hands, head 
and other parts of the body to communicate expressively. The social anthropologists 
Edward T. Hall claims 60% of all our communications are nonverbal [Imai, 2004]. Gestures 
are used for everything from pointing at a person or an object to change the focus of 
attention, to conveying information. From the biological and sociological perspective, 
gestures are loosely defined, thus, researchers are free to visualize and classify gestures as 
these fit. Biologists define “gesture” broadly, stating, “the notion of gesture is to embrace all 
kinds of instances where an individual engages in movements whose communicative intent 
is paramount, manifest and openly acknowledged” [Nespoulous, 1986]. Gestures associated 
with speech are referred to as gesticulation. Gestures, which function independently of 
speech, are referred to as autonomous gestures. Autonomous gestures can be organized into 
their own communicative language, such as American Sign Language (ASL). Autonomous 
gesture can also represent motion commands to use in communication and machine control. 
Researchers are usually concerned with gestures those are directed toward the control of 
specific object or the communication with a specific person or group of people.  
Gesture recognition is the process by which gestures made by the user are make known to 
the intelligence system. Approximately in the year 1992 the first attempts were made to 
recognize hand gestures from color video signals in real-time. It was the year, when the first 
frame grabbers for color video input were available, that could grab color images in real 
time. As color information improves segmentation and real time performance is a 
prerequisite for human-computer interaction, this obviously seems to be the start of 
development of gesture recognition. Two approaches are commonly used to recognize 
gestures, one is a gloved-base approach [Sturman, 1994] and another is a vision-based 
approach [Pavlovic, 1997]. 

2.2.1 Glove-Based Approaches 

A common technique is to instrument the hand with a glove, which is equipped with a 
number of sensors, which provide information about hand position, orientation and flex of 
the fingers. The first commercially available hand tracker is the ‘Dataglove’ [Zimmerman, 
1987]. The ‘Dataglove’ could measure each joint bend to an accuracy of 5 to 10 degrees, 
could classify hand pose correctly, but not the sideways movement of the fingers. The 
second hand tracker, ‘CyberGlove’ developed by Kramer [Kramer, 1989] uses strain gauges 
placed between the fingers to measure abduction as well as more accurate bend sensing. 
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Figure 5 shows the example of a ‘CyberGlove’ which has up to 22 sensors, including three 
bend sensors on each finger, four abduction sensors, plus sensors measuring thumb 
crossover, palm arch, wrist flexion and wrist abduction [Bllinghurst, 2002]. Once the gloves 
have captured hand pose data, gestures can be recognized using a number of different 
techniques. Neural network approaches or statistical template-matching approaches are 
commonly used to identify static hand posses [Fels, 1993]. Time dependent neural network 
and Hidden Markov Model  (HMM) are commonly used for dynamic gesture recognition 
[Lee, 1996]. In this case gestures are typically recognized using pre-trained templates, 
however gloves can also be used to identify natural or untrained gestures. Glove-based 
approaches provide more accurate gesture recognition than vision-based approaches but 
they are expensive, encumbering and unnatural.  

Figure 5. The ‘CyberGlove’ for hand gesture recognition [Bllinghurst, 2002] 

2.2.2 Vision-Based Approaches 

Vision-based gesture recognition systems can be divided into three main components: 
image processing or extracting important clues (hand shape and position, face or head 
position, etc.), tracking the gesture features (related position or motion of face or hand 
poses), and gesture interpretation (based on collected information that support predefined 
meaningful gesture). The first phase of gesture recognition task is to select a model of the 
gesture. The modeling of gesture depends on the intent-dent applications by the gesture. 
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There are two different approaches for vision-based modeling of gesture: Model based 
approach and Appearance based approach. 
The Model based techniques are tried to create a 3D model of the user hand   (parameters: 
Joint angles and palm position) [Rehg, 1994] or contour model of the hand [Shimada, 1996] 
[Lin, 2002] and use these for gesture recognition. The 3D models can be classified in two 
large groups: volumetric model and skeletal models. Volumetric models are meant to 
describe the 3D visual appearance of the human hands and arms. 
Appearance based approaches use template images or features from the training images 
(images, image geometry parameters, image motion parameters, fingertip position, etc.) 
which use for gesture recognition [Birk, 1997]. The gestures are modeled by relating the 
appearance of any gesture to the appearance of the set of predefined template gestures. A 
different group of appearance-based model uses 2D hand image sequences as gesture 
templates. For each gestures number of images are used with little orientation variations 
[Hasanuzzaman, 2004a]. Images of finger can also be used as templates for finger tracking 
applications [O’Hagan, 1997]. Some researchers represent motion history as 2D image and 
use it as template images for different actions of gestures. The majority of appearance-based 
models, however, use parameters (image eigenvectors, image edges or contour, etc.) to form 
the template or training images.  Appearance based approaches are generally 
computationally less expensive than model based approaches because its does not require 
translation time from 2D information to 3D model. 
Once the model is selected, an image analysis stage is used to compute the model 
parameters from the image features that are extracted from single or multiple video input 
streams. Image analysis phase includes hand localization, hand tracking, and selection of 
suitable image features for computing the model parameters. 
Two types of cues are often used for gesture or hand localization: color cues and motion 
cues. Color cue is useful because human skin color footprint is more distinctive from the 
color of the background and human cloths [Kjeldsen, 1996], [Hasanuzzaman, 2004d]. Color-
based techniques are used to track objects defined by a set of colored pixels whose 
saturation and values (or chrominance values) are satisfied a range of thresholds. The major 
drawback of color-based localization methods is that skin color footprint is varied in 
different lighting conditions and also the human body colors. Infrared cameras are used to 
overcome the limitations of skin-color based segmentation method [Oka, 2002]. 
The motion-based segmentation is done just subtracting the images from background 
[Freeman, 1996]. The limitation of this method is considered the background or camera is 
static. Moving objects in the video stream can be detected by inter frame differences and 
optical flow [Cutler, 1998]. However such a system cannot detect a stationary hand or face. 
To overcome the individual shortcomings some researchers use fusion of color and motion 
cues [Azoz, 1998]. 
The computation of model parameters is the last step of the gesture analysis phase and it is 
followed by gesture recognition phase. The type of computation depends on both the model 
parameters and the features that were selected. In the recognition phase, parameters are 
classified and interpreted in the light of the accepted model or the rules specified for the 
gesture interpretation. Two tasks are commonly associated with the recognition process: 
optimal partitioning of the parameter space and implementation of the recognition 
procedure. The task of optimal partitioning is usually addresses through different learning-
from-examples training procedures. The key concern in the implementation of the 
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recognition procedure is computation efficiency. A recognition method usually determines 
confidence scores or probabilities that define how closely the image data fits each model. 
Gesture recognition methods are divided into two categories: static gesture or hand poster 
and dynamic gesture or motion gesture. 
Static Gesture 
Static gesture (or pose gesture) recognition can be accomplished by using template matching, 
eigenspaces or PCA, Elastic Graph Matching, neural network or other standard pattern 
recognition techniques. Template matching techniques are the simple pattern matching 
approaches. It is possible to find out the most likely hand postures from an image by 
computing the correlation coefficient or minimum distance metrics with template images.  
Eigenspace or PCA is also used for hand pose classification similarly it used for face 
detection and recognition. Moghaddam and Pentland used eigenspaces (eigenhands) and 
principal component analysis not only to extract features, but also to estimate complete 
density functions for localization [Moghaddam, 1995]. In our previous research, we have 
used PCA for hand pose classification from three larger skin-like components that are 
segmented from the real-time images [Hasanuzzaman, 2004d]. 
Triesch et. al. [Triesch, 2002] employed the elastic graph matching techniques to classify 
hand posters against complex backgrounds. They represented hand posters by label graphs 
with an underlying two-dimensional topology. Attached to the nodes are jets, which are a 
sort of local image description based on Gabor filters. This approach can achieve scale-
invariant and user invariant recognition and does not need hand segmentation. This 
approach is not view-independent, because it uses one graph for one hand posture. The 
major disadvantage of this algorithm is the high computational cost.  
Dynamic Gesture 
Dynamic gestures are considered as temporally consecutive sequences of hand or head or 
body postures in sequence of time frames. Dynamic gestures recognition is accomplished 
using Hidden Markov Models (HMMs), Dynamic Time Warping, Bayesian networks or 
other patterns recognition methods that can recognize sequences over time steps. Nam et. al.
[Nam, 1996] used HMM methods for recognition of space-time hand-gestures. Darrel et. al.
[Darrel, 1993] used Dynamic Time Warping method, a simplification of Hidden Markov 
Models (HMMs) to compare the sequences of images against previously trained sequences 
by adjusting the length of sequences appropriately. Cutler et. al. [Cutler, 1998] used a ruled-
based system for gesture recognition in which image features are extracted by optical flow. 
Yang [Yang, 2000] recognizes hand gestures using motion trajectories. First they extract the 
two-dimensional motion in an image, and motion patterns are learned from the extracted 
trajectories using a time delay network.  

2.2.3 Gesture-Based Interface 

The first step in considering gesture-based interaction with intelligent machine is to 
understand the role of gesture in human-to-human communication. There are significant 
amount of researches on hand, arm and facial gesture recognition, to control robot or 
intelligent machine in recent years. This sub-section summarizes some promising existing 
gesture recognition system. Cohen et. al. [Cohen, 2001] described a vision-based hand 
gesture identifying and hand tracking system to control computer programs, such as 
browser of PowerPoint or any other applications. This method is based primarily on color 
matching and is performed in several distinct stages. After color-based segmentation, 
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gestures are recognized using geometric configuration of the hand. Starner et. al. [Starner, 
1998] proposed real-time American Sign Language (ASL) recognition using desk and 
wearable computer based video. The recognition method is based on the skin color 
information to extract hands poster (pose, orientation) and locate their position and motion. 
Using Hidden Markov Models (HMM) this system recognizes sign language words but 
vocabulary is limited to 40 words. Utsumi et. al. [Utsumi, 2002] detected predefined hand 
pose using hand shape model and tracked hand or face using extracted color and motion. 
Multiple cameras are used for data acquisition to reduce occlusion problem in their system. 
But in this process there incurs complexity in computations. Watanabe et. al. [Watanabe, 
1998] used eigenspaces from multi-input image sequences for recognizing gesture. Single 
eigenspaces are used for different poses and only two directions are considered in their 
method. Hu [Hu, 2003] proposed hand gesture recognition for human-machine interface of 
robot teleoperation using edge features matching. Rigoll et. al. [Rigoll, 1997] used HMM-
based approach for real-time gesture recognition. In their work, features are extracted from 
the differences between two consecutive images and target image is always assumed to be 
in the center of the input images. Practically it is difficult to maintain such condition. Stefan 
Waldherr et. al. proposed gesture-based interface for human and service robot interaction 
[Waldherr, 2000]. They combined template-based approach and Neural Network based 
approach for tracking a person and recognizing gestures involving arm motion. In their 
work they proposed illumination adaptation methods but did not consider user or hand 
pose adaptation. Torras has proposed robot adaptivity technique using neural learning 
algorithm [Torras, 1995]. This method is extremely time consuming in learning phase and 
has no way to encode prior knowledge about the environment to gain the efficiency. 

3. Skin Color Region Segmentation and Normalization 

Images containing faces and hand poses are essential for vision-based human-robot 
interaction. But still it is very difficult to segment face and hand poses in real time from the 
color images with cluttered background. Human skin color has been used and proven to be an 
effective feature in many application areas, from face detection to hand tracking. Since face 
and two hands may present in the images at a specific time in an image frame, three largest 
skins like regions are segmented from the input images using skin color information. Several 
color spaces have been utilized to label pixels as skin including RGB, HSV, YCrCb, YIQ, CIE-
XYZ, CIE-LUV, etc. However, such skin color models are not effective where the spectrum of 
the light sources varies significantly. In this study YIQ (Y is luminance of the color and I, Q are 
chrominance of the color) color representation system is used for skin-like region segmentation 
because it is typically used in video coding and provides an effective use of chrominance 
information for modeling the human skin color [Bhuiyan, 2003], [Dai, 1996].  

3.1 YIQ-Color Coordinate Based Skin-Region Segmentation 

To detect human face or hand, it is assumed that the captured camera images are 
represented in the RGB color spaces. Each pixel in the images is represented by a triplet 
P=F(R,G,B). The RGB images taken by the video camera are converted to YIQ color 
representation system (for detail please refer to Appendix A). Skin color region is 
determined by applying threshold values ((Y_Low<Y<Y_High) && (I_Low<I<I_High) && 
Q_Low<Q<Q_High)) [Hasanuzzaman, 2005b].  
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(a) Face Image of User “Cho” (b) Face Image of User “Hasan” 

(c) Y-component distributions of face 
“Cho”

(d) Y-component distributions of face 
“Hasan”

(e) I-component distributions of face “Cho” (f) I-component distributions of face “Hasan” 

(g) Q-component distributions of face 
“Cho”

h) Q-component distributions of face 
“Hasan”

Figure 6. Histograms of Y, I, Q components for different person face images 
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Figure 6 shows example skin regions and its corresponding Y, I, Q components distributions 
for every pixels. Chrominance component I, play an important role to distinguish skin like 
regions from non-skin regions, because it is always positive for skin regions. Values of Y and 
I increases for more white people and decreases for black people. We have included an off 
line program to adjust the threshold values for Y, I, Q, if the person color or light intensity 
variation affect the segmentation output. For that reason we need to manually select small 
skin region and non-skin regions and run our threshold evaluation program, that will 
represent graphical view of Y, I, Q distributions. From those distinguishable graphs we can 
adjust our threshold values for Y, I, Q using heuristic approach. 
Probable hands and face regions are segmented from the image with the three largest 
connected regions of skin-colored pixels. The notation of pixel connectivity describes a 
relation between two or more pixels. In order to consider two pixels to be connected, their 
pixel values must both be from the same set of values V (for binary images V is 1, for gray 
images it may be specific gray value). Generally, connectivity can either be based on 4- or 8-
connectivity. In the case 4-connectivity, it does not compare the diagonal pixels but 8-
connectivity compares the diagonal positional pixels considering 3 3×  matrix, and as a 
result, 8-connectivity component is more noise free than 4-connectivity component. In this 
system, 8-pixels neighborhood connectivity is employed [Hasanuzzaman, 2006]. 

a) “Twohand” b) “LeftHand” c) “RightHand” 

d) “One” e) “Two”   f) “Three” 

Figure 7. Example outputs of skin-regions segmentation 

In order to remove the false regions from the segmented blocks, smaller connected regions 
are assigned by the values of black-color (R=G=B=0). As a result, after thresholding the 
segmented image may contain some holes in the three largest skin-like regions. In order to 
remove noises and holes, segmented images are filtered by morphological dilation and 
erosion operations with a 3 3×  structuring element. The dilation operation is used to fill 
the holes and the erosion operations are applied to the dilationed results to restore the 
shape.
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After filtering, the segmented skin regions are bounded by rectangular box using height and 
width information of each segment:

1 1( )M N× ,
2 2( )M N× , and 

3 3( )M N× . Figure 7 
shows the example outputs of skin like region segmentation method with restricted 
background. If the user shirt’s color is similar to skin color then segmentation accuracy is 
very poor. If the user wears short sleeves or T-shirt then it needs to separate hand palm from 
arm. This system assumes the person wearing full shirt with non-skin color.  

3.2 Normalization 

Normalization is done to scale the image to match with the size of the training image and 
convert the scaled image to gray image [Hasanuzzaman, 2004a]. Segmented images are 
bounded by rectangular boxes using height and width information of each 
segment:

1 1( )M N× ,
2 2( )M N× , and 

3 3( )M N× . Each segment is scaled to be square 

images with (60 60)×  and converted it to as gray images (BMP image). Suppose, we have a 

segment of rectangle [( , ) ( , )]l l h hP x y x y−  we sample it to rectangle [(0,0) (60 60)]Q − ×
using following expression, 

( ) ( )
( , ) ( , )

60 60

h l h lq qq ql lx x y yQ P x yy yx x− −= + +  (3) 

Each segment is converted as gray image (BMP image) and compared with 
template/training images to find the best match. Using the same segmentation and 
normalization methods training images and test images are prepared, that is why result of 
this matching approach is better than others who used different training/template image 
databases. Beside this, we have included training/template images creation functions in this 
system so that it can adapt with person and illumination changes. Figure 8 shows the 
examples of training images for five face poses and ten hand poses. 

Figure 8. Examples of training images 
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4. Face and Hand Pose Classification by Subspace method 

Three larger skin like regions are segmented from the input images considering that two 
hands and one face may present in the input image frame at a specific time. Segmented 
areas are filtered, normalized and then compared with the training images for finding the 
best matches using pattern-matching method. Principal component analysis (PCA) method 
is a standard pattern recognition approach and many researchers use it for face and hand 
pose classification [Hasanuzzaman, 2004d]. The main idea of the principal component 
analysis (PCA) method is to find the vectors that best account for the distribution of target 
images within the entire image space. In the general PCA method, eigenvectors are 
calculated from training images that include all the poses or classes. But for classification a 
large number of hand poses for a large number of users, need large number of training 
datasets from which eigenvectors generation is tedious and may not be feasible for a 
personal computer. Considering these difficulties we have proposed pose-specific subspace 
method that partition the comparison area based on each pose. In pose-specific subspace 
method, training images are grouped based on pose and eigenvectors for each pose are 
generated separately. In this method one PCA is used for each pose [Hasanuzzaman, 2005b] 
[Hasanuzzaman, 2004c]. In the following subsection we have described the algorithm of 
pose-specific subspace method for face and hand pose classification, which is very similar to 
general PCA based algorithm. 

Symbols Meanings 

)(i
jT Training images for ith class 

)(i
mu mth Eigenvectors for ith class  

)(i
lΩ  Weight vector for ith class 

)(i
kω Element of weight vector for ith class 

iΦ Average image for ith class 

)(i
ls lth Known image for ith class 

ε Euclidean distance among weight vectors 

)(i
lε Element of Euclidean distance among weight vectors for ith class

Table 1. List of symbols used in subspace method 
Pose-Specific Subspace Method 
Subspace method offers an economical representation and very fast classification for vectors 
with a high number of components. Only the statistically most relevant features of a class 
are retained in the subspace representation. The subspace method is based on the extraction 
of the most conspicuous properties of each class separately as represented by a set of 
prototype sample. The main idea of the subspace method is similar to principal component 
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analysis, is to find the vectors that best account for the distribution of target images within 
the entire image space. In subspace method target image is projected on each subspace 
separately. Table 1 summarizes the symbols that are used for describing pose-specific 
subspace method for face and hand poses classification. The procedure of face and hand 
pose classification using pose-specific subspace method includes following operations: 
(I) Prepare noise free version of predefined face and hand poses to form training images 

( ) ( )i
jT N N× , where j is number training images of ith class (each pose represent one class) 

and j=1,2,…., M. Figure 8 shows the example training image classes: frontal face, right 
directed face, left directed face, up directed face, down directed face, left hand palm, right 
hand palm, raised index finger, raised index and middle finger to form “V” sign, raised 
index, middle and ring fingers, fist up, make circle using thumb and fore fingers, thumb up, 
point left by index finger and point right by index finger are defined as pose P1,  P2, P3, P4, 
P5, P6, P7, P8, P9, P10, P11, P12, P13, P14 and  P15 respectively. 

(II) For each class, calculate eigenvectors ( )( )imu  using Matthew Turk and Alex Pentland 

technique [Turk, 1991] and chose k-number of eigenvectors ( )( )iku corresponding to the 
highest eigenvalues to form principal components for that class. These vectors for each class 
define the subspace of that pose [for detail please refer to Appendix B]. 
(III) Calculate corresponding distribution in k-dimensional weight space for the known 
training images by projecting them onto the subspaces (eigenspaces) of the corresponding 
class and determine the weight vectors ( )( )ilΩ , using equations (4) and (5). 

( ) ( ) ( )( ) ( )
i i T i

k l ik u sω = −Φ  (4) 

( )

1

( ) ( ) ( )

2
[ , ,..., ]ii i i

l kω ω ωΩ =  (5) 

Where, average image of ith class 1

1
i n

M
T

M n
Φ =

=
and ( ) ( )i

ls N N× is lth known images of ith

class. 
(IV) Each segmented skin-region is treated as individual test input image, transformed into 
eigenimage components and calculated a set of weight vectors ( (i)) by projecting the input 
image onto each of the subspace as equations (4) and (5). 
(V) Determine if the image is a face pose or other predefined hand pose based on minimum 
Euclidean distance among weight vectors using equation (6) and (7), 

( ) ( ) ( )|| ||i i i
l lε = Ω −Ω  (6) 

( )arg min{ }ijε ε=  (7) 

If ε  is lower than predefined threshold then its corresponding pose is identified. For exact 
matching ε should be zero but for practical purposes this method uses a threshold value 
obtained from experiment. If the pose is identified then corresponding pose frame will be 
activated. 
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5. Face and Gesture Recognition 

A number of techniques have been developed to detect and recognize face and gesture. For 
secure or operator specific gesture-based human machine interaction, user identification or 
face recognition is important. The meaning of the gesture may differ from person to person 
based on their culture. Suppose according to his culture, user “Hasan” uses “ThumbUp” 
gesture to terminate an action of robot, whereas user “Cho” uses this gesture to repeat the 
previous action. In order to person specific gesture interpret (i.e., gesture is same but 
different meaning for different users) or person dependent gesture command generation we 
should map user, gesture and robot action.  

5.1 Face Recognition  

Face recognition is important for human-robot natural interaction and person dependent 
gesture command generation, i.e, gesture is same but different meaning for different 
persons. If any segment (skin-like region) is classified as a face, then it needs to classify the 
pattern, whether it belongs to a known person or not. The detected face is filtered in order to 
remove noises and normalized so that it matches with the size and type of the training 
image. The detected face is scaled to be a square image with 60 60×  dimension and 
converted to be a gray image.  
This face pattern is classified using the eigenface method [Turk, 1991], whether it belongs to 
known person or unknown person. The face recognition method uses five face classes: 
frontal face (P1), right directed face (P2), left directed face (P3), up state face (P4) and down 
state face (P5) in training images as shown in Figure 8 (top row). The eigenvectors are 
calculated from the known persons face images for each face class and k-number of 
eigenvectors corresponding to the highest eigenvalues are chosen to form principal 
components for each class. For each class we have formed subspaces and projected known 
person face images and detected face image on those subspaces using equation (4) and (5). 
We get weight vectors for known person images and detected face images. The Euclidean 
distance is determined between the weight vectors generated from the training images and 
the weight vectors generated from the detected face by projecting them onto the eigenspaces 
using equation (6) and (7). If minimum Euclidian distance is lower than the predefined 
threshold then corresponding person is identified other wise result is unknown person 
[Hasanuzzaman, 2004c]. We have used face recognition output for human robot (‘Robovie’) 
greeting application. For example, if the person is known then robot say (“ Hi, person name,
How are you?”) but for unknown person robot say (“I do not know you”). 
We found that the accuracy of frontal face recognition is better than up, down and more left 
right directed faces [Hasanuzzaman, 2004c]. In this person identification system we prefer 
frontal and a small left or right rotated faces. Figure 9 shows the sample outputs of face 
detection method. We have verified this face recognition method for 680 faces of 7 persons, 
where two are females. Table 2 shows the confusion matrix for the results of face recognition 
for 7-persons. The diagonal elements represent the correct recognition of corresponding 
persons. In this table, the 1st column represents the input image classes and other columns 
represent the recognition results. For example, among 136 face images of person “Hasan”, 
132 are correctly recognized as “Hasan” and 4 are wrongly recognized as another person 
“Vuthi”.
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Figure 9. Sample outputs of face detection method 

Table 3 presents the precisions (%) and recall rates (%) of face recognition method. The 
precision (%) is defined by the ratio of the numbers of correct recognition to total numbers 
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of recognition for each person faces. The recall rate (%) is defined by the ratio of the 
numbers of correct face recognition to total numbers of input faces for each person. In the 
case of person “Pattra” (Figure 9(d)), the precision of face recognition is very low because 
his face has one black spot.

Input Hasan Ishida Pattara Somjai Tuang Vuthi Cho 
Hasan
(136) 132 0 0 0 0 4 0 

Ishida
(41) 0 41 0 0 0 0 0 

Pattara
(41) 0 0 38 3 0 0 0 

Somjai
(126) 0 0 5 118 3 0 0 

Tuang
(76) 0 0 0 10 66 0 0 

Vuthi
(103) 0 0 7 0 5 91 0 

Cho
(157) 0 0 0 0 0 0 157 

Table 2. Confusion Matrix of face recognition 

Person Precision (%) Recall (%) 
Hasan 100% 97.05% 
Ishida 100% 100% 

Pattara 76% 92.68% 

Somjai 90.07% 93.65% 
Tuang 89.18% 86.84% 
Vuthi 95.78% 88.34% 

Cho 100% 100% 

Table 3. Performance evaluation of face recognition method 

5.2 Gesture Recognition  

Gesture recognition is the process by which gestures made by the user are known to the 
system. Gesture components are the face and hand poses. Gestures are recognized using 
rule-based system according to predefined model with the combinations of the pose 
classification results of three segments at a particular image frame. For examples, if left hand 
palm, right hand palm and one face present in the input image then recognizes it as 
“TwoHand” gesture and corresponding gesture command generated. If one face and left 
hand open palm are present in the input image frame then recognized it as “LeftHand” 
gesture. Similarly others static gestures as listed in Table 4 are recognized. It is possible to 
recognize more gesture including new poses and new rules using this system. According to 
recognized gestures, corresponding gesture commands are generated and sent to interact 
with robot through TCP-IP network. 
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Figure 10. Sample visual output of gesture “TwoHand” 

The sample output of our gesture recognition system is shown in Figure 10. This shows 
gesture command at the bottom text box corresponding to matched gesture, in case of no 
match it shows “no matching found”. Accuracy of the gesture recognition system depends 
on the accuracy of the pose detection system. For example: in some cases two hands and one 
face were present in the image but pose detection method failed to detect one hand due to 
variation of orientation and output of gesture recognition is then either “LeftHand” or 
“RightHand”. We use two standard parameters to define accuracy: precision and recall for 
pose classification method. 

Gesture Components Gesture names 
Face Left hand palm Right hand palm TwoHand  
Face Right hand palm X RightHand  
Face Left hand palm X LeftHand  
Face Index finger raise X One 
Face Form V sign with index and middle finger X Two 
Face Index, middle and ring fingers raise X Three 
Face Thumb up X/Thumb up ThumbUp 
Face Make circle using thumb and index finger X OK 
Face Fist up X/Fist up FistUp 
Face/X Point left by index finger X PointLeft 
Face/X Point right by index finger X PointRight 

Table 4. Three segments combination and corresponding gesture  
(X=absence of predefined hand poses or face poses) 
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Table 5 shows the comparison of precisions and recall rates of the pose-specific subspace 
method and the general PCA method for face and hand poses classification. The precision 
(%) is defined by the ratio of the number of correct recognition to total number of 
recognition for each pose. The recall rate (%) is defined by the ratio of the number of correct 
recognition to total number of input for each pose. From the results, we conclude that 
precision and recall rates are higher in the subspace method and wrong classification rates 
are lower than the standard PCA method for majority cases. Wrong classification occurred 
due to orientation and intensity variation. 
For this experiment we have trained the system using 2100 training images of 15 faces and 
hand poses of 7 persons (140 images for each pose of 7 persons). Figure 8 shows the example 
of 15 poses. These poses are frontal face (P1), right directed face (P2), left directed face (P3), 
up directed face (P4), down directed face (P5), left hand palm (P6), right hand palm (P7), 
raised index finger (P8), raised index and middle finger to form “V” sign (P9), raised index, 
middle and ring fingers (P10), fist up (P11), make circle using thumb and fore fingers (P12), 
thumb up (P13), point left by index finger (P14) and point right by index finger (P15). Seven 
individuals were asked to act for the predefined face and hand poses in front of the camera 
and the sequence of images were saved as individual image frame. Then each image frame 
is tested using the general PCA and the pose-specific subspace methods. The threshold 
value (for minimal Euclidian distance) for the pose classifier is empirically selected so that 
all the poses are classified. 

Precision (%) Recall (%) 
Pose # Pose-specific

Subspace PCA Pose-specific
Subspace PCA

P1 96.21 90.37 97.69 93.84 
P2 100 96.59 98.06 91.61 
P3 100 93.28 99.28 99.28 
P4 97.33 92.30 99.31 97.95 
P5 99.21 90.90 98.43 93.75 
P6 100 100 94.28 91.42 
P7 97.22 96.47 100 97.85 
P8 95.17 94.52 98.57 98.57 
P9 97.77 97.67 94.28 90 
P10 97.81 93.05 95 95 
P11 100 100 92.66 87.33 
P12 96.71 96.68 98 97.33 
P13 99.31 100 94.66 93.33 
P14 94.89 93.28 97.69 93.84 
P15 100 100 100 99.33 

Table 5. Comparison of pose-specific subspace method and PCA method 
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6. Implementation Scenarios 

Our approach has been verified using a humanoid robot ‘Robovie’ and an entertainment 
robot ‘Aibo’. This section describes example scenarios, which integrates gestures commands 
and corresponding robot behaviors. For interaction with an ‘Aibo’ robot, a standard CCD 
video camera is attached to the computer (Image analysis and recognition PC) to capture the 
real-time images. In the case of ‘Robovie’ robot, its eyes cameras are used for capturing the 
real time images. Each captured image is digitized into a matrix of 320 240× pixels with 24-
bit color. First, the system is trained using the known training images of predefined faces 
and hand poses of all known persons. All the training images are 60 60× pixels gray 
images. In the training phase, this system generates eigenvectors and feature vectors for the 
known users and hand poses. We have considered robot as a server and our PC as a client. 
Communication link has been established through TCP-IP protocol. Initially, we connected 
the client PC with robot server and then gestures recognition program was run in the client 
PC. The result of gesture recognition program generates gesture commands and sends to 
robot. After getting gesture command robot acted according to user predefined actions. We 
have considered for human-robot interaction that gesture command will be effective until 
robot finishes corresponding action for that gesture.

Figure 11. Human robot (‘Robovie’) interaction scenario 

6.1 Example of Interaction with Robovie 

Figure 11 shows the example of human interaction with a ‘Robovie’ robot [Hasanuzzaman, 
2005b]. The user steps in front of the eyes camera and raises his two hands. The image 
analysis and recognition module recognizes the user as ‘Hasan’ and classifies the three 
poses as ‘FACE’, ‘LEFTHAND’, ‘RIGHTHAND’. This module sends gesture command 
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according to gesture name and user name, and selected robot function will be activated. 
This system implements person-centric gesture-based human robot interaction. The same 
gesture can be used to activate different actions for different persons even the robot is same. 
The robot actions are mapped based on the gesture user relationships (“gesture-user-robot-
action”) in the knowledge base. In this case, “Robovie” raises its two arms (as shown in 
Figure 11) and says “Raise Two Arms”. This system has considered that gesture command 
will be effective until the robot finishes corresponding action for that gesture. This method 
has been implemented on a ‘Robovie’ for the following scenarios: 

User: “Hasan” comes in front of Robovie 
eyes camera, and the robot recognizes the 
user as Hasan.  

Robot: “Hi Hasan, How are you?” 
(Speech)

Hasan: uses the gesture “ThumbUp”  

Robot: “ Oh, sad, do you want to play 
now?” (Speech)  

Hasan: uses the gesture “Ok”,  

Robot: “Thanks!” (Speech) 

Hasan: uses the gesture “TwoHand”  

Robot: imitate user’s gesture “Raise Two 
Arms” as shown in Figure6. 

Hasan: uses the gesture “FistUp” (stop the 
action)

Robot: Bye-bye (Speech).

User: “Cho” comes in front of Robovie eyes 
camera and robot recognizes the user as 
Cho.  

Robot: “Hi Cho, How are you?” (Speech) 

Cho: uses the gesture “ThumbUp”. 

Robot: “ Oh, good, do you want to play 
now?” (Speech)  

Cho: uses the gesture “Ok”.  

Robot: “Thanks!” (Speech) 

Cho: uses the gesture “LeftHand”  

Robot: imitate user’s gesture (“Raise Left 
Arm”).

Cho: uses the gesture “TwoHand” (STOP) 

Robot: Bye-bye (Speech) 

The above scenarios show that same gesture is used for different meanings and several 
gestures are used for the same meanings for different persons. The user can design new 
actions according to his/her desires using ‘Robovie’. 

6.2 Example of Interaction with Aibo 

Figure 12 shows an example of human robot (‘Aibo’) interaction scenario.  The system uses a 
standard CCD video camera for data acquisition. The user raises his index finger in front of 
the camera that is connected to gesture recognition PC. The image analysis and recognition 
module classifies the poses “FACE” and “ONE” (hand pose) and corresponding pose frames 
will be activated. Gestures are interpreted using three components. According to the 
predefined combination gesture is recognized as “One” and corresponding gesture frame is 
activated. The gesture recognition module recognizes the gesture is “One” and the face 
recognition module identifies the person as “Hasan”. The user selects ‘Aibo’ robot for the 
interaction. In this combination activates the ‘Aibo’ for playing action ‘STAND UP’. 
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(a) Sample visual output (“One”) (b) AIBO STAND-UP for Gesture “One” 

Figure 12. Human robot (‘Aibo’) interaction scenario 

User “Hasan” User “Cho” 

Gesture Aibo action Gesture Aibo action  

One STAND UP TwoHand STAND UP 

Two WALK FORWARD One WALK FORWARD 

Three WALK BACKWARD Two WALK BACKWARD 

PointLeft MOVE RIGHT RightHand MOVE RIGHT 

PointRight MOVE LEFT LeftHand MOVE LEFT 

RightHand KICK (right leg) Three KICK 

TwoHand SIT FistUp SIT 

LeftHand LIE ThumbUp LIE 

Table 6. User-Gesture-Action mapping for Aibo 

But for another user same gesture may be used for another action of ‘Aibo’. Suppose user 
“Cho” defines the action “WALK FORWARD” for gesture “One”, i.e. if user is “Cho”, 
gesture is “One” then the ‘Aibo’ robot will ‘Walk Forward’. In a similar way, the user can 
design ‘Aibo’ action frames according to his/her desires. The other actions of the ‘Aibo’ 
those we have used for interaction, are listed in Table 6. The scenarios in Table 6 
demonstrate how the system accounts for the fact that the same gesture is used for different 
meanings and several gestures are used for the same meanings for different persons. The 
user can design new actions according to his/her desires and can design corresponding 
gesture for their desired actions. 
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7. Conclusions and future research 

This chapter describes a real-time face and hand gesture recognition system using skin color 
segmentation and subspace method based pattern matching technique. This chapter also 
describes gesture-based human-robot interaction system using an entertainment robot 
named ‘Aibo’ and humanoid robot ‘Robovie’. In pose-specific subspace method, training 
images are grouped based on pose and eigenvectors for each pose are generated separately. 
In this method, one PCA is used for each pose. From the experimental result we have 
concluded that performance of pose-specific subspace method is better than general PCA 
method in the same environment. 
 One of the major constrains of this system is that the background should be non-skin color 
substrate. If we used infrared camera then it is possible to overcome this problem just by a 
minor modification of our segmentation technique and other module will remain the same. 
Since the skin reflects near IR light nicely, active IR sources placed in proximity to the 
camera in combination with IR pass filter on the lens makes it easy to locate hands those are 
within the range of light sources. 
Considering the reduction of processing time, so far eigenvectors calculations are performed 
separately in off-line. The eigenvectors do not change during dynamic learning process. The 
user has to initiate this calculation function to change the eigenvectors or principal 
components. In future, if faster CPUs are available, these components are then possible to be 
integrated into on-line learning function. 
We could not claim that our system is more robust against new lighting condition and 
clutter background. Our hope is to make this face and gesture recognition system more 
robust and capable to recognize dynamic facial and hand gesture. 
Face and gesture recognition simultaneously will help us in future to develop person 
specific and secure human-robot interface. The ultimate goal of this research is to establish a 
symbiotic society for all of the distributed autonomous intelligent components so that they 
share their resources and work cooperatively with human beings. 

8. Appendix  

8.1 Appendix A: CONVERSION FROM RGB COLOR SPACE TO YIQ COLOR SPACE 

This system uses skin-color based segmentation method for determining the probable face 
and hands areas in an image. There are several color coordinate systems, which have come 
into existence for a variety of reasons. The YIQ is a universal color space used by NTSC to 
transmit color images using the existing monochrome television channels without 
increasing the bandwidth requirements. In the YIQ color model a color is described by three 
attributes: luminance, hue and saturation. The capture color image is represented by the 
RGB color coordinate system at each pixel.  The colors from RGB space are converted into 
the YIQ space. The YIQ produces a linear transform of RGB images, which generates Y 
representing luminance channel and I, Q representing two chrominance channels to carry 
color information. The transformation matrix for the conversion from RGB to YIQ is given 
below [Jain, 1995], 

0.299 0.587 0.114

0.596 0.274 0.322

0.211 0.523 0.312

Y R
I G
Q B

= − −
−
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 Where R, G, and B are the red, green, and blue component values which exist in the range 
[0, 255]. Using the following equations we can converts the images from RGB color 
coordinates system to YIQ color coordinate system, 

0.299 0.587 0.114Y R G B= + +   (A.1) 

0.596 0.274 0.322I R G B= − −  (A.2) 

0.211 0.523 0.312Q R G B= − +    (A.3) 

Images are being searched in YIQ space depending on the amount of color content of these 
dominant colors, that is, whether the skin color value is substantially present in an image or 
not. In order to segment face and hand poses in an image, the skin pixels are thresholded 
empirically. In this experiment, the ranges of threshold values are defined from the Y, I, Q 
histograms calculated for a selected skin region.  

8.2 Appendix B: EIGENVECTORS CALCULATION 

This section describes Eigenvectors calculation method from the training images. The major 
steps of the Eigenvectors calculation algorithm [Smith, 2002] [Turk, 1991] are, 
Step1: Read all the training images ( )iT N N× those are two-dimensional N by N gray 
images, where i=1,2, …., M.
Step2: Convert each image into a column vector 

2( ) ( )i iT N T N N= ×   (B.1) 

Step3: Calculate the mean of all images 

1

1

M
TiM i

Ψ =
=

  (B.2) 

Step4: Subtract the mean and form a big matrix with all the subtracted image data 

i iTφ = −Ψ   (B.3)  

1 2 3[ , , ,......., ]MA φ φ φ φ=   (B.4) 

Step5: Calculate the Covariance of matrix ‘A’ 

TC AA=   (B.5) 

Step6: Calculate the Eigenvectors and Eigenvalues of the Covariance Matrix 

k k ku Cuλ =   (B.6) 

Where, the vectors ku (non-zero) and scalar kλ  are the Eigenvectors and Eigenvalues, 
respectively, of the Covariance matrix C. The relation between Eigenvectors and 
Eigenvalues of a Covariance matrix can be written using equation (B.7)  
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2

1

1
( )

M
T

k k n
n

u
M

λ φ
=

=   (B.7) 

Using MALAB function Eigenvectors and Eigenvalues can be calculated, 

[ , ] ( )eigvec eigvalue eig C=  (B.8) 

Each Eigenvector is of length 2,N describe an N-by-N images and is a linear combination of 
the original image. Eigenvalues are the coefficient of Eigenvectors. The Eigenvectors are 
sorted based on Eigenvalues (higher to lower). According higher order of Eigenvalues k-
numbers of Eigenvectors are chosen to form principal components. 
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1. Introduction 

Face is one of the important biometric identifier used for human recognition.  The face 
recognition involves the computation of similarity between face images belonging to the 
determination of the identity of the face. The accurate recognition of face images is essential 
for the applications including credit card authentication, passport identification, internet 
security, criminal databases, biometric cryptosystems etc. Due to the increasing need for the 
surveillance and security related applications in access control, law enforcement, and 
information safety due to criminal activities, the research interest in the face recognition has 
grown considerably in the domain of the pattern recognition and image analysis. A number 
of approaches for face recognition have been proposed in the literature (Zhao et al. 2000), 
(Chellappa et al. 1995). Many researchers have addressed face recognition based on 
geometrical features and template matching (Brunelli and Poggio, 1993).  There are several 
well known face recognition methods such as Eigenfaces (Turk and Pentland 1991), 
Fisherfaces (Belhumeur et al. 1997), (Kim and Kitter 2005), Laplacianfaces (He et al. 2005). 
The wavelet based Gabor function provide a favorable trade off between spatial resolution 
and frequency resolution (Gabor 1946). Gabor wavelets render superior representation for 
face recognition (Zhang, et al. 2005), (Shan, et al. 2004), (Olugbenga and Yang 2002).  
In recent survey, various potential problems and challenges in the face detection are 
explored (Yang, M.H., et al., 2002). Recent face detection methods based on data-driven 
learning techniques, such as the statistical modeling methods (Moghaddam and Pentland 
1997), (Schneiderman, and Kanade, 2000), (Shih and Liu 2004), the statistical learning theory 
and SVM based methods (Mohan et al., 2001). Schneiderman and Kanade have developed 
the first algorithm that can reliably detect human faces with out-of-plane rotation and the 
first algorithm that can reliably detect passenger cars over a wide range of viewpoints 
(Schneiderman and Kanade 2000). The segmentation of potential face region in a digital 
image is a prelude to the face detection, since the search for the facial features is confined to 
the segmented face region. Several approaches have been used so far for the detection of 
face regions using skin color information. In (Wu, H.Q., et al., 1999), a face is detected using 
a fuzzy pattern matching method based on skin and hair color. This method has high 
detection rate, but it fails if the hair is not black and the face region is not elliptic. A face 
detection algorithm for color images using a skin-tone color model and facial features is 
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presented in (Hsu et al. 2002).  Face recognition can be defined as the identification of 
individuals from images of their faces by using a stored database of faces labeled with 
people’s identities. This task is complex and can be decomposed into the smaller steps of 
detection of faces in a cluttered background, localization of these faces followed by 
extraction of features from the face regions, and finally, recognition and verification. It is a 
difficult problem as there are numerous factors such as 3D pose, facial expression, hair style, 
make up etc., which affect the appearance of an individual’s facial features. In addition to 
these facial variations, the lighting, background, and scale changes also make this task even 
more challenging. Additional problematic conditions include noise, occlusion, and many 
other possible factors.   
Many methods have been proposed for face recognition within the last two decades. Among 
all the techniques, the appearance-based methods are very popular because of their 
efficiency in handling these problems (Chellappa et. al. 1995). In particular, the linear 
appearance based face recognition method known as eigenfaces (Turk &Pentland 1991) is 
based on the principal component analysis of facial image ensembles (Kirbi & Sirovich 
1990). The defining characteristic of appearance-based algorithms is that they directly use 
the pixel intensity values in a face image as the features on which to base the recognition 
decision. The pixel intensities that are used as features are represented using single valued 
variables. However, in many situations same face is captured in different orientation, 
lighting, expression and background, which lead to image variations. The pixel intensities 
do change because of image variations. The use of single valued variables may not be able to 
capture the variation of feature values of the images of the same subject. In such a case, we 
need to consider the symbolic data analysis (SDA) (Bock & Diday 2000; Diday 1993), in 
which the interval-valued data are analyzed. Therefore, there is a need to focus the research 
efforts towards extracting features, which are robust to variations due to illumination, 
orientation and facial expression changes by representing the face images as symbolic 
objects of interval type variables (Hiremath & Prabhakar 2005). The representation of face 
images as symbolic objects (symbolic faces) accounts for image variations of human faces 
under different lighting conditions, orientation and facial expression. It also drastically 
reduces the dimension of the image space. In (Hiremath & Prabhakar 2005), a symbolic PCA 
approach for face recognition is presented, in which symbolic PCA is employed to compute 
a set of subspace basis vectors for symbolic faces and then project the symbolic faces into the 
compressed subspace. This method requires less number of features to achieve the same 
recognition rate as compared to eigenface method. The symbolic PCA technique, however, 
encodes only for second order statistics, i.e., pixel wise covariance among the pixels, and is 
insensitive to the dependencies of multiple (more than two) pixels in the patterns. As these 
second order statistics provide only partial information on the statistics of both natural 
images and human faces, it might become necessary to incorporate higher order statistics as 
well. The kernel PCA (Scholkopf et. al. 1998) is capable of deriving low dimensional features 
that incorporate higher order statistics. Higher order dependencies in an image include 
nonlinear relations among the pixel intensity values, such as the relationships among three 
or more pixels in an edge or a curve, which can capture important information for 
recognition. The kernel PCA is extended to symbolic data analysis as symbolic kernel PCA 
(Hiremath & Prabhakar 2006) for face recognition and the experimental results show 
improved recognition rate as compared to the symbolic PCA method.   The extension of 
symbolic analysis to face recognition techniques using methods based on linear discriminant 
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analysis, two-dimensional discriminant analysis, Independent component analysis, factorial 
discriminant analysis and kernel discriminant analysis has been attempted in (Hiremath and 
Prabhakar Dec 2006, Jan 2006, Aug 2006, Sept 2006, 2007).   
It is quite obvious that the literature on face recognition is replete with a wide spectrum of 
methods addressing a broad range of issues of face detection and recognition.  However, the 
objective of the study in the present chapter is the modeling of uncertainty in the 
representation of facial features, typically arising due to the variations in the conditions 
under which face images of a person are captured as well as the variations in the personal 
information such as age, race, sex, expression or mood of the person at the time of capturing 
the face image.  Two approaches, namely, fuzzy-geometric approach and symbolic data 
analysis, for face recognition are considered for the modeling of uncertainty of information 
about facial features.  

2. Fuzzy face Mode for Face Detection 

In (Hiremath and Danti, Dec 2005), the detection of the multiple frontal human faces based 
on the facial feature extraction, using the fuzzy face model and the fuzzy rules, is proposed 
and it is described in this section. The input color image is searched for the possible skin 
regions using the skin color segmentation method. In which, 2D chromatic space CbCr using 
the sigma control limits on the chromatic components Cb and Cr, derived by applying the 
statistical sampling technique. Each potential face region is then verified for a face in which, 
initially, the eyes are searched and then the fuzzy face model is constructed by dividing the 
human facial area into quadrants by two reference lines drawn with respect to the eyes. 
Further, other facial features such as mouth, nose and eyebrows are searched in the fuzzy 
face model using the fuzzy rules and then face is detected by the process of defuzzification. 
Overview of this fuzzy-geometric approach is shown in the Figure 3.  

2.1 Skin Color Segmentation 

Face detection based on skin color is invariant of facial expressions, rotations, scaling and 
translation (Hsu et al. 2002). Human skin color, with the exception of very black complexion, 
is found in a relatively narrow color space. Taking advantage of this knowledge, skin 
regions are segmented using the skin color space as follows.  
Skin Color Space 
The YCbCr color model is used to build the skin color space. It includes all possible skin 
colors. We are able to extract more facial skin color regions excluding the non-skin regions. 
The skin color space uses only the chromatic color components Cb and Cr for skin color 
segmentation using the sigma control limits (Hiremath and Danti, Feb 2006).  The procedure 
to build skin color space is described as following.   
The sample images are in RGB colors. The RGB color space represents colors with 
luminance information. Luminance varies from person to person due to different lighting 
conditions and hence luminance is not a good measure in segmenting the human skin color. 
The RGB image is converted into YCbCr color model in which luminance is partially 
separated (Jain A.K. 2001). Skin color space is developed by considering the large sample of 
facial skins cropped manually from the color face images of the multi racial people. Skin 
samples are then filtered using low pass filter (Jain 2001) to remove noises. The lower and 
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upper control limits of the pixel values for the chromatic red and blue color components are 
determined based on one-and-half sigma limits using the equation (1).   
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where iμ  denote the mean of the chromatic color components of the thi  sample image c(x,y)

of size m x n, where c denotes the color plane(i.e. red and blue). μ  andσ denotes mean and 
standard deviation of the color components of the population of all the k sample images 
respectively. The lower and upper control limits, lcl and ucl of the chromatic color 
components of skin color, respectively, are used as threshold values for the segmentation of 
skin pixels as given below 
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where ),(),( yxCbandyxCr  are the chromatic red and blue component values of the pixel at (x,
y) in the red and blue planes of the test image respectively. Hence, the lower and upper 
sigma control limits lclr and uclr for red and lclb and uclb for blue colors, can transform a color 
image into a binary skin image P, such that the white pixels belong to the skin regions and 
the black pixels belong to the non skin region as shown in the Figure 1(b).  In the 
computation of the lower and upper control limits, experimental results show that, in the 
σ3  limits, the probability of inclusion of non-skin pixels in the face area is high. On the 

contrary, in the σ  limits, the probability of omission of facial skin pixels in the face area is 
high. It is found that σ5.1  limits are the optimal limits, which yield a suitable trade off 
between the inclusion of facial skin pixels and the omission of non-skin pixels in the face 
area. In the experiments, the values of the mean μ  and the standard deviationσ , and lower 
and upper control limits of the chromatic color components are quantified based on the 
several sample skin images of the multiracial people and are mentioned in the Table 1.  The 
sigma control limits are flexible enough to absorb the moderate variations of lighting 
conditions in the image to some extent. The results of the skin color segmentation are shown 
in the Figure 1(b). The skin color segmentation leads to a faster face detection process as the 
search area for the facial features is comparatively less. The comparative analysis of the 
different skin color segmentation methods is shown in the Table 2. 

Table 1. Statistical values for the skin color space 

Color Component Mean )(μ Std. Dev. )(σ lcl ucl

Cb (Blue) 120 15 97.5 142.5 

Cr (Red) 155 14 134 176 
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a)

b)

c)

d)

e)

f)

g)

Figure 1. Comparison of skin segmentation results. a) Original Image, b) YCbCr (Hiremath-
Danti, Feb 2006), c) RGB (Wang-Yuan method), d) HSV (Bojic method), e) YCbCr (Chai 
method), f) YUV (Yao method), g) YIQ (Yao method) 

Skin Color spaces based on Avg. time
(In secs) 

Std. 
Dev.

% Avg 
segmented
skin area 

Avg No. of 
facial

feature
blocks

RGB Model (Wang & Yuan 2001) 1.04 0.0332 29.00 67 
HSV Model (Bojic & Pang 2000) 0.59 0.0395 32.83 84 
YCbCr Model(Chai& Ngan 1999) 2.12 0.0145 26.31 26 
YUV Model (Yao and Gao 2001) 1.01 0.0136 52.85 99 
YIQ Model (Yao and Gao 2001) 1.05 0.0143 66.07 105 
YCbCr(Hiremath & Danti, Feb 2006) 0.82 0.0137 25.28 21 

Table 2. Comparison of time, segmented skin area, and number of candidate facial feature 
blocks for the various skin color segmentation methods 
Pre processing of Skin Segmented Image  
The binary skin segmented image obtained above is preprocessed by performing binary 
morphological opening operation to remove isolated noisy pixels. Further, white regions 
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may contain black holes these black holes may be of any size and are filled completely. The 
binary skin image is labeled using the region labeling algorithm and their feature moments, 
such as center of mass ( yx, ), orientation θ , major axis length, minor axis length and area, 
are computed (Jain, A.K., 2001; Gonzalez, R.C., et al., 2002). By the observation of several 
face regions under analysis, it is found that the face regions are oriented in the range of °±45

degrees in the case of frontal view of the face images. Only such regions are retained in the 
binary skin image for further consideration. The remaining regions are considered as non 
face regions and are removed from the binary skin image. The observation of several real 
faces also revealed that the ratio of height to width of each face region is approximately 2, 
only such regions are retained. Further, though the skin regions of different sizes are 
successfully segmented, it is found that the potential facial features are miss-detected 
whenever the face area is less than 500 pixels. Hence, the regions, whose area is more than 
the 500 pixels are considered for the face detection process.  The resulting binary skin image 
after the preprocessing and applying the above constraints is expected to contain potential 
face regions (Fig 2(a), (b)). 

a) b) c) 

Figure 2. Results of Skin color segmentation a) Original Image b) Potential face regions in 
gray scale image c) Sobel Filtered Binary image 

2.2 Face Detection 

Each potential face region in the binary image is converted into gray scale image as shown 
in Figure 2.(b) and then each face region is passed on to our fuzzy face model to decide 
whether the face is present in that region or not, by the process of facial feature extraction 
using the fuzzy rules (Hiremath & Danti Dec. 2005). The detailed face detection process, 
which detects multiple faces in an input image, is described in Figure 3. 

Figure 3. Overview of the multiple face detection process 
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Preprocessing of Face Regions 
The each gray scale version of the potential face region is filtered using the Sobel edge filter 
and binarized using a simple global thresholding and then labeled. In the labeled image, the 
essential facial feature blocks are clearly visible in the potential face region under 
consideration Figure 2(c). Further, for each facial feature block, its center of mass ( yx, ),
orientationθ , bounding rectangle and the length of semi major axis are computed (Jain, 
A.K., 2001). 
Feature Extraction 
The feature blocks of the potential face region in the labeled image are evaluated in order to 
determine which combination of feature blocks is a potential face and the procedure is 
explained as follows: 
Searching Eyes 
The eyes are detected by exploiting the geometrical configuration of the human face. All the 
feature blocks are evaluated for eyes. Initially, any two feature blocks are selected arbitrarily 
and assume them as probable eye candidates.  Let ( 11, yx ) and ( 22, yx ) be respectively, the 
centers of right feature block and left feature block. The line passing through the center of 
both the feature blocks is called as the horizontal-reference-line (HRL) as shown in Figure 4 
and is given by the equation (3) and the slope angle HRLθ  between the HRL and x-axis is 
given by equation (4). 

Figure 4. Fuzzy face model with support regions for eyebrows, nose and mouth shown in 
rectangles

0=++ HRLcbyax

 where,  21122112 ,, yxyxcxxbyya HRL −=−=−=  (3) 

The slope angle HRLθ  between the HRL and x-axis is given by: 

2/2/,)/(tan 1 πθπθ ≤≤−−= −
HRLHRL ba  (4) 

 Since the fuzzy face model is a frontal view model, a face in a too skewed orientation is not 
considered in this model. Hence, the slope angle HRLθ  is constrained within the range 
of 45± . If the current pair of feature blocks does not satisfy this orientation constraint, then 
they are rejected and another pair of feature blocks from the remaining feature blocks is 
taken for matching. Only for the accepted pairs of features, the normalized lengths of the 
semi major axis l1 and l2 are computed by dividing the length of the semi major axis by the 
distance D between these two features. The distance D is given by the equation (5). 
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( ) ( )[ ] 2/12
21

2
21 yyxxD −+−=  (5) 

 Let 21 θθ and  are the orientations of the above accepted feature blocks. The evaluation 
function EEye is computed using the equation (6) to check whether the current pair of 
features is a potential eye pair or not.  

( ) ( ) ( ) ( )( )[ ]2
2

2
1

2
21

2
21 12.1exp HRLHRLEye llllE θθθθ −+−+−++−−=  (6) 

This evaluation function value ranges from 0 to 1 and it can be given the interpretation of a 
probability value. The constant 1.2 is the mean of the negative exponential distribution, 
which is determined empirically with respect to the sample images considered for 
experimentation to optimize higher detection rate with lower false detections. Hence, higher 
the evaluation value EEye higher is the probability of the two selected feature blocks to be 
eyes. If this evaluation value is greater than an empirical threshold value 0.7, then these two 
feature blocks are accepted as the potential eye pair candidate. Otherwise, this pair of blocks is 
rejected and another pair of feature blocks is selected. For potential eye pair candidate, the 
fuzzy face model is constructed and the other facial features are searched as follows.
Construction of Fuzzy Face Model 
It is assumed that every human face is having the same geometrical configuration and the 
relative distances between the facial features are less sensitive to poses and expressions 
(Yang et al. 2002). The fuzzy face model is constructed with respect to the above potential 
eye candidates. A line perpendicular to the HRL at the mid point of the two eyes is called as 
vertical reference line (VRL). Let (p,q) be the mid point of the line segment joining the centers 
of the two eye candidates. Then the equation of the VRL is given by equation (7).  

0=+− VRLcaybx  (7) 

These two reference lines (HRL and VRL) are used to partition the facial area into quadrants 
as shown in Figure 4. The vertical and horizontal distances of the facial features namely, 
eyebrows, nose and mouth are empirically estimated in terms of the distance D between the 
centers of the two eyes on the basis of the observations from several face images. The 
notations MouthNoseEyebrows VandVV ,  denote the vertical distances of the centers of eyebrows, 
nose and mouth from the HRL which are estimated as 0.3D, 0.6D and 1.0D respectively. The 
notations MouthNoseEyebrows HandHH ,  denote the horizontal distances of the centers of 
eyebrows, nose and mouth from the VRL which are estimated as 0.5D, 0.05D and 0.1D
respectively. The facial features are enclosed by the rectangles to represent the support 
regions, which confine the search area for facial features. This completes the construction of 
the fuzzy face model with respect to the selected potential eye pair candidate in the given 
face region as shown in Figure 4. Further, the fuzzy face model is used to determine which 
combination of the feature blocks is a face. 
Searching Eyebrows, Nose and Mouth 
The searching process proceeds to locate the other potential facial features, namely 
eyebrows, nose and mouth with respect to the above potential eye pair candidate. The 
support regions for eyebrows, nose and mouth are empirically determined using fuzzy rules 
as given in Table 3. Then these support regions are searched for facial features. For 
illustration, we take the left eyebrow feature as an example to search. Let a feature block K
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be a potential left eyebrow feature. The horizontal distance hLeb and the vertical distance vLeb

of the centroid of the Kth feature from the VRL and HRL, respectively, are computed using 
the equation (8).  

Vertical distances Horizontal distances 
Feature(j)

jvmin
jvmax jv jvσ

jhmin
jhmax jh jhσ

Eyebrows 0.02 0.38 0.2 0.06 0.24 0.65 0.45 0.07 
Nose 0.30 0.90 0.6 0.10 -0.2 0.2 0.0 0.07 

Mouth 0.45 1.35 0.9 0.15 -0.3 0.3 0.0 0.10 

Table 3. Emperically determined distances of the facial features (normalized by D) 

( ) 2/122 ba

cyaxb
h VRLKK
Leb

+

+−
=    and  ( ) 2/122 ba

cybxa
v HRLKK
Leb

+

++
= , (8) 

Treating Lebh and Lebv as the fuzzy quantities to represent the possible location of the 
potential left eyebrow feature, the fuzzy membership values

Lebhμ and
Lebvμ , respectively, are 

defined using the trapezoidal fuzzy membership function (Hines & Douglas 1990). In 
particular, the membership function 

Lebvμ  is defined using the equation (9) and Table 3. 
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Similarly, the membership function 
Lebhμ is defined. The support region for the potential left 

eyebrow feature is the set of values hLeb and vLeb whose fuzzy membership values are non-
zero. The Figure 5(a) shows the graph of the trapezoidal fuzzy membership function

jvμ for

the vertical distance of the jth feature and the support region for the left eyebrow is shown in 
Figure 5(b). To evaluate Kth feature block in the support region for left eyebrow, the value of 
the evaluation function EK is given by the equation (10). The EK value ranges from 0 to 1 and 
represents the probability that the feature block K is a left eyebrow. 

Figure 5. Trapezoidal fuzzy membership function
jvμ for the vertical distance of the jth facial 

feature b) Support region for left eyebrow in the I quadrant of face model 
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Similarly, evaluation value is computed for all the feature blocks present in that support 
region of the left eyebrow. The evaluation value ELeb is a fuzzy quantity represented by the 
set of EK values with their corresponding fuzzy membership values Kμ . The membership 
value Lebμ corresponding to ELeb is obtained by the min-max fuzzy composition rule (Klir & 
Yuan 2000) given by the equations (11) and (12). The feature block having the evaluation 
value ELeb with the corresponding Lebμ  found in the support region of the left eyebrow is the 
potential left eyebrow feature with respect to the current pair of potential eye candidates.  

( )
KK vhK μμμ ,min= , for each K (11) 

{ }K
K

Leb μμ max=  (12) 

Similarly, the right eyebrow, nose and mouth are searched in their respective support 
regions determined by appropriately defining the membership functions for the fuzzy 
distances (horizontal and vertical) from the centroid of these facial features, and their fuzzy 
evaluation values are computed by applying the min-max fuzzy composition rule. The 
overall fuzzy evaluation E for the fuzzy face model is defined as the weighted sum of the 
fuzzy evaluation values of the potential facial features namely, for the eye, left eyebrow, 
right eyebrow, nose and mouth, respectively. The weights are adjusted to sum to unity as 
given in the equation (13). The membership value Eμ  corresponding to E is obtained by the 
fuzzy composition rule as given by the equation (14). 

bLebNoseMouthEye EEEEEE Re05.005.02.03.04.0 ++++=  (13) 

{ }bLebNoseMouthE Re,,,min μμμμμ =  (14) 

Above procedure is repeated for every potential eye pair candidate and get the set of fuzzy 
faces. These fuzzy faces are represented by the set of E values with their corresponding 
membership values Eμ . Finally, the most probable face is obtained by the defuzzification 
process as given by the equation (15).  

{ }E
E

E μμ
Ω∈

= maxmax  (15) 

Then the E value corresponding to maxEμ  is the defuzzified evaluation value ED of the face. 
If there are more than one E value corresponding to maxEμ , the maximum among those 
values is the defuzzified evaluation value ED of the face. Finally, the potential eyes, 
eyebrows, nose and mouth features corresponding to the overall evaluation value ED

constitute the most probable face in the given face region, provided ED is greater than the 
empirical threshold value 0.7. Otherwise this face region is rejected. The face detection 
results are shown in Figure 6, where (a) display the feature extraction in which facial 
features are shown in bounding boxes (Jain 2001) and (b) shows detected face in rectangular 
box. (Hiremath P.S. & Danti A. Feb 2006). The above procedure is repeated for every 
potential face region to detect possible faces in the input image.  
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Figure 6. Results of Face Detection a) Facial Feature extraction b) Detected face in box 

2.3 Experimental Results 

The MATLAB 6.0 implementation of the above described procedure on Pentium IV @ 2.6 
GHz yields the success rate of 96.16%.  The average time taken to detect one face is about 
0.78 sec, which depends on the size of the potential face region. The search area for the facial 
feature extraction is confined to only the total area covered by the support regions i.e. 
0.67D2, (D is distance between eyes) which is considerably very small compared to that of 
the image size. This reduced search area leads to the reduction in the detection time to a 
great extent. Sample detection results are shown in Figure 7 and Figure 8 with detected faces 
enclosed in rectangular boxes.  Due to the constraints of the face model, miss-detection 
occurs due to several reasons i.e. profile (side) view faces, abnormal lighting conditions, face 
occluded by hair, very small face sizes, face occluded by hand and too dark shadow on faces 
as shown in Figure 9. 
The comparison of different state of the art detectors proposed by (Shih and Liu 2004, we 
refer as S-L method) and (Schneiderman and Kanade 2000, we refer as S-K method) and 
(Hiremath and Danti, Dec. 2005, we refer as H-D method) is given in Table 4. It is observed 
that, fuzzy face model approach based on skin color segmentation (H-D method) is 
comparable to others in terms of detection rate and very low in both detection time and false 
detections.  

Method Det.
Rate (%) 

False 
detection 

Det. Time 
(secs) Dataset No. of  

images
No. of  
faces

S-L method 98.2  2 not
reported MIT-CMU 92 282 

S-K method 94.4  65 5 MIT-CMU 125 483 

H-D method 96.1  02 0.78 CIT, FERET, 
Internet 650 725 

Table 4. Comparison of performance 

Figure 7. Sample detection results for single as well as multiple human faces with sizes, 
poses, expressions and complex backgrounds 
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Figure 8. Sample images with expressions, lighting conditions, complex background & 
beards

Figure 9. Sample images with miss-detections 

3. Optimization of feature sets 

A small set of geometrical features is sufficient for the face recognition task, which requires 
less computational time and less memory due to their low dimension. In this approach, 
facial features detected based on the Fuzzy face model are considered. The normalized 
geometrical feature vector is constructed with the distances, areas, evaluation values and 
fuzzy membership values. Normalization is done with respect to the distance between eyes. 
Further, the feature vector is optimized and demonstrated that the resultant vector is 
invariant of scale, rotation, and facial expressions. This vector uniquely characterizes each 
human face despite changes in rotation, scale and facial expressions. Hence, it can be 
effectively used for the face recognition system. Further, it is a 1-dimensional feature vector 
space which has reduced dimensionality to a greater extent as compared to the other 
methods (Turk & Pentland, 1991; Belhumeur et al., 1997) based on the 2-dimensional image 
intensity space.  In (Hiremath and Danti, Dec. 2004), the method of optimization of feature 
sets for face recognition is presented and it is described as below.   

3.1 Geometrical Facial Feature Set  

The geometrical facial feature set contains total of about 26 features, in which 12 facial 
features are obtained from face detector and remaining 14 projected features are determined 
by the projection of facial features such as eyes, eyebrows, nose, mouth and ears. 
Facial Features
Using the face detector based on Lines-of-Separability face model (Hiremath P.S. & Danti A., 
Feb. 2006) and fuzzy face model (Hiremath P.S. & Danti A., Dec. 2005) respectively, the list 
of geometrical facial features extracted are given in the Table 5. 
Projected Features  
The centroid of the facial features obtained by our face detectors are projected 
perpendicularly to the Diagonal Reference Line (DRL) as shown in the Figure 10. The DRL is 
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the line bisecting the first quadrant in the HRL-VRL plane and is a locus of point (x,y)
equidistant from HRL and VRL. The equation of the DRL is given by: 

0=++ CByAx , where the coefficients A, B, and C are given by: (16) 

)(),(),( VRLHRL ccCbaBbaA −=+=−=  (17) 

Feature Description Feature Description 
EEyes Evaluation value of eyes ERear Evaluation value of right ear 

ELeb
Evaluation value of left 
eyebrow E Overall evaluation value of the 

face

EReb
Evaluation value of right 
eyebrow Lebμ

Membership value of left 
eyebrow

ENose Evaluation value of nose bReμ
Membership value of right 
eyebrow

EMouth Evaluation value of mouth Noseμ Membership value of nose 

ELear Evaluation value of left ear Mouthμ Membership value of mouth 

Table 5. List of geometrical features extracted from face detectors 

Figure 10. Projection of features on to DRL
Distance Ratio Features  
The distance ratios are computed as described in the following. Let ),( KK yx  be the centroid 
K of the kth feature (e.g. left eyebrow in the Figure 10). Let KP be the projection of point K on 
the DRL. Then, the following distances are computed: 

22 BA

CByAxKP KK
K

+

++=  (Perpendicular distance)  (18) 

22 )()( KK yqxpMK −+−=   (Radial distance) (19) 

22
KK KPMKMP −=  (Diagonal distance) (20) 
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K
K

Leb MP
KPR =  (Distance ratio) (21) 

The notation, LebR  denote the distance ratio obtained by the projection of left eyebrow. 
Similarly the distance ratios arLearMouthNosebLe RandRRRRRR ReReRe ,,,,,  are determined, 
respectively for left eye, right eye, right eyebrow, nose, mouth, left ear and right ear.  
Distance Ratio Features in Combination 
The distances of all the facial features along the DRL are used to compute the distance ratios 
for the combination of facial features as follows. 

ye

Leye
yeLeye MP

MP
R

Re
Re2 =  (Left Eye to Right Eye) (22) 

b

Leb
bLeb MP

MP
R

Re
Re2 =  (Left Eyebrow to Right Eyebrow)  (23) 

m

n
MN MP

MP
R =2   (Nose to Mouth)  (24) 

ar

Lear
arLear MP

MP
R

Re
Re2 =  (Left Ear to Right Ear) (25)

Area Features  
The centroids of the eyes, eyebrows, nose and mouth are connected in triangles as shown in 
the Figure 11. The areas covered by the triangles are used to determine the area features. In 
Figure 11(a), e1 and e2 denote right and left eyes respectively; n and m denote nose and 
mouth respectively. The coordinates ),(,),(,),(,),( 44332211 yxandyxyxyx  are the centroids of 
right eye, left eye, nose, and mouth respectively.  

Figure 11. Triangular area features (a) Areas formed by eyes, nose, and mouth (b) Areas 
formed by eyebrows, nose, and mouth 

The triangular area Aen formed by eyes and nose; and, the triangular area Aem formed by 
eyes and mouth are computed as given below. 
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Then the ratio of areas covered by eyes, nose and mouth is given by the equation (27). 
Similarly, in Figure 11(b), b1 and b2 denote right and left eyebrows respectively, and n and m
denote nose and mouth respectively. The coordinates ),(,),( 2211 yxyx , ),(),,( 4433 yxandyx are 
the centroids of right eyebrow, left eyebrow, nose, and mouth respectively. The triangular 
area Aebn formed by eyebrows and nose; and, the triangular area Aebm formed by eyebrows 
and mouth are computed as given below.  

)()(

)()(
5.0

3232

3131

yyxx
yyxx

Aebn −−
−−

=  & 
)()(

)()(
5.0

4242

4141

yyxx
yyxx

Aebm −−
−−

=  (28) 

ebm

ebn
Eyebrows A

A
A =  (29) 

Then the ratio of areas covered by eyebrows, nose and mouth is given by the equation (29). 
The projected features are listed in the Table 6. 

Feature Description Feature Description 
RLeye Distance ratio by left eye RRear Distance ratio by right ear 
RReye Distance ratio by right eye RLeye2Reye Distance ratio by left and right eyes 
RLeb Distance ratio by left 

eyebrow
RReb2Leb Distance ratio by left & right 

eyebows
RReb Distance ratio by right 

eyebrow
RN2M Distance ratio by nose and mouth 

RNose Distance ratio by nose RLear2Rear Distance ratio by left ear and right 
ear

RMouth Distance ratio by mouth AEyes Area ratio by eyes, nose and mouth 
RLear Distance ratio by left ear AEyebrows Area ratio by eyebrows, nose and 

mouth

Table 6. List of projected features 

Final geometrical features include 26 features, in which 12 features are from the Table 5 and 
14 features are from the Table 6. 

3.2 Optimization of Features Sets 

Three subsets of features from 26 features in different combinations are considered for 
optimization. The subset A, B, C consist of 14, 6, 14 features, respectively as given below. 

),,,,,

,,,,,,,(

Re222ReRe2

ReRe,Re

EyebrowsEyesarLearMNLebbyeLeye

arLearMouthNosebLebyeLeye

AARRRR

RRRRRRRRSubsetA =
 (30) 

),,,,,( 22Re EyebrowsEyesMNLebbEyes AARREEBSubset =  (31) 
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,,,,,,,,(

22Re

ReRe

EyebrowsEyesNoseMouthLebbMouth

NosebLebEyesMouthNosebLeb

AARREE

EEEECSubset μμμμ=
  (32) 

The every feature subset is optimized by the maximal distances between the classes and 
minimal distances between the patterns of one class. Here each class represents one person 
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and the different images of one person were considered as patterns. The effectiveness of 
every feature subset is determined by the evaluation function F as given below. 
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where Mi and Di are mean and variance of the feature values fij for (j =1 to k) k images of the 
i-th person respectively, Mm and Md are mean of Mi and Di respectively. The F value is the 
ratio of the measures of dispersion of sample standard deviations and of the sample means 
of the feature values in the k sample images of a class. For illustration we have used ORL 
face database, which contain 40 subjects or classes and each of 10 variations. The Figure 12 
shows the optimization of feature subsets in which F values along the y-axis are plotted for 
40 classes along the x-axis. The lower F value indicates the stronger invariance property of 
the feature subset with respect to scale, rotation and facial expressions. In the Figure 12 it 
shows that the feature subset C is well optimized with the lowest F values compared to 
other subsets and, hence it corresponds to a better feature subset. 

Figure 12. Optimization of subsets of features 

Invariance Property 
The above feature Subset C is considered as the most optimized geometrical feature vector 
for face recognition and is invariant to scaling, rotation, and facial expressions, because the 
relative geometrical distances between the facial features such as eyes, nose, mouth, and 
eyebrows vary proportionally with respect to scaling, rotation, and facial expressions, and 
their feature values remain nearly constant. Hence the optimized feature vector 
characterizes each human face uniquely. The Figure 13 illustrates the invariance property of 
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feature vectors for the images shown in Figure 13(a). The Figure 13(b), feature vectors 
exhibit negligible variations in the feature values. 

 a) b) 
Figure 13. Illustration of invariance property a) Different images of the same person b) 
Feature vectors for the images in a) 

4. Face Recognition 

In automated face recognition, a human face can be described by several features, but very 
few of them are used in combination to improve discrimination ability and different facial 
features have different contributions in personal identification. The use of geometrical 
features will always have the credit of reducing huge space that is normally required in face 
image representation, which in turn increases the recognition speed considerably (Zhao et 
al. 2000). In (Hiremath and Danti, Jan 2006), the geometric-Gabor features extraction is 
proposed for face recognition and it is described in this section. 

4.1 Gemetric-Gabor feature Extraction 

In the human ability of recognizing a face, the local features such as eyes, eyebrows, nose 
and mouth dominate the face image analysis. In the present study, we have used 
geometrical features and Gabor features in combination for face recognition. The optimized 
feature set (Subset C) is considered as Geometric-Features for face recognition and the 
features are listed as below.  

),,,,,

,,,,,,,,(

22Re

ReRe

EyebrowsEyesNoseMouthLebbMouth

NosebLebEyesMouthNosebLeb

AARREE

EEEEFeaturesGeometric μμμμ=
 (34) 

The Gabor features are extracted by applying the Gabor filters on the facial feature locations 
as obtained by our face detector and these locations are considered as highly energized 
points on the face. We refer these Gabor features as Geometric-Gabor Features and the feature 
extraction process is as given below. 
The local information around the locations of the facial features is obtained by the Gabor 
filter responses at the highly energized points on the face. A Gabor filter is a complex 
sinusoid modulated by a 2D Gaussian function and it can be designed to be highly selective 
in frequency. The Gabor filters resemble the receptive field profiles of the simple cells in the 
visual cortex and they have tunable orientation, radial frequency bandwidth and center 
frequency.  The limited localization in space and frequency yields a certain amount of 
robustness against translation, distortion, rotation and scaling. The Gabor functions are 



Face Recognition 200

generalized by Daugman (Daugman 1980) to the following 2D form in order to model the 
receptive fields of the orientation selective simple cells. The Gabor responses describe a 
small patch of gray values in an image I(x) around a given pixel x=(x,y)T. It is based on a 
wavelet transformation, given by the equation: 

xdxxxIxR ii ′′−′= )()()( ψ  (35) 

This is a convolution of image with a family of Gabor kernels  
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Each iψ  is a plane wave characterized by the vector ik enveloped by a Gaussian function, 

where σ  is the standard deviation of this Gaussian. The center frequency of thi  filter is 
given by the characteristic wave vector ik , in which scale and orientation given by ),( μθvk .
The first term in the Gabor kernel determines the oscillatory part of the kernel and the 
second term compensates for the DC value of the kernel. Subtracting the DC response, 
Gabor filter becomes insensitive to the overall level of illumination. The decomposition of an 
image into these states is called wavelet transform of the image given by equation (35). 
Convolving the input image with complex Gabor filters with 5 spatial frequencies )4,...0( =v
and 8 orientations )7,...0( =μ will capture the whole frequency spectrum, both amplitude and 
phase, as shown in the Figure 14. 

Figure 14. Gabor filters w.r.t. 5 Frequencies and 8 Orientations   

In the Figure 15, an input face image (a), the highly energized points (b) and the amplitude 
of the responses (c) to the above Gabor filters are shown. Several techniques found in the 
literature for Gabor filter based face recognition consist of obtaining the response at grid 
points representing the entire facial topology using elastic graph matching for face coding 
(Kotropoulos et al. April 2000; Wiskott et al.1999; Duc et al. 1999), which generate the high 
dimensional Gabor feature vector. However, instead of using the graph nodes on entire face, 
we have utilized only the locations of the facial features such as eyes, eyebrows, nose, and 
mouth extracted by our face detector (Hiremath P.S. & Danti March 2005) as the highly 
energized face points (Figure 15(b)) and Gabor filter responses are obtained at these points 
only. This approach leads to reduced computational complexity and improved performance 
on account of the low dimensionality of the extended feature vector, which is demonstrated 
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in the experimental results. Gabor responses are obtained at the highly energized face points 
of the input face image. A feature point is located at ( )00 , yx  if   

( ) ( )( )yxRyxR i
Wyx

i ,max,
0),(

00
∈

=  and  ( ) ( )
= =

>
1 2

1 1
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y
ii yxR

NN
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where i=1,…,40, iR is the response of the image to the ith Gabor filter. The size of the face 
image is 21 NXN  and the center of the window, 0W , is at ( )00 , yx . The window size W must be 
small enough to capture the important features and large enough to avoid redundancy. In 
our experiments, 9X9 window size is used to capture the Gabor responses around the face 
points. For the given face image, we get 240 Gabor responses (6 highly energized facial 
feature points and 40 filters) as a Geometric-Gabor feature set. Finally, both the Geometric-
Features and Geometric-Gabor-Features are integrated into an Extended-Geometric-Feature
vector. These feature vectors are used for the recognition of a face by applying the matching 
function as described in the next section. 

Figure 15. Facial image response to 40 Gabor Filters a) Original Image, b) highly energized 
face points  c) Gabor Filter Responses 

4.2 Face Matching  

The traditional PCA technique (Turk and Pentland 1991) considers each face image as a 
feature vector in a high dimensional space by concatenating the rows of the image and using 
the intensity of each pixel as a single feature. Hence, each image can be represented as an n-
dimensional random vector x. The dimensionality n may be very large, of the order of 
several thousands. The main objective of the PCA is dimensionality reduction, i.e. n-
dimensional vector x into an m-dimensional vector, where m<<n. A face image is 
represented by Geometric-Feature set and also by Geometric-Gabor-Feature set. Further, these 
two feature sets are integrated into an Extended-Geometric feature vector, which is 
considerably very small compared to that of the feature vector used in (Turk and Pentland 
1991). The matching function is evaluated for all the feature sets of the training face images 
in order to assess the match between the images of the same person (or subject) and the 
images from different individuals. The match value is determined by comparing a host face 
with the other face images using the negative exponential function given by: 

Matching Function  ( )
=

−−=
N

i
ii yx

N
d

1

exp
1   where 0<d<1 (38) 
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where xi and yi are the feature elements of the face images X and Y, respectively, N is the 
total number of elements of the feature. The results of the matching performance for the 
database faces using the Geometric-Feature set, the Geometric-Gabor-Feature set and the 
Extended-Geometric-Feature set are shown in the Figure 17(a), (b) and (c), respectively. The 
match value dEGF for an Extended-Geometric-Feature vector is determined by the average of 
the match values of Geometric dGF and Geometric-Gabor dGGF feature sets as given below: 

[ ]GGFGFEGF ddd +=
2

1  (39) 

The match values are determined using the matching function. The horizontal axis 
represents the face number and the vertical axis represents the match between faces for that 
feature set. The value of the match is within the range [0,1] and can be given probability 
interpretation. The match is 1, when the host face is having highest match with that of the 
target faces and the match is zero, when the host face is having lowest match with that of the 
target faces. The performance of the features are analyzed by searching for target faces that 
match with the given host face. The targets are different images of the same person as the 
host. The analysis is based on the individual assessment of the two feature sets as well as the 
performance when both the feature sets are integrated into the extended feature vector. 

4.3 Experimental Results 

For experimentation, the ORL and MIT face databases, which are the publicly available 
benchmark databases for evaluation, are used. The ORL database consists of 400 images, in 
which there are 40 subjects (persons) and each having 10 variations i.e. varying expressions, 
poses, lighting conditions under homogeneous background. The MIT database consists of 
432 images, in which there are 16 subjects and each having 27 variations i.e. different head 
tilts, scales and lighting conditions under moderate background. The experimentation is 
done with 40 face images, which consist of 10 subjects and each of 4 variations. To illustrate 
the analysis of experimental results, the Figure 16 depicts face no 21 as host face and face 
nos. 22, 23 and 24 as its target faces, i.e. these face images pertain to the same subject 
(person). Results of the match between the face 21 and the other 39 faces are shown in the 
Figs. 17 (a), (b) and (c) for the Geometric-Feature set, the Geometric-Gabor-Feature set and the 
Extended-Geometric-Feature vector, respectively. In the Figure 17(a), we observe that some of 
the non-target faces also yield a comparable match value as that of target faces leading to 
recognition errors, e.g. non-target face nos. 3, 26 and 27 have match values close to that of 
target faces no. 23. Further, many of the non-target faces have match values greater than 0.5 
leading to the poor discrimination ability of the geometric feature set. Similar observations 
can be made in the Figure 17(b), but the discrimination ability of Geometric-Gabor feature 
set is found to be better than the geometric feature set. Only few non-target faces have 
match values greater than 0.4 and close to the target faces. However, still improved match 
results are found in case of the integrated feature vector combining geometric as well as 
Geometric-Gabor features and are depicted in Figure 17(c). All the non-target faces have 
their match values much less than 0.4 and are well discriminated from the target faces 
leading to enhanced recognition rate. 
The possibility of a good match of the non-target faces on individual feature sets have been 
reduced and such faces are well discriminated by the integration of both the feature sets as 
shown in the Figure 17(c). Similar discrimination results are reported when comparing the 
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effectiveness of template matching to geometric features (Brunelli and Poggio, 1993). In 
matching, the geometric features remain reasonably constant for a certain extent of 
variations in face orientation, expressions and tolerate side-to-side rotation better than up-
down movement, which are attributed to the normalization by the distance between eyes. 
However for the geometric features, match fails for upside down faces and extreme 
illumination conditions, due to the fact that, the fuzzy face model is constrained by the face 
orientation within the range 45±  and minimum face area of 500 pixels, otherwise the facial 
features are miss-detected. These factors are greatly affecting the matching performance of 
the Geometric-Feature set. The Geometric-Gabor-Feature set performed well on all the faces due 
to the fact that, Gabor features capture most of the information around the local features, 
which yields a certain amount of robustness against lighting variations, translation, 
distortion, rotation and scaling. Further, robustness of Gabor features is also because of 
capturing the responses only at highly energized fiducial points of the face, rather than the 
entire image. The Gabor filters are insensitive to the overall level of illumination, but fail for 
the images under extreme illumination conditions (too darkness). Hence, the match on the 
Extended-Geometric-Feature vector exhibits a balanced performance. Face movement not only 
affects feature translation and rotation but also causes variation in illumination by changing 
the position of shadows especially in case of up-down, and side-to-side face movements.  
Hence this approach is tolerant not just to face movement but also to a certain extent of 
variations in illumination.  

Figure 16. Sample faces of MIT database images a) Host face b) Target faces 

Figure 17. Match between host face and training faces on feature sets a) Geometric b) 
Geometric-Gabor c) Extended-Geometric 

The comparison of the present method with the well known algorithms for face recognition 
such as eigenface (Turk and Pentland 1991) and elastic graph matching (Wiskott et al. 1999) 
with respect to the recognition performance is presented in the Table 7.  



Face Recognition 204

Face Databases Method MIT ORL 
Eigenface (Turk 1991) 97% 80 % 
Elastic graph Matching (Wiskott 1999) 97% 80 % 
Fuzzy face model with optimized feature set 
(Hiremath and Danti, Sept. 2005) 89 % 91 % 

Table 7. Recognition Performance 

The eigenface method did reasonably better on MIT database with 97% recognition and also 
has acceptable performance on ORL database with 80% recognition. Eigenface technique 
uses minimum Euclidian distance classifier, which is optimal in performance only if the 
lighting variation between training and testing images is around zero-mean. Otherwise, 
minimum distance classifier deviates significantly from the optimal performance, which is 
resulting in the deterioration of performance. Elastic matching method also performed well 
on the MIT database with 97% recognition and 80% recognition on ORL database. This 
method utilizes Gabor features covering entire face and it has some disadvantages due to 
their matching complexity, manual localization of training graphs and overall execution 
time.
The present method performed reasonably well on MIT database with 89% recognition, 
which is comparable to the other two methods, and has significantly improved performance 
on ORL database with 91% recognition. The comparison reveals that the Extended-
Geometric feature vector is more discriminating and easy to discern from others and has a 
credit of low dimensional feature vector when compared to the high dimensional vectors 
used in other two methods. The reduced dimension has increased the recognition speed 
significantly a reduced the computation cost considerably. 

5. Symbolic Data Approaches for Face Recognition  

The symbolic data analysis (SDA) is an extension of classical data analysis to represent more 
complex data.  Features characterizing symbolic object may be large in number, which leads 
to creation of a multi-dimensional feature space. Larger the dimensionality, more severe is 
the problem of storage and analysis. Hence, a lot of importance has been attributed to the 
process of dimensionality or feature reduction of symbolic objects, which is achieved by sub 
setting or transformation methods.  Nagabhushan et. al. proposed the dimensionality 
reduction method on interval data based on Taylor series (Nagabhushan et. al. 1995).  Ichino 
(Ichino 1994) proposed an extension of a PCA based on a generalized Minkowski metrics in 
order to deal with interval, set valued structure data. Choukria, Diday and Cazes (Choukria 
et. al. 1995) proposed different methods, namely, Vertices Method (V-PCA), Centers Method 
and Range Transformation Method. The idea of using kernel methods has also been adopted 
in the Support Vector Machines (SVM) in which kernel functions replace the nonlinear 
projection functions such that an optimal separating hyperplane can be constructed 
efficiently (Bozer et. al. 1992). Scholkopf et. al. proposed the use of kernel PCA for object 
recognition in which the principal components of an object image comprise a feature vector 
to train a SVM (Scholkopf et al. 1998). Empirical results on character recognition using 
MNIST data set and object recognition using MPI chair database show that kernel PCA is 
able to extract nonlinear features. Yang et al., compared face recognition performance using 
kernel PCA and the eigenfaces method (Yang et al. 2000). Moghaddam demonstrated that 
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kernel PCA performed better than PCA for face Recognition (Moghaddam 2002). Chengjun 
Liu extended kernel PCA method to include fractional power polynomial models for 
enhanced face recognition performance. (Chengjun Liu 2004).  In (Hiremath and Prabhakar, 
2006), an integrated approach based on symbolic data analysis and kernel PCA for face 
recognition is explored.    

5.1 Symbolic Kernel PCA for Face Recognition 

This section details the face recognition method using symbolic kernel PCA method 
(Hiremath and Prabhakar, 2006). In the training phase, firstly, the symbolic faces are 
constructed for a given face database images. Secondly, symbolic kernel PCA is applied to 
the symbolic faces in order to nonlinearly derive low dimensional interval type features that 
incorporate higher order statistics. In the classification phase, the test symbolic face is 
constructed for a given test face class in order to derive the symbolic kernel PCA interval-
type features. Finally, a minimum distance classifier is employed for classification using 
appropriate symbolic dissimilarity measure. 
Construction of Symbolic Faces 
 Consider the face images nΓΓΓ ,...,, 21 , each of size MN × , from a face image database. Let 

{ }nΓΓ=Ω ,....,1 be the collection of n face images of the database, which are first order 
objects. Each object Ω∈Γl , ,,...,1 nl = is described by a feature vector ( )pYY

~
,...,

~
1 , of length 

,NMp=  where each component ,,...,1,
~

pjYj = is a single valued variable representing the 
intensity values of the face image lΓ .  An image set is a collection of face images of m
different subjects and each subject has different images with varying expressions, 
orientations and illuminations. The face images are arranged from right side view to left 
side view. Thus there are m number of second order objects (face classes) denoted by 

{ }mcccF .,..,, 21= , each consisting of different individual images, Ω∈Γl , of a subject. The view 
range of each face class is partitioned into q sub face classes and each sub face class contains 
r number of images. The feature vector of thk sub face class k

ic of thi  face class ic , where 
,,,2,1 qk =  is described by a vector of p interval variables pYY ,...,1 , and is of length NMp= .

The interval variable jY  of thk sub face class k
ic of thi  face class is described as:  
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k
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k
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where k
ijx  and k

ijx  are minimum and maximum intensity values, respectively, among jth

pixels of all the images of sub face class k
ic . This interval incorporates variability of  thj

feature inside the thk  sub face class k
ic .
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The vector k
iX of interval variables is recorded for thk sub face class k

ic  of  thi  face class. This 
vector is called as symbolic face and is represented as:    

( )kipk
i

k
iX αα ,...,1=  (42) 
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where pjxxcY
k
ij

k
ij

k
ij

k
ij ,...,1],,[)( ===α and ;,,1 qk = .,,2,1 mi =  We represent the qm symbolic 

faces by a ( pqm × ) matrix X consisting of qm row vectors k
iX :

[ ] pqm
k
iXX ×=  (43) 

Extraction of Non Linear Interval Type Features 
Let us consider the matrix X  containing qm symbolic faces pertaining to the given set Ω  of 

images belonging to m face classes. The centers ℜ∈
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ijx  of the intervals ],,[
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The pqm× data matrix CX containing the centers ℜ∈Ckijx  of the intervals k
ijα  for qm

symbolic faces is given by:       
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Where the p-dimensional vectors =
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represent the centers, lower bounds and upper bounds of the qm symbolic faces k
iX ,

respectively. Let Fp →ℜΦ :  be a nonlinear mapping between the input space and the 
feature space. For kernel PCA, the nonlinear mapping, Φ , usually defines a kernel function. 
Let D represent the data matrix of centers of qm symbolic faces in the feature space: 

ΦΦΦΦ= )(,),(,...),(,),( 1
1

1
1

Cq
m

C
m

CqC
XXXXD . Let qmqmK ×ℜ∈ define a kernel matrix by 

means of dot product in the feature space: 

( ))()( jiij XXK Φ⋅Φ=  (46) 

Assume the mapped data is centered. As described in (Scholkopf et al., 1998), the 
eigenvalues, qmλλλ ≥≥≥ ...21 , and the eigenvectors ,,...,, 21 qmVVV of kernel matrix K can be 
derived by solving the following equation: 

,Λ=qmAKA  with [ ]qmaaA ,...,1= , { }qmdiag λλ ,...,1=Λ  (47) 

where qmqmA ×ℜ∈  is an orthogonal eigenvector matrix, qmqm×ℜ∈Λ a diagonal eigen value 
matrix with diagonal elements in decreasing order. In order to derive the eigenvector matrix 

[ ]qmVVVV ,...,, 21= of symbolic kernel PCA, first, A should be normalized such that 

.,...,1,1
2 qmuauu ==λ  The eigenvector matrix, V, is then derived as follows: 

ADV T=  (48) 
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A subspace is extracted from the qmp × dimensional space V by selecting qmS ≤  number of 
eigenvectors, which contain maximum variance and are denoted by 

,,...,, 21 SVVV corresponding to eigenvalues ....21 Sλλλ ≥≥≥  The thv  eigenvector of V is 

denoted by ( )vpvv VVV ,,1= . Since, the symbolic face k
iX  is located between the lower bound 

symbolic face k
iX and upper bound symbolic face k

iX , it is possible to find thv interval 

principal component ],[
k
iv

k
iv WW of symbolic face k
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where ,,,1 Sv =  and qmxx
ji
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ij Φ=Φ

,

)()(
. Let testc  be the test face class, which contains face 

images of same subject with different expression, lighting condition and orientation. The test 
face class testc   is described by a feature vector testX  termed as test symbolic face of p
interval variables pYY ,...,1 , and is of length NMp= . The interval variable jY of test symbolic 
face is described as ],[)( )()( jtestjtesttestj xxXY = ,where ,

)( jtestx  and jtestx )(  are minimum and 

maximum intensity values, respectively, among jth pixels of all the images of test face 
class testc . This interval incorporates information of the variability of  thj  feature inside the 

test face class testc . The lower bound of test symbolic face testX  is described 
as ( )ptesttesttesttest xxxX

)(2)(1)()(
,,,= . Similarly, the upper bound is described 

as ( )ptesttesttesttest xxxX )(2)(1)( ,,,= . The thv interval principal component ],[ )()( vtestvtest WW of test 

symbolic face testX  is computed as: 
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5.2 Classification Rule  

When test face class testc is presented to the symbolic kernel PCA classifier, low dimensional 

symbolic kernel PCA interval type features ],[ )()( vtestvtest WW are derived. Let ],[
k
iv

k
iv WW ,

i=1,2,..., m, and ,,,1 qk = be the symbolic kernel PCA interval type features of qm symbolic 
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faces. The classifier applies the minimum distance rule for classification using symbolic 
dissimilarity measure :δ

itest
k
iv

k
ivvtestvtesti

k
ivk

ivvtestvtest ccWWWWWWWW ∈→= ],[],,[min],[],,[ )()()()(
δδ  (53) 

The symbolic kernel PCA interval type feature vector ],[ )()( vtestvtest WW  is classified as 

belonging to the face class, ic , using appropriate symbolic dissimilarity measure .δ Two
classes of kernel functions widely used in kernel classifiers are polynomial kernels and 
Gaussian kernels defined, respectively, as:  

dyxyxk )(),( ⋅=  (54) 
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5.3 Experimental Results 

The symbolic kernel PCA method is experimented with the face images of the ORL face 
database, which composed of 400 images with ten different images for each of the 40 distinct 
subjects. All the images were taken against a dark homogeneous background with the 
subjects in an upright, frontal position, with tolerance for some tilting and rotation of up to 
about o20  from frontal view to left side view and right side view. In the training phase, each 
face class is partitioned into three sub face classes based on view range from right side view 
to left side view. Each sub face class will have three images and totally nine images of one 
subject are used for training purpose. Thus, we obtain the 120 symbolic faces. The symbolic 
kernel PCA is applied to obtain the non-linear interval type features from symbolic faces.  
The classification phase includes construction of test symbolic face for each trial using 
randomly selected three images from each face class and extraction of interval type features 
from test symbolic face. Further, a minimum distance classifier is employed for classification 
using symbolic dissimilarity measure. Figure 18(a) shows some typical images of one subject 
of ORL database and their corresponding view based arrangement. Figure 18(b) shows the 
constructed symbolic faces for face class shown in (a).  

(a)

(b)

Figure 18. (a) Arrangement of faces images from right to left side view belonging to one 
subject of ORL database. (b) Three symbolic faces of face class shown in (a) and each 
symbolic face summarizes the variation of feature values through the images belonging to 
corresponding sub face class (each interval of symbolic face is centered for display purpose)
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Performance of symbolic kernel PCA using symbolic dissimilarity measures 
Experimentation is done to compare performance of symbolic kernel PCA with polynomial 
kernel of degree one using symbolic dissimilarity measures. The recognition accuracy (%) of 
64.50, 71.25 and 78.15 is observed in the experiments using symbolic dissimilarity measures 
(Bock & Diday 2000): Gowda and Diday, Ichino and Yaguchi  and De Carvalho and Diday 
dissimilarity measures, respectively. Hence, De Carvalho and Diday dissimilarity measure 
is considered appropriate for face recognition using symbolic kernel PCA method.  
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Figure 19. Rectangular representation of first two principal components of eight face classes 
Performance of symbolic kernel PCA with varying number of features 
Two popular kernels are used in the experimentation. One is the polynomial kernel 
(equation 5.15) and the other is Gaussian kernel (equation 5.16). Three methods, namely, 
conventional kernel PCA, eigenface method and symbolic kernel PCA method, are tested 
and compared. The minimum distance classifier is employed in the experiments. In the 
phase of model selection, the goal is to determine proper kernel parameters (i.e., the order d
of the polynomial kernel and the width σ  of the Gaussian kernel), the dimension of the 
projection subspace for each method. Since it is very difficult to determine these parameters, 
a stepwise selection strategy is adopted here. Specifically one has to fix the dimension and 
try to find the optimal kernel parameters for a given kernel function. Then, based on the 
chosen kernel parameters, the selection of the subspace sizes is performed. To determine the 
proper parameters for kernels, we use the global to local strategy. After globally searching 
over a wide range of the parameter space, we find a candidate interval where the optimal 
parameters might exist. Here, for the polynomial kernel, the candidate order interval is from 
1 to 7 and, for the Gaussian kernel, the candidate width interval is from 0.5 to 12. Then, we 
try to find the optimal kernel parameters within these intervals. Figure 20 (a) and (b) show 
the recognition accuracy versus the variation of kernel parameters corresponding to 
conventional kernel PCA, and symbolic kernel PCA method with a fixed dimension of 30. 
From these figures, the optimal order of polynomial kernel is found to be three and the 
width of Gaussian kernel should be five for symbolic kernel PCA method. After 
determining the optimal kernel parameters, we set out to select the dimension of subspace. 

Polynomial Kernel Gaussian Kernel Method
Order Subspace Dimension Width Subspace Dimension 

Conventional
Kernel PCA 1 44 7 47 

Symbolic 
Kernel PCA 3 35 5 44 

Table 8. Optimal Parameters corresponding to each method with respect to two different 
kernels 
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We depict the performance of each method over the variation of dimensions and present 
them in Figure 20(c) and (d). From these figures, the optimal subspace dimension can be 
chosen for each method with respect to different kernels. The optimal parameters for each 
method with respect to different kernels are listed in Table 8. After selection of optimal 
parameters for each method with respect to different kernels, all three methods are 
reevaluated using same set of training and testing samples. The number of features and 
recognition accuracy for the best case are shown in Table 9. The best performance of the 
symbolic kernel PCA method is better than the best performance of the conventional kernel 
PCA and eigenface method. We note that the symbolic kernel PCA method outperforms 
eigenface method and conventional kernel PCA in the sense of using small number of 
features. This is due to the fact that first few eigenvectors of symbolic kernel PCA method 
account for highest variance of training samples and these few eigenvectors are enough to 
represent image for recognition purposes. Hence, improved recognition results can be 
achieved at less computational cost by using symbolic kernel PCA method, by virtue of its 
low dimensionality.   

Eigenface Symbolic Kernel PCA Conventional Kernel PCA 
Polynomial

Kernel
Gaussian 

Kernel
Polynomial

Kernel
Gaussian 

Kernel
Recognition 

Rate (%) 78.11 91.15 90.25 84.95 81.35 

Number of 
Features 47 35 44 44 47 

Table 9. Comparison of symbolic kernel PCA Method using optimal parameters 

Figure 20. Illustration of recognition rates over the variations of kernel parameters and 
subspace dimensions. a) order of polynomial kernel b) Width of Gaussian kernel c) 
Subspace dimension using polynomial kernel with optimal order d) Gaussian kernel with 
optimal width 

The symbolic kernel PCA method is also superior in terms of computational efficiency for 
feature extraction. In the Table 10, CPU times (in seconds) required for feature extraction by 
different methods are presented. It is observed that the symbolic kernel PCA method is 
found to be faster.
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Symbolic Kernel PCA Conventional Kernel PCA 
Eigenface Polynomial

Kernel
Gaussian 
Kernel

Polynomial
Kernel

Gaussian Kernel 

124 78 116 91 131 
(CPU: Pentium 2.5GHz, RAM: 248 MB) 

Table 10. The CPU Time(s) for feature extraction corresponding to each method 

6. Symbolic Factorial Discriminant Analysis for Face Recognition 

In the framework of symbolic data analysis (SDA), a generalization of the classical factorial 
discriminant analysis to symbolic objects is proposed in (Hiremath and Prabhakar, Sept. 
2006), which is termed as symbolic factorial discriminant analysis (symbolic FDA). It 
consists of a symbolic-numerical-symbolic procedure for face recognition under variable 
lighting. In the first phase, the face images are represented as symbolic objects of interval 
type variables. The representation of a face images as symbolic faces results in coverage of 
image variations of human faces under different lighting conditions and also enormously 
reduces the dimension of the original image space without losing a significant amount of 
information. Symbolic FDA proceeds by a numerical transformation of the symbolic faces, 
using a suitable coding.  Optimal quantification step of the coded variables is achieved by 
Non-Symmetrical Multiple Correspondence Analysis (NS-MCA) proposed by Verde and 
Lauro. This yields new factorial variables, which will be used as predictors in the analysis. 
In the second phase, we applied symbolic factorial discriminant analysis method on the 
centered factorial variables to extract interval type discriminating features, which are robust 
to variations due to illumination. This procedure is detailed as given below.   

6.1 Construction of symbolic Faces 

We construct the qm symbolic faces by a matrix E with size )( pqm× , consisting of   row 
vectors ( ) ( )( ) ,,,1,,,1,,...,1 qkmicYcYS k

ip
k
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i ===  as described in the section 5.1.  The p-

dimensional vectors, ( )k
ip
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ip
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i xxS =  represent the lower bounds and 

upper bounds of the symbolic face k
iS , respectively.   

Coding of Symbolic Variables 
This phase performs a numerical transformation of the interval variables by means of 
dichotomic and non-linear functions. The coding values are collected in coding matrices that 
we denote by ).,...,1( pjX j =  We adopt a fuzzy coding system in order to preserve as much 
as possible the numerical information of the original variables after their categorization. For 
this purpose, a interval type variable is transformed based on a fuzzy approach using 
special piece wise polynomial functions, such as B-Splines, as has been proposed by Van 
Rijeckevorsel and Verde (Bock & Diday 2000). In order to attain a reasonably small number 
of categories for the coded variables, typically low degree polynomials are used. By a          
B-Spline of degree one, or a semi linear transformation, the domain of each variable is split 
into two intervals and a fuzzy coding is performed by three semi linear functions, e.g. 

321 ,, BBB . The threshold knots are chosen as the minimum and maximum values assumed by 
the variable and middle knot might be the average, median, or the semi range value of the 
variable. According to the B-Spline coding system, a symbolic face  k

iS  is coded as a unique 
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row in the matrix jX corresponding to the values assumed by the B-Spline functions for the 

value jY for a )).(()),(()),((: 321
k
ij

k
ij

k
ij

k
i SYBSYBSYBS  Finally, a global coding matrix KNX ×  is 

constructed by combining coded descriptors. It is also considered as a partitioned matrix 
built by juxtaposing p fuzzy coding matrices obtained in coding phase: 

[ ]pj XXXX 1=   (56) 

here ,3gK = ( pg ≤ ) is the number of columns of jX of all transformed variables in the 
descriptions of the symbolic faces. The total number N of rows of X will be larger than the 
original number qm of symbolic faces.  
Quantification of symbolic variables 
After the coding of the variables in terms of fuzzy coding, we want to find a quantification 
of the coded variables. The optimal quantification of the K categories of the p descriptors is 
obtained as solution of the eigen equation: 

ααα ωμω =′−′Δ′ − UGG
N
nGXXG

N x
11  (57) 

where qmNG × be the indicator matrix that identifies the different symbolic faces of the set E.

Under the ortho-normality constraints: ααww′ = 1 and αα ′′ ww = 0 for .αα ′≠  Here U is a matrix 

with unitary elements, αμ and αω are the thα  eigen value and eigenvector, respectively, of 

the matrix in the brackets, and 1−Δx  is the block diagonal matrix with diagonal 

blocks ( ) 1−′ jj XX . New quantified variables associated with the thα  factorial axis is 
computed as: 

N
x GXX ℜ∈′Δ=Φ −

αα ω1  (58) 

Extraction of Interval Type Features 
After having transformed the categorical predictors into optimal numerical variables, we 
can perform a classical FDA in order to look for a suitable subspace with optimum 
separation and, at the same time, obtaining a minimum internal dispersion of the 
corresponding symbolic faces. We denote by X~  matrix collecting the new variables 

sΦΦΦ α1  of set E. The factorial discriminant axes are solutions of the eigen equation: 

( ) ( )( ) ( ) ααα λ yyXHCCHCCHXXHX =′′′′ −− ~~~~ 11  (59) 

where the column vectors of X~  are centered, and C is the indicator matrix that specifies the 
membership of each symbolic face to just one of the m classes ic . Here H is the diagonal 
matrix with diagonal elements equal to ( )miqmdi ,,1= , where id  are the class sizes, and αλ

and αy are the thα  eigen value and eigenvector, respectively, of the matrix in brackets. The 
eigenvectors of symbolic factorial discriminant analysis method can be obtained as:  

qmqm YEV ′=  (60) 
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where ),...,( 1 qmqm vvV =  is the qmqm×  matrix with columns qmvv ,...,1  and qmY is the qmP×
matrix with corresponding eigenvectors ,,...,, 21 qmyyy as its columns. The thα  eigenvector 
of V  is denoted by ( )pvvv ααα ,,1= . A subspace is extracted by selecting L number of 
eigenvectors, which contain maximum variance and are denoted by 

,,...,, 21 Lvvv corresponding to  eigenvalues ....21 Lλλλ ≥≥≥  Since, the symbolic face k
iS  is 

located between the lower bound symbolic face k
iS and upper bound symbolic face k

iS , it is 
possible to find thα interval principal component ],[

k
i

k
i WW αα of symbolic face k

iS  defined by 

αα vSW k
i

k
i =   (61) 

αα vSW
k
i

k
i =   (62) 

6.2 Classification of Rule 

Let testc  be the test face class, which contains face images of same subject under varying 
illumination conditions. The test symbolic face testS  is constructed for test face class testc .
The lower bound of test symbolic face testS  is described as ( )ptesttesttesttest xxxS

)(2)(1)()(
,,,= .

Similarly, the upper bound is described as ( )ptesttesttesttest xxxS )(2)(1)( ,,,= . A matrix 
representation for the test symbolic face is obtained by the same coding system and the 
coded descriptors are collected in a global coding matrix )( 1

+++ = pXXX  of 

dimension ),( KN + . The quantification of the coded descriptors of test symbolic face is 
achieved by: 

αα ωGXX x ′Δ=Φ −++ 1  (63) 

where αω are the eigenvectors obtained as solutions of the equation (57). The thα  interval 

principal component ],[ )()( αα testtest WW of test symbolic face testS  is computed as: 

αα vSW testtest =
)(

 (64) 

αα vSW testtest =)(  (65) 

 Let ],[
k
i

k
i WW αα , i=1,2,...,m, and ,,,1 qk = be the interval type features of qm symbolic faces. 

The classifier applies the minimum distance rule for classification using De Carvalho and 
Diday symbolic dissimilarity measure δ  (Bock & Diday 2000). 

itest

k
i

k
itesttesti

k
i

k
itesttest

cc

WWWWWWWW

∈→

= αααααααα δδ ,[],,[min],[],,[ )()()()(   (66) 

The interval type feature vector ],[ )()( αα testtest WW  is classified as belonging to the face class, 

ic , using De Carvalho and Diday symbolic dissimilarity measure .δ
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6.3 Experimental Results 

In order to demonstrate the effectiveness of symbolic factorial discriminant analysis method 
for face recognition under varying illumination conditions, we have conducted a number of 
experiments by using 4,050 image subset of the publicly available Yale Face Database B 
(Georghiades et. al. 2001). This subset contains 405 viewing conditions of 10 individuals in 9 
poses acquired under 45 different point light sources and an ambient light. The pose 
variation is limited to only upto .1510 −  The images from each pose were divided into four 
subsets ( )7750,25,12 and according to the angle θ  between the direction of the light source 
and the optical axis of a camera. Subset 1(respectively 2, 3, 4) contains 70 (respectively 120, 
120, 140) images per pose. In the experiments, images which were cropped and down-
sampled to 6464× pixels by averaging are used. Actually, in order to remove any bias due 
to the scale and position of a face in each image from the recognition performance, they 
were aligned so that the locations of the eyes or the face center were the same. In Figure 21, 
we show images of an individual belonging to each subset. One can confirm that images 
vary significantly depending on the direction of the light source. 

Figure 21. Images of an individual belonging to each subset: the angle θ  between the light 
source direction and the optical axis lie ( ) ( ) ( ) ( )77,60and52,35,25,20,12,0 respectively

We have conducted several experiments to compare our algorithm with two other 
algorithms. In particular, we compared our algorithm with eigenfaces (Turk & Pentlad 1991) 
and kernel Fisher discriminant analysis algorithm (Yang et. al 2005). Eigenfaces is the 
defacto baseline standard by which face recognition algorithms are compared. In the present 
study, we have assumed that more probe images are available. The proposed method 
improves the recognition accuracy as compared to other algorithms by considering three 
probe images with wide variations in illuminations and pose for each trial. In all the 
experiments, simplest recognition scheme namely, a minimum distance classifier with 
symbolic dissimilarity measure is used.  
Variations in illumination and fixed pose 
The first set of face recognition experiments, where the illumination varies while pose 
remains fixed are conducted using 450 images (45 per face) for both training and testing. The 
goal of these experiments was to test the accuracy of this method. First, we used images 
belonging to subset 1 ( )12<θ as training images of each individual, and then tested other 
images )20( ≥θ .

Recognition error rates (%) Method
Subset 2 Subset 3 Subset 4

Symbolic FDA 0 0 4.3 
Eigenfaces 7.6 22.50 60.90 
KFDA 2.5 12.45 50.8 

Table 11. Comparison of recognition error rates under variations in illuminations and fixed 
pose
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In Table 11, we show the recognition error rates of different methods for each subset. The 
results show that the proposed method outperforms other methods when illumination 
varies while pose remains fixed. This is due to the fact that the first subset allows images 
with maximum intensity among images of the subsets and any possible intensity values lies 
within intervals constructed by using subset 1. 
Variations in illumination and pose 
Secondly, the experiments are conducted by using images taken under varying illumination 
conditions and poses, and confirmed the robustness of symbolic FDA method against 
variations due to slight changes in pose.  In these experiments, the images in five poses 
instead of images in frontal pose only are used. The criteria used to select both training set 
and test set are same as like previous experiments but for five poses of each individual.  In 
Table 12, the recognition error rates of symbolic FDA method and other two methods for 
each subset are given. The results show that the symbolic FDA method outperforms other 
methods for images with variations in illuminations and pose.  

Recognition error rates (%) Method
Subset 2 Subset 3 Subset 4 

symbolic FDA 0 0.5 5.5 
Eigenfaces 3.8 15.7 25.65 
KFDA 3.0 22.5 14.5 

Table 12. Comparison of recognition error rates under variations in illuminations and pose

7. Conclusions 

Face is a more common and important biometric identifier for recognizing a person in a 
non-invasive way.  The face recognition involves identification of the facial features, namely, 
eyes, eyebrows, nose, mouth, ears, and their spatial interrelationships uniquely.  The 
variability in the facial features of the same human face due to changes in facial expressions, 
illumination and poses shall not alter the face recognition.  In the present chapter we have 
discussed the modeling of the uncertainty in information about facial features for face 
recognition under varying face expressions, poses and illuminations.  There are two 
approaches, namely, fuzzy face model based on fuzzy geometric rules and symbolic face 
model based on extension of symbolic data analysis to PCA and its variants.  The 
effectiveness of these approaches is demonstrated by the results of extensive 
experimentation using various face databases, namely, ORL, FERET, MIT-CMU and CIT. 
The fuzzy face model as well as symbolic face model are found to capture variability of 
facial features adequately for successful face detection and recognition. 
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1. Introduction 

Face recognition by humans is a natural process that we perform on daily basis. A quick 
glance at a face and we are able to recognize the face and, most of the time, name the person. 
Such a process occurs so quickly that we never think of what exactly we looked at in that 
face. Some of us may take a longer time while trying to name the person, however, the 
recognition of the familiar face is usually instantaneous. 
The complexity of a human face arises from the continuous changes in the facial features 
that take place over time. Despite these changes, we humans are still able to recognize faces 
and identify the persons. Of course, our natural recognition ability extends beyond face 
recognition, where we are equally able to quickly recognize patterns, sounds and smells. 
Unfortunately, this natural ability does not exist in machines, thus the need for artificially 
simulating recognition in our attempts to create intelligent autonomous machines. 
Face recognition by machines can be invaluable and has various important applications in 
real life, such as, electronic and physical access control, national defense and international 
security. Simulating our face recognition natural ability in machines is a difficult task, but 
not impossible. Throughout our life time, many faces are seen and stored naturally in our 
memories forming a kind of database. Machine recognition of faces requires also a database 
which is usually built using facial images, where sometimes different face images of a one 
person are included to account for variations in facial features. 
Current face recognition methods rely on: detecting local facial features and using them for 
face recognition or on globally analyzing a face as a whole. The first approach (local face 
recognition systems) uses facial features within the face such as (eyes, nose and mouth) to 
associate the face with a person. The second approach (global face recognition systems) uses 
the whole face for identifying the person. 
This chapter reviews some known existing face recognition methods and presents one case 
study of a recently developed intelligent face recognition system that uses global pattern 
averaging for facial data encoding prior to training a neural network using the averaged 
patterns.
The development of intelligent systems that use neural networks is fascinating and has 
lately attracted more researchers into exploring the potential applications of such systems. 
The idea of simulating the human perceptions and modeling our senses using machines is 
great and may help humankind in medical advancement, space exploration, finding 
alternative energy resources or providing national and international security and peace. 
Intelligent systems are being increasingly developed aiming to simulate our perception of 
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various inputs (patterns) such as images, sounds…etc. Biometrics is an example of popular 
applications for artificial intelligent systems. The development of an intelligent face 
recognition system requires providing sufficient information and meaningful data during 
machine learning of a face. 
This chapter presents a brief review of known face recognition methods such as Principal 
Component Analysis (PCA) (Turk & Pentland, 1991), Linear Discriminant Analysis (LDA) 
(Belhumeur et al., 1997) and Locality Preserving Projections (LPP) (He et al., 2005), in 
addition to intelligent face recognition systems that use neural networks (Khashman, 2006). 
There are many works emerging every year suggesting different methods for face 
recognition, however, these methods are appearance-based or feature-based methods that 
search for certain global or local representation of a face. 
The chapter will also provide one detailed case study on intelligent global face recognition 
system. In this case a neural network is used to identify a person upon presenting his/her 
face image. Global pattern averaging is used for face image preprocessing prior to training 
or testing the neural network. Averaging is a simple but efficient method that creates 
"fuzzy" patterns as compared to multiple "crisp" patterns, which provides the neural 
network with meaningful learning while reducing computational expense. 
Intelligent global face recognition considers a person’s face and its background and suggests 
that a quick human “glance” can be simulated in machines using image pre-processing and 
global pattern averaging, whereas, the perception of a “familiar” face can also be achieved 
by exposing a neural network to the face via training (Khashman, 2006). 
The chapter is organized as follows: section 1 contains an introduction to the chapter. 
Section 2 presents a review on problems and difficulties in face recognition. Section 3 
describes known conventional face recognition methods and a selection of intelligent face 
recognition techniques. Section 4 presents in details our case study on intelligent global face 
recognition. Section 5 presents analysis and discussion of the results of implementing the 
work that is described in section 4. Finally, section 6 concludes this chapter and provides a 
discussion on the efficiency of intelligent face recognition by machines. 

2. Problems with Face Recognition 

The databases used in developing face recognition systems rely on images of human faces 
captured and processed in preparation for implementing the recognition system. The 
variety of information in these face images makes face detection difficult. For example, some 
of the conditions that should be accounted for, when detecting faces are (Yang et al., 2002): 
• Occlusion: faces may be partially occluded by other objects 
• Presence or absence of structural components: beards, mustaches and glasses 
• Facial expression: face appearance is directly affected by a person's facial expression 
• Pose (Out-of Plane Rotation): frontal, 45 degree, profile, upside down 
• Orientation (In Plane Rotation)::face appearance directly varies for different rotations 

about the camera's optical axis 
• Imaging conditions: lighting (spectra, source distribution and intensity) and camera 

characteristics (sensor response, gain control, lenses), resolution 
Face Recognition follows Face detection. Face recognition related problems include (Li & 
Jain, 2005): 
• Face localization 
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• Aim to determine the image position of a single face 
• A simplified detection problem with the assumption that an input image contains 

only one face 
• Facial feature extraction (for local face recognition) 

• To detect the presence and location of features such as eyes, nose, nostrils, 
eyebrow, mouth, lips, ears, etc 

• Usually assume that there is only one face in an image 
• Face recognition (identification) 
• Facial expression recognition 
• Human pose estimation and tracking  
The above obstacles to face recognition have to be considered when developing face 
recognition systems. The following section reviews briefly some known face recognition 
methods. 

3. Face Recognition Methods 

With the increase in computational power and speed, many face recognition techniques 
have been developed over the past few decades. These techniques use different methods 
such as the appearance-based method (Murase & Nayar, 1995); where an image of a certain 
size is represented by a vector in a dimensional space of size similar to the image. However, 
these dimensional spaces are too large to allow fast and robust face recognition. To 
encounter this problem other methods were developed that use dimensionality reduction 
techniques (Belhumeur et al., 1997); (Levin & Shashua, 2002); (Li et al., 2001); (Martinez & 
Kak, 2001). Examples of these techniques are the Principal Component Analysis (PCA) 
(Turk & Pentland, 1991) and the Linear Discriminant Analysis (LDA) (Belhumeur et al., 
1997).
PCA is an eigenvector method designed to model linear variation in high-dimensional data. 
Its aim is to find a set of mutually orthogonal basis functions that capture the directions of 
maximum variance in the data and for which the coefficients are pairwise decorrelated. For 
linearly embedded manifolds, PCA is guaranteed to discover the dimensionality of the 
manifold and produces a compact representation. PCA was used to describe face images in 
terms of a set of basis functions, or “eigenfaces”. 
LDA is a supervised learning algorithm. LDA searches for the projection axes on which the 
data points of different classes are far from each other while requiring data points of the 
same class to be close to each other. Unlike PCA which encodes information in an 
orthogonal linear space, LDA encodes discriminating information in a linearly separable 
space using bases that are not necessarily orthogonal. It is generally believed that algorithms 
based on LDA are superior to those based on PCA. However, other work (Martinez & Kak, 
2001) showed that, when the training data set is small, PCA can outperform LDA, and also 
that PCA is less sensitive to different training data sets. 
Another linear method for face analysis is Locality Preserving Projections (LPP) (He & 
Niyogi, 2003) where a face subspace is obtained and the local structure of the manifold is 
found. LPP is a general method for manifold learning. It is obtained by finding the optimal 
linear approximations to the eigenfunctions of the Laplace Betrami operator on the 
manifold. Therefore, though it is still a linear technique, it seems to recover important 
aspects of the intrinsic nonlinear manifold structure by preserving local structure. This led 



Face Recognition 222

to a recently developed method for face recognition; namely the Laplacianface approach, 
which is an appearance-based face recognition method (He et al., 2005). 
The main difference between PCA, LDA, and LPP is that PCA and LDA focus on the global 
structure of the Euclidean space, while LPP focuses on local structure of the manifold, but 
they are all considered as linear subspace learning algorithms. Some nonlinear techniques 
have also been suggested to find the nonlinear structure of the manifold, such as Locally 
Linear Embedding (LLE) (Roweis & Saul, 2000). LLE is a method of nonlinear 
dimensionality reduction that recovers global nonlinear structure from locally linear fits. 
LLE shares some similar properties to LPP, such as a locality preserving character. 
However, their objective functions are totally different. LPP is obtained by finding the 
optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the 
manifold. LPP is linear, while LLE is nonlinear. LLE has also been implemented with a 
Support Vector Machine (SVM) classifier for face authentification (Pang et al., 2005). 
Approaches that use the Eigenfaces method, the Fisherfaces method and the Laplacianfaces 
method have shown successful results in face recognition. However, these methods are 
appearance-based or feature-based methods that search for certain global or local 
representation of a face. None so far has considered modeling the way we humans 
recognize faces. 
One of the simplest methods for modelling our way of recognizing faces is neural network 
arbitration. This has been explored with the aim of developing face recognition systems that 
incorporate artificial intelligence using neural networks in order to provide an intelligent 
system for face recognition. 
The use of neural networks for face recognition has also been addressed by (Lu X. et al., 
2003); (Zhang et al., 2004); (Pang et al., 2005); (Fan & Verma, 2005). More recently, Li et al. (Li 
G. et al., 2006) suggested the use of a non-convergent chaotic neural network to recognize 
human faces. Lu et al. (Lu K. et al., 2006) suggested a semi-supervised learning method that 
uses support vector machines for face recognition. Zhou et al. (Zhou et al., 2006) suggested 
using a radial basis function neural network that is integrated with a non-negative matrix 
factorization to recognize faces. Huang and Shimizu (Huang & Shimizu, 2006) proposed 
using two neural networks whose outputs are combined to make a final decision on 
classifying a face. Park et al. (Park et al., 2006) used a momentum back propagation neural 
network for face and speech verification. 
Many more face recognition methods that use artificial intelligence are emerging 
continually; however, one particular method; namely Intelligent Global Face Recognition, 
will be studied in this chapter, and is therefore presented in the following section. 

4. Intelligent Face Recognition Using Global Pattern Averaging 

One of our commonly referred five senses is “Seeing”. We see and perceive objects in 
different ways depending on our individuality. However, we share the ability to recognize 
objects or patterns quickly even though our experience of these objects is minimal. A quick 
“glance” onto a “familiar” face and recognition occurs. The following section presents our 
hypothesis where we aim to simulate our way of recognizing faces in machines using a 
neural network model. 
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4.1 Hypothesis of Simulating Glance and Familiarity 

This case study presents an intelligent face recognition system that uses global pattern 
averaging of a face and its background and aims at simulating the way we see and recognize 
faces. This is based on the suggestion that a human “glance” of a face can be approximated 
in machines using pattern averaging, whereas, the “familiarity” of a face can be simulated 
by a trained neural network (Khashman, 2006). A real-life application will be presented 
using global averaging and a trained back propagation neural network to recognize the 
faces of 30 persons from our databases.  

4.2 Databases and Method 

One common problem with processing images is the large amount of data that is needed for 
meaningful results. Although neural networks have the advantage of parallel processing, 
there is still a need to pre-process images to reduce the amount of data while retaining 
meaningful information on the images. This is an important requirement for an efficient 
system that has low time and computational expense. 
There are 30 persons of various gender, ethnicity and age whose faces were to be recognized 
and thus their face images would be used as the database for the work presented within this 
case study. Each face has three different projections, which were captured while looking: 
Left (LL), Straight (LS) and Right (LR) as shown in Figure 1 resulting in 90 images that are 
used for implementing the intelligent system. Figures 2, 3 and 4 show these 90 images 
representing 30 persons looking straight (LS), right (LR) and left (LS) respectively. 
All original images are gray and of size (512x512) pixels. The images were compressed and 
their size reduced to 128x128 pixels. A window of size 100x100 pixels; that contains the face 
and its background, is then extracted and the data within this relatively smaller size image is 
used for training and eventually testing the neural network. 

a- LR b- LS c- LL 

Figure 1. Person 21 looking:  a- right (LR)  b- straight (LS)  c- left (LL) 
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Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 

Person 7 Person 8 Person 9 Person 10 Person 11 Person 12 

Person 13 Person 14 Person 15 Person 16 Person 17 Person 18 

Person 19 Person 20 Person 21 Person 22 Person 23 Person 24 

Person 25 Person 26 Person 27 Person 28 Person 29 Person 30 

Figure 2. Own face database of 30 persons looking straight (LS) 
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Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 

Person 7 Person 8 Person 9 Person 10 Person 11 Person 12 

Person 13 Person 14 Person 15 Person 16 Person 17 Person 18 

Person 19 Person 20 Person 21 Person 22 Person 23 Person 24 

Person 25 Person 26 Person 27 Person 28 Person 29 Person 30 

Figure 3. Own face database of 30 persons looking right (LR) 
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Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 

Person 7 Person 8 Person 9 Person 10 Person 11 Person 12 

Person 13 Person 14 Person 15 Person 16 Person 17 Person 18 

Person 19 Person 20 Person 21 Person 22 Person 23 Person 24 

Person 25 Person 26 Person 27 Person 28 Person 29 Person 30 

Figure 4. Own face database of 30 persons looking left (LL) 
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4.3 Glance Simulation (Global Pattern Averaging) 

The method used for presenting the images to the neural network is based on global pattern 
averaging, which provides the glance approximation. A face image of size 100x100 pixels is 
segmented and the values of the pixels within each segment are averaged. The result 
average values are then used as input data for the neural network. 
The averaging of the segments within an image reduces the amount of data required for 
neural network implementation thus providing a faster recognition system. This also 
provides flexible mathematical inputs for neural networks that simulate the quick glance of 
a human which is sufficient for pattern recognition. Global pattern averaging can be defined 
as follows: 
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where k and l are segment coordinates in the x and y directions respectively, i is the segment 
number, Sk and Sl are segment width and height respectively, Pi(k,l) is pixel value at 
coordinates k and l in segment i, PatAvi is the average value of pattern in segment i, that is 
presented to neural network input layer neuron i. The number of segments in each window 
(of size X*Y pixels) containing a face, as well as the number of neurons in the input layer is i
where

 i = -{0, 1, 2, …, n}, (2) 
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Segment size of 10x10 pixels (Sk = Sl = 10) has been used and average values representing 
the image were obtained, thus resulting in 100 average values in total (n = 100) that were 
used as the input to the neural network for both training and testing. 
Figure 5 shows an example of this pre-processing phase. The original 512x512 pixel image is 
reduced to 256x256 pixels and then to 128x128 pixels. This is followed by extracting a region 
of size 100x100 pixels that contains the face. The extracted region is then segmented (tiled) 
and averaged yielding a 10x10 pixel pattern that represents the original image. 

Figure 5. Image pre-processing before neural network training or testing 

                                 
      Original Image             Image  Image                 Image       Pattern  
      (512x512) pixels      (256x256) pixels         (128x128) pixels      (100x100) pixels        (10x10) 
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4.4 Familiarity Simulation (Neural Network Implementation) 

The multilayer perceptron neural network, which was developed as part of this global face 
recognition system, is based on the back propagation learning algorithm, with a total 
number of three layers, comprising, input layer, hidden layer and output layer. The input 
layer has 100 neurons, each receiving an averaged value of the face image segments. The 
hidden layer consists of 99 neurons, whereas the output layer has 30 neurons according to 
the number of persons. Figure 6 shows the topology of this neural network and image data 
presentation to the input layer. 

Figure 6. Global pattern averaging and neural network design  

The approach within this case study is based on simulating the “glance” and “familiarity” of 
faces in humans. The glance effect is approximated via image pre-processing and global 
pattern averaging as described in (section 4.3), whereas, familiarity of a face is simulated by 
training the neural network using face images with different orientations. 
The implementation of a neural network consists of training and testing. In this work a total 
of 90 face images (corresponding to 30 persons) were used. For training the neural network 
60 face images (looking left LL and looking right LR) were used. The 30 remaining face 
images (looking straight LS) were used for testing purposes where the system is expected to 
recognize the person looking straight at the camera by training it on face images looking left 
and right. This simulates the familiarity of a face in machines, even though the test images 
(looking straight) present a neural network with different pixel values as a result of the 
difference in the orientation of the face. 
A recognition system “sensitivity” feature was also developed as part of the neural network 
classification of input face images. Three levels of tolerance, namely Low (minimum 80% 
face resemblance), Medium (minimum 65% face resemblance) or High (minimum 50% face 
resemblance) can be used depending on the required level of accuracy. The results that are 
presented in the next section were obtained using Low tolerance (i.e. minimum 80% face 
resemblance).
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5. Results and Discussion 

The back propagation neural network, within the intelligent system, learnt and converged 
after 4314 iterations and within 390 seconds, whereas the running time for the trained neural 
network after training and using one forward pass was 0.21 seconds. These time cost results 
were obtained using the following system configuration: 2.4 GHz PC with 256 MB of RAM 
using Windows XP operating system, C-language source code and Borland C++ compiler. 
Table 1 lists the final parameters of the successfully trained neural network. 
All training images (60 face images- looking left and right) were correctly recognized when 
used for testing the trained neural network yielding 100% recognition rate as would be 
expected. The recognition of the testing face images (30 face images – looking straight) 
indicates the success and robustness of this intelligent system, as these face images had not 
been presented to the neural network before. Additionally, the “look straight” face images 
have different orientation and, thus, different pixel values in comparison to the training face 
images “look left” and “look right” at similar coordinates. Testing the neural network using 
these different test images yielded a successful 96.67% recognition rate where 29 out of 30 
faces were correctly identified. 

Input Layer Nodes 100 
Hidden Layer Nodes 99 
Output Layer Nodes 30 
Bias Neurons Value 1 
Learning Rate 0.008 
Momentum Rate 0.32 
Minimum Error 0.002 
Initial Random Weights Range -0.3 to +0.3 
Iterations 4314 
Training Time (seconds) 390 
Generalization/Run Time (seconds) 0.21 

Table 1. Trained neural network final parameters using global face data 

Figure 7. Incorrect identification of Person 23 as person 21 

Person 23                   Person 21
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The only incorrect result, out of the testing image set, was person 23 being identified as 
person 21. Both persons have close face resemblance, where a quick “glance” may not be 
able to distinguish. This incorrect identification occurred only when presenting the neural 
network with the face image looking straight (LS). Figure 7 shows both persons. Table 2 
shows the recognition rates where a total recognition rate of 98.89% has been achieved. 

Image Set Recognition Rate
Training Set (60 images) (60/60)  %100 
Testing Set (30 images) (29/30)  %96.67 
Total (90 images) (89/90)  % 98.89 

Table 2. Intelligent global face recognition results for 30 persons 

In summary, the recognition process has two phases. First, simulating the quick look 
(glance) via image pre-processing which involves face image size reduction, cropping, 
segmentation and global pattern averaging. This phase yields segment pattern average 
values that are global representations of the face and consequently form the input to a 
neural network. The second phase (simulating familiarity) is training the neural network 
using the output of the first phase. Once the network converges or learns, classification and 
face recognition is achieved. 
Further tests were carried out to investigate the effect of the presence or absence of 
structural components such as beards, mustaches or glasses on the recognition results. The 
effect depends on the differences in pixel values due to the structural component. A large 
difference in pixel values would marginally change the averaged pattern value, whereas a 
small difference would cause a minimal change in averaged pattern values. This problem 
can be solved by updating the intelligent global recognition system with any changes to a 
face due to a structural component; in other words familiarizing the intelligent system with 
any changes to a face. 
This problem was investigated by testing the trained neural network using face images of 
“person 3” wearing a dark hat, thus resulting in minimal changes to the averaged pattern 
value. The system was able to correctly recognize “person 3” with and without the hat (see 
figure 8). 

Figure 8. Further recognition system tests: Person 3 with and without a hat: Recognized 
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On the other hand, two extra face images of “person 2” clean shaven and also with full 
beard were used for further tests. The intelligent system yielded “unknown person” result, 
thus requiring updating the recognition system with the new look of the person, after which 
“person 2” was correctly recognized (see figure 9). 

Figure 9. Further recognition system tests: Person 2 with different looks: Unrecognized 

Another interesting result of further tests was the correct recognition of person 20 and 
person 28, who happen to be identical twins (see figure 10). The intelligent systems 
recognized both persons without the need for further training. This demonstrates the 
flexibility of the developed system where face image database can be updated as required. 

Figure 10. Further recognition system tests: Persons 20 and 28 are identical twins: 
Recognized

6. Conclusion 

The recognition of a face that has been seen before is a natural and easy task that we humans 
perform everyday. What information we pick from a face during a glance may be 
mysterious but the result is usually correct recognition. Do we only look at features such as 
eyes or nose (local feature detection) or do we ignore these features and look at a face as a 
whole (global face recognition)? Many research works on face recognition attempt to answer 
these questions, however, one common concept that is shared by most methods is that the 
detection of a face requires facial information, which can be obtained locally (using local 
facial features such as eyes) or globally (using a whole face). 
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The diversity of the different methods and approaches is more evident when investigating 
the development of artificially intelligent face recognition systems. These intelligent systems 
aim to simulate the way we humans recognize faces, and the methods that are developed to 
achieve such an aim are as diverse as our natural individual perception of faces. 
This chapter presented a review of related works on face recognition in general and on 
intelligent global face recognition in particular. The presented case study is based on using 
global (complete face and background) data averaging and a neural network in order to 
simulate the human “glance” and face “familiarity”. 
The glance effect is approximated via image pre-processing and global pattern averaging. 
When we humans have a quick look (glance) at faces, we do not observe the detailed 
features but rather a general global impression of a face. This can be approximated by 
averaging the face image instead of searching for features within the face. The averaged 
patterns are representation of a face regardless of its expression or orientation. The quick 
glance is followed by familiarity with a face, which is simulated by training a neural 
network using face images with different orientations. 
The neural network within the intelligent system learnt to classify the faces within 390 
seconds, whereas the running time for the trained neural network was 0.21 seconds. These 
time costs can be further reduced by using faster machines, which will inevitably occur in 
the near future. 
The implementation of the intelligent global face recognition system used 90 face images of 
30 persons of different gender, age and ethnicity. A total recognition rate of 98.89% was 
obtained using 90 face images (combining training and testing images) of the 30 persons in 
different orientations. Only one person’s face image (looking straight) was mistaken for 
another person (looking straight too) as shown in Figure 7. The robustness and success of 
this face recognition system was further demonstrated by its quick run time (one neural 
network forward pass) of 0.21 seconds. Time cost was kept minimal through image-pre-
processing and reduction of input/hidden layer neurons in the topology of the neural 
network. 
Further tests of the trained neural network within the intelligent system investigated the 
effects of the presence or absence of structural components such as beards or hats on the 
recognition results. The outcome of these tests suggests that some of the “familiar” faces 
may not be recognized if there is a drastic change on the face, this is due to the large 
difference in pixel values which would marginally change the averaged global pattern 
values. On the other hand, a small difference would cause a minimal change in averaged 
global pattern values, and thus would not affect the recognition results. This problem can be 
solved by updating the intelligent global recognition system with any changes to a face due 
to a structural component; in other words familiarizing the intelligent system with the new 
look of a person. 
Additionally, three levels of tolerance can be used when implementing the system that was 
presented in the case study. The choice of the tolerance level depends on the required level 
of accuracy: low tolerance (80% face resemblance), medium tolerance (65% face 
resemblance) or high tolerance (50% face resemblance). All results that were shown in the 
case study on intelligent global face recognition were obtained using the low tolerance 
classification, where a minimum of 80% face resemblance was required. This is believed to 
be a good resemblance ratio considering the neural network is trained using globally 
averaged patterns of faces and backgrounds. 
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Further work on intelligent global face recognition will investigate the acquisition of facial 
data using only left and right portfolios of a face. The developed neural network for this task 
would use different parameters obtained using other methods (e.g. edge detection) in order 
to associate the face with the person. 
Finally, despite successful implementations of artificial intelligent face recognition systems 
such as our case study, there are questions that are yet to be answered before we can 
completely trust a machine whose intelligence “evolves” in minutes in comparison with our 
natural intelligence that took thousands of years to evolve. There is no doubt that the 
advancement in technology provides us with the means to develop efficient artificially 
intelligent systems, however, the question remains: how intelligent are they really are? 
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1. Introduction 

With the ongoing progress in information technology, the need for an accurate personal 
identification system based on recognizing biological characteristics is increasing demand 
for this type of security technology, rather than conventional systems that use ID cards or 
pin numbers. Of all physical features, the face is the most familiar and recognizable, and 
using it for identification purposes avoids the need for physical contact, thereby also 
avoiding potential psychological or physical resistance, such as that encountered when 
trying to obtain fingerprints for example. Face recognition has been studied since the 1970s, 
with extensive research into and development of the digital processing of facial images. A 
range of software is already on the market. As a simple and compact recognition system that 
satisfies the required performance levels, we have implemented a hybrid system based on 
the optical recognition principle, using a Fourier transform lens.  
In contrast to digital recognition, optical analog operations process two-dimensional images 
instantaneously in parallel using a lens-based Fourier transform function (Kodate 
Hashimoto,  & Thapliya, 1999). In the 1960s, two methods were proposed; the VanderLugt 
Correlator proposed by VanderLugt ((a)Watanabe & Kodate, 2005), and the joint transform 
correlator (JTC) ( Kodate Inaba & Watanabe, 2002) by Weaver and Goodman. The optical 
correlator by the Institut national d’Optique in Canada gained the New Product Award at 
the 1999 Conference on lasers and Electro-optics and the Quantum Electronics and Laser 
Science Conference. In Japan the conventional JTC was practically implemented by the 
Hamamatsu Photonics Company for fingerprint image processing. The process speed of 
optical correlators has  steadily improved, however, operational speed, practicality and 
recognition rate were not fully tested against the fast-improving digitized system. 
Against this background, the present group of authors has proposed a new scheme using a 
multi-beam, multi-channel parallel joint transform correlator (PJTC) as a means of making 
better use of spatial parallelism through the use of a diffraction-type multi-level zone-plate 
array (MLZP array) to extend a single channel JTC ((b)Watanabe & Kodate , 2005). 
Watanabe & Kodate , 2003). Features of the proposed system include extreme robustness, 
high recognition precision by its pre-processing and high reproducibility by its post-process. 
The compact and mobile versions are now assembled and named COPaC. 
Specifications: 20x24x43 cm 3.6 kg, analysis time of 6.6 faces/s ( Kodate Inaba& Watanabe, 
2002).
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In an attempt to downsize the hard disk, LD is replaced as a light source with a multi-light 
source module constructed by vertical cavity surface emitting laser (VCSEL) array and 
MLZPA. In spite of the constraints of the Fourier-transform type process, the speed of an 
optically controlled, liquid crystal spatial light modulator was accelerated to 30 ms. It is very 
difficult to achieve optical correlation speeds shorter than 30 ms.  
In recent years, devices for optical information processing have been developed. Examples 
include Ferroelectrics liquid crystal special light modulator (FLC-SLM) and digital 
micromirror device (DMD) which can enhance the high-speed display (1 kHz-10 kHz), and 
herald the possibility of accelerating the systemic processing time. Furthermore, a novel 
holographic optical storage system that utilizes co-axial holography was demonstrated.  The 
VLC is conducive to improvements in speed, given that it can dispense with the optically 
addressed SLM. In practice, however, comprehensive system design and implementation 
should be required to make the most of the theoretical potential. We implemented a fully 
automatic FARCO (dimensions: 33.0x30.5x17.8 cm³) ((a)Watanabe & Kodate, 2005), which 
achieved an operation speed of more than 4000 faces/s using four-channel processing. The 
correlation filter we used was more accurate than various correlation methods ((b)Watanabe 
& Kodate, 2005). Based on trial 1:N identification, FARCO achieved low error rates of 1% 
False acceptance rate (FAR) and 2.3% false rejection rate (FRR). 
The recognition time of FARCO is limited to about 1,000frame/s due to the date transfer 
speed and storage capacity of the random access memory (RAM) used to store digital 
reference images. The time of data transfer speed is converted from the digital data to 
optical image data in the optical system. Using the ability of parallel transformation as 
optical holographic memory, the recognition rate can be vastly improved. In addition, a 
large optical storage capacity allows us to increase the size of the reference database. 
A novel holographic optical storage system that utilizes co-axial holography has recently 
been demonstrated (Horimai & Tan, 2006). This process can produce a practical and small 
holographic optical storage system more easily than conventional off-Coaxial holographic 
system. At present, the system seems to be most promising for ultra high density volumetric 
optical storage 
In this chapter, we present the compact optical parallel correlator for face recognition, and 
its application. This is a product of lengthy processes, and long-term efforts to overcome 
several obstacles such as attaining precision in the optical correlation system, operational 
speed and downsizing. Crucial technologies applied in the system include our unique and 
extremely precise phase filter and high-speed optical devices that we have been perfecting 
over many years. Combined with these, a novel system structure and algorithm were 
proposed and tested in rigorous experiments. Section 2 addresses the basic principle of 
optical pattern recognition by optical Fourier transform and the importance of phase 
information in face image. In Section 3, the concept of an optical correlation system for facial 
recognition and dedicated algorithm is presented. Section 4 provides the design of the 
correlation filter and an evaluation and comparison of the correlation filters for FARCO, and 
also tests for evaluating the recognition system, and experimental results of 1:N 
identifications and so on. A highly precise algorithm using multiple database images for 
FARCO is introduced in Section 5. A constructed 3 dimentional (3-D) face model is 
discussed in Section 6. In Section 7, a high security facial recognition system using a cellular 
phone is presented. A super high-speed optical correlator that integrates an optical 
correlation technology used in FARCO (fast face-recognition optical correlator) and co-axial 



Compact Parallel Optical Correlator for Face Recognition, and Its Application 237

holographic storage system is proposed. Section 9 discusses the future works and Section 10 
concludes the chapter.  

2. The Basic Principle of Optical Correlation 

The optical implementation of pattern recognition can be accomplished with either Fourier 
domain complex matched filtering or spatial domain filtering. Correlators that use Fourier 
domain matched filtering are commonly known as VLC’s. The basic distinctions between 
them are that the VLC depends on Fourier-domain spatial filter synthesis (e.g., Fourier 
hologram). In other words the complex spatial detection of the VanderLugt arrangement is 
input scene independent. The basic optical setup of the VLC type of correlator is depicted in 
Fig. 1. A prefabricated Fourier-domain matched filter H (u,v) is needed in the VLC. This 
section describes the basic principle optical pattern recognition by optical Fourier transform. 
We also address the importance of phase information in the face image. 
Optical correlation is one pattern-matching method used for finding whether there is a 
correlation between images in the database and input images, using analogue calculation 
based on the parallelism of light. In this method, all the information of the images can be 
searched at the speed of light, to determine whether the images belong to the same person. 
The principle of optical setup was designed for Fourier-domain matched filter, which was 
applied to our face recognition system. Let us consider a thin convex lens of focal length f, 
illuminated by a laser beam. Output facial images set in the real space are Fourier-
transformed in the spatial frequency plane. The complex conjugate of this Fourier-
transformed image is stored in a matched filter, which is then to be positioned at the optical 
devices (Fig.1 (b)) and Fourier-transformed again. 
On the output plane, the correlation term and convolution term will be displayed. For a 
more detailed description of this setup, please refer to precedent literature (Goodman & 
Moeller, 2004. Hecht, 1998).  
This section describes the basic principle optical pattern recognition by optical Fourier 
transform. We also address the importance of phase information in the face image. 

2.1 Importance of Phase Information 

As shown in Fig. 2, 2-dimensional images in real space have amplitude information, which 
can be singled out by Fourier transformation into amplitude and phase information in 
spectrum space.  
The phase image is defined using absolute values of distribution. Where F is Fourier 
operator, where F (u, v) is phase distribution. 

 F(u,v) = | F(u, v)|exp[-j F(u,v)] (1) 

Images, of which only phase was Fourier-transformed, can be defined by the following 
equation.

 f (x,y) = F -1{( u,v)|exp[-j F(u,v)]} (2) 

The intensity of the object is represented by amplitude F(u,v), while its phase information is 
displayed by F(u,v).
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Figure 2 exhibits both amplitude and phase information, using the facial images in real 
space. As exemplified by Fig. 2, the phase information is more important than the amplitude 
information. 
Here are Fourier-transformed images of a human being (A) and monkey (B) (Fig.3). 
Successively, if the amplitude image of (A) in the frequency space multiplied by phase 
image of (B) is inversely Fourier-transformed, the facial image of (B) is reconstructed. 
Similarly, by combining phase image (A) and amplitude image of (B), the facial image of (A)
was reproduced. This proves that the phase information has contained information of the 
whole face. Recognition requires this phase information.  
The facial image shown on the bottom left is the inverse Fourier transform of the phase 
spectrum from person (B) combined with the amplitude spectrum of person (A). This image 
shown on the bottom right is the inverse Fourier transform of the phase spectrum from 
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person (A) combined with the amplitude spectrum of person (B).  Note that the phase 
spectrum is more dominant than the amplitude spectrum to produce the processed images. 
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Figure 4. Flow-chart illustrating our hybrid facial recognition system: (a) Real-time image 
capture and pre-processing, (b) Optical correlation. (c) Post-processing 

An algorithm for the FARCO is presented in Fig.4 Under this system, pre- and post- 
processes using a personal computer (PC) are highly conducive to enhancing the S/N ratio 
and robustness. This Section describes the concept of the system for facial recognition and 
the dedicated algorithm. 
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3.1 Signal - to - Noise Ratio Enhancement by Pre-processing – Extraction, 
Normalization and Angle Adjustments 
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Figure 5. Fourier Spectrum of facial images: (a) Gray scale image (b) Edge-enhancement and 
binarization image 

Facial images were taken automatically by a digital video camera. For automated extraction 
of input facial images, we can get the two eye points of these facial images using face 
detecting softwares (development kit by Toshiba Co. or Takumi Co.). By utilizing this 
software, we were able to detect four points in a facial image (the position of the eyes and 
nostrils). The size of the extracted image was normalized to 128x128pixel by the center of 
gravity. For input images taken at an angle, affine transformation was used to adjust the 
image and normalization, fixing on the position of the eyes. Following on from this, edge 
enhancing with a Sobel filter, and binarizing, i.e., defining the white area as 20%, equalized 
the volume of transmitted light in the image. Fig. 5 shows the original facial image, a pre-
processed image, and two Fourier power spectra. Grey-scale images have concentrated 
information in the lower spatial sphere. Pre-processing disperses the image feature 
components up to the higher spatial frequency, as indicated in Fig. 5. The efficiency of 
optical utilization is increased in the spatial frequency domain in Figure 5(b). Correlation 
results with regard to the two images show that the S/N ratio of the pre-processed image 
increased by 155%, proving its validity. With this increase, the edges of facial features are 
extracted as the color data fades. Hence, factors such as make-up and skin color have no 
effects on recognition performance. Glasses without frame or thin frame were also 
negligible, since their edges are hardly captured. Accordingly, robustness improves. We 
have shown previously that the binarization of the input images with appropriate 
adjustment of brightness is effective in improving the quality of the correlation signal 
((a)Watanabe & Kodate, 2005). 

3.2 Individual Authentification and Threshold-value Determination in Post-process 

A biometric recognition system can operate under two different modes: 1:N identification or 
1:1 verification. Here the 1:N identification mode is applied, under which one's biometric 
pattern is calculated from his/her biometric features and examined against a database 
containing N images. Although the other method 1:1 can also be adopted, given the high 
speed of our system, the 1:N identification system was chosen. 
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The False Acceptance Rate denotes the probability that a biometric system will incorrectly 
identify an individual, or will fail to reject an impostor. For a positive (verification) system, 
it can be estimated from: (the number of false acceptances) / (the number of impostor 
verification attempts). Conversely, False Rejection Rate (FRR) is the probability that a 
biometric system will not identify an individual, or will fail to accept a person in the 
database. For a positive (verification) system, it can be estimated from: (the number of false 
rejections) / (the number of times it fails to verify). 
In practical application, the threshold value has to be customized by the application. The 
threshold value varies with its security level; depending on whether the system is designed 
to reject an unregistered person or permitting at least one registered person. We have to 
decide the optimum threshold value using the appropriate number of database images 
based on the biometrics guideline for each application. In this paper, the threshold value is 
fixed where FRR and FAR are lowest. 
We determined the sample number was according to the definition of one of the accuracy 
evaluation authorities, National Biometric Test Center (Japan). The error margin P in the 
sample number N was given by the following equation, under the reliability 95%. 

 N = 3/P (3) 

For example, where P=0.01, 300 samples (i.e. persons) are required. The sample number 
determined was 300 persons; the facial images of 240 women (20-50 years old) were taken 
on the same day, while images of 60 men were pre-processed. One hundred and fifty were 
registered, while the second half was unregistered. The correlation value (where i is the 
entry number of test image and j is the reference number) is stored in a memory and the 
maximum value, Pi mCoaxial searched. Then, all the correlation values are normalized by Pi max.
Here, we define the comparison value, which is used as threshold for 1:N identification, Ci 
by Equation(4). (Inaba Kodate & Watanabe, 2003) 

 Ci = Pij/Pimax–1/(N – 1) (4) 

Using the devised correlation filters, simulation experiments were conducted under the 
assumption of 1:N identification.  

4. Fast Face-Recognition Optical Correlator 

We have developed a face recognition system named FARCO, which has three different 
configurations depending on its recognition rate shown in Fig.6. This is an improvement on 
one-to-one ID recognition system, which requires little calculation time. The FARCO system 
is a hybrid optical correlator that integrates an optical correlation technology and digital 
database. FARCO can be applied to several hundreds of images, with its operation speed of 
1000 to 5000 faces per second. 
In order to correspond to greater demand, the S-FARCO (Super fast face-recognition optical 
correlator) system is used. The S-FARCO is equipped with a holographic optical memory, 
which could store and process information optically. This enables optical correlation 
without decoding information in the database, which greatly reduces processing time (more 
details in Section 8). This Section will present the correlation filter, its optical setup and 
experimental results focus on FARCO. 
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Figure 6. Three different ramifications of developed Optical Correlator FARCO 

4.1 Design of a Correlation Filter 

This Section presents a novel filtering correlation for face recognition is introduced, using 
phase information with emphasis on the Fourier domain. Comparing it with various 
correlation methods, we evaluate our own filtering correlation method.  
The performance of the filtering correlation was evaluated through one-to-N identification 
with a database of 300 front facial images. The size of the database was formulated 
according to the guideline of biometrics authentication. The facial images for input and 
reference are taken by the cellular phone (DoCoMo  D506is). Students take their own facial 
images three times with the cellular phone. The database contains ten facial images for each 
person. There are three types for the experimental condition: (1) classical correlation, (2) 
phase-only correlation, and (3) filtering correlation. ((b)Watanabe & Kodate, 2005) 
(1) classical correlation 
The general f and h correlation equation is given as follows Equation (5). 

g(x,y) = f(x’,y’)h(x’-x,y’-y)dx’dy’ (5) 

In this paper, we call Equation (5) the classical correlation. 
(2) phase-only correlation 
It performs the correlation between two signals, f(x,y) and h(x,y), using the Fourier plane 
relationship

g(x,y) = F [F(u,v)H*(u,v)] (6) 

in which * denotes conjugate. F, the Fourier transform of the operator, while is the Fourier 
transform of one signal f(x,y), H*(u,v) is the correlation filter corresponding to the other 
signal, and u or v stands for the two vector components of the spatial frequency domain. 
The classical matched filter for a signal h(x,y) was defined as H*(u,v). In polar form it can be 
represented as follows:  

H*(u,v) = |H(u,v)|exp{-i (u,v)} = |H(u,v)|[cos{ (u,v)} - isin{ (u,v)}] (7) 

The phase-only filter, which acts in a similar way to the matched filter, is derived from 
Equation (5). By setting every amplitude at the number equal to 1 or alternatively by 
multiplying it by 1/H (u,v), we obtained the phase only filter:  
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 Hp(u,v) =  exp{-i (u,v)} (8) 

where p stands for phase. Classical correlation has a high correlation signal without a correct 
peak position. In the case of phase-only correlation, the maximum value is obtained only at 
the peak position.; at all other points, smaller values approximate zero. This correlation is 
highly precise. (Horner & Gianino, 1984. Bartelt, 1985) 
(3) Filtering correlation 
We optimized correlation filter with emphasis on Fourier domain taking the following 
points into account: (i) carrier-spatial frequency should be contained within the minimum 
frequency range of facial characteristics. ((b)Watanabe & Kodate, 2005) 
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Figure 7. Error rate of three kinds of correlation 

In those three different types of correlation methods, experimental error rates are shown in 
Fig.7 and Table 1. If the intensity exceeded a threshold value, the input image would be 
regarded as a match with a registered person. Error rates divided by the total number of 
cases were given by the False Rejection Rate (FRR) and False Acceptance Rate (FAR). With 
the threshold value set at optimum value (arbitrary units), the FAR and FRR are shown 
Figure 7. Error rates are plotted on the vertical Coaxial and comparison value on the 
horizontal Coaxial. As the results show in Table 1, EER has improved by 0.7%. Where FAR 
is 0%, FRR has improved by 2.0%.The results clearly shown that the designed correlation 
filter has remarkably high precision.  
This filter, based on optical Fourier transform, facilitates parallel operation without 
changing its configuration. (Watanabe & Kodate et al., 2006) 

0.70.02.0Filtering correlation

1.30.042.7Phase-only 
correlation

7.30.062.7Classical correlation
EER[%]FAR[%]FRR[%]

0.70.02.0Filtering correlation

1.30.042.7Phase-only 
correlation

7.30.062.7Classical correlation
EER[%]FAR[%]FRR[%]

Table 1. Results for three kinds of correlation 
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4.2 Optical Setup of FARCO 

The optical devices installed into the FARCO are displayed in Table 2. The facial image 
display SLM in the database is composed of an FLC-SLM, with the capacity of high-speed 
display (2500 frame/s). The FLC-SLM, featuring a reverse display, was constructed with an 
LD of wavelength 635nm as a light source, and driven by a pulse, flickering at the positive 
values. Nematic Liquid Crystal SLM (NLC-SLM) is used as a spatial optical modulator for 
the display of the correlation filter. FARCO is employed the filter using filtering correlation 
as shown in §4.1. Moreover, the MLZP (Orihara Klaus & Kodate et al., 2001)is used for 
optical parallel processing. As a receiving device, a photo diode, divided into four parts, 
was used. The diode can simultaneously receive four signals at the speed of 20 MHz. An 
isolator was installed as a reflection-proof instrument. The optical setup of the FARCO is 
shown in Fig. 8. ((a)Watanabe & Kodate, 2005) 
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Figure 8. Fabricated FARCO. (a) Optical set-up. M.: Mirror, H.M.: Half mirror, P. : Polarizer, 
A. : Analyzer, L. : Lens, PBS : Polarized Beam Splitter, C.L. : Collimate Lens, SLM : Spatial 
Light Modulator, MLZPA. : Multi Level Zone Plate Array, LD: Laser diode, PD: Photo diode 

Wave length 635nm(LD) 
Light source 

Power 30mw 
Pixel number 1280x768pixels 

Pixel pitch 13.2mm 
Ferroelectrics LC-SLM 

For Databbase 
(Displaytech) Operation speed 2.5kHz 

Pixel number 512x512pixels 
Pixel pitch 15mm 

Nematic LC-SLM 
For Matched filter 

(Boulder nonlinear systems) Feature 2pi@780nm 
Channel number 1 or 4 

Focal length 300 or200mm 
Aperture size 3.26mm 

MLZPA

Phase levels 8 
Operation speed 20MHz 

Detector
Active area 10x10mm2 

Table 2. Specifications of the optical devices for FARCO 
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4.3 Flowchart of FARCO System 

A flow chart for optical correlation with the FARCO is presented in Fig. 9. Firstly, pre-
processing was carried out within less than 200ms, covering the extraction of facial images 
through to the calculation of the correlation filter. On receiving final signals from the pre-
process stage, NLC-SLM started up and showed the correlation filter obtained on the SLM 
in the correlator (see (2)-1 in Fig. 9). Initiated by the start-up signal from the NLC-SLM, the 
light pulse source begins to operate ((2)- 2, 3). Subsequently, the moment images in the 
database, stored in advance in an FLC-SLM board RAM of a control computer, are set for 
calculation, the instant correlation begins as each image is shown at the speed of 
1000frame/s. Correlation signals through the filter were captured by a detector, and the 
recorded intensity is classified as a resemblance level ((2)- 4, 5). Each loop per optical 
correlation required 1 ms, although four parallel optical correlations with a parallel Fourier 
transform device, MLZP, only necessitate 4000 faces/s. In the final stage, post-processing 
the intensity values of these optical signals yielded final outcomes, i.e. recognition rates. In 
the case of the one-to-N identification experiment, Ci was calculated after N-loops, while 
values from every loop in the memory were recorded. Being used as an internal LAN on the 
university campus, this face recognition system is accessible to anyone with a camera and 
input software. 

Figure 9. Flow chart of FARCO system 

4.4 Experimental Results with FARCO

4.4.1 N identification with 4 channels 

1:N identification experiments were conducted to examine the recognition performance of 
the FARCO, using the sample of 300 individual facial images. The FARCO system processes 
1000 images per second by one channel. Thus it takes 0.15 seconds for the database with 150 
registered person images. The ROC curve, acquired by the experiments with 4 channels, is 
shown in Fig. 10. This curve represents the FAR of 1.3% and the FRR of 2.6%, which is the 
lowest error rate of all with the FARCO. Relying on FAR values, the level of security system 
applicability varies. At the FAR below 1%, PC login and entry to communal houses are 
possible. With 1% FAR, FRR becomes 3.6%, which is within possible range of availability, in 
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compliance with the biometrics evaluation. Results of recognition experiments on a database 
containing over 4000 images are presented in Fig 11. This database has 80 people with 50 
multiplex images per person. Operationalization at 4 ch enabled correlation with 4000 
images. 
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Figure 10. Evaluation accuracy of FARCO according to the biometrics guideline with 
database images of 300 persons. The lowest error rates of the two values were recorded for 
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4.4.2 10 channel Experiment Results 

We examined the correlation using multi-object reference images. When the correlation filter 
is applied to multi-object images, there are problems in that optical intensity is reflected by 
transmission intensity and diffraction angles. By using all 1280x768 pixels of SLM pixels, we 
can implement parallel operations of more than 10 channels. In this experiment, however, 
we designed and performed experiments limited to 10 parallels, for the sake of checking the 
accuracy of each channel. Fig.12 (c) illustrates 10 ch multi-object image auto-correlation 
intensity using the designed optical correlation filter. The sharp correlation value was 
acquired by 10ch as well as by 1ch. The design arrangements of multi-object images are 
based on reference ((b)Watanabe & Kodate , 2005). This result shows that we can implement 
10,000 faces/s, if a 10ch photo detector array is installed in the FARCO system. 

4.5 Experimental Recognition Results for Various Facial Images    

 (a) (b) (c) 
Figure 12. (a) Input images,(b) correlation filter, (d) correlation intensity 10ch 
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Figure 13. Input images example of successful recognition 

Various facial images for input are shown in Fig.13. Facial images taken after a period of 
time, with glasses and various changed features (e.g. suntan and heavy make-up) can all be 
identified. Conventionally, the facial images of racially mixed persons, twins and infants 
have been regarded as the most difficult objects of all. However, the system has enabled 
these cases to be recognized as separate entities, enhancing its systemic robustness. The 
following two reasons may be considered responsible. Firstly, an edge-enhancement 
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binarization as a pre-process breaks down the shape of facial images, regardless of make-up 
and different skin color, clearly delineating unchanged elements of the images. Secondly, 
the matched filter lies within the range of the spatial frequency codifying facial features. 
These results ascertained a considerably high recognition rate of the proposed algorithm, 
alongside high robustness. Making the most of the high-speed data processing capability of 
this device, even higher robustness can be achieved for various recognition conditions when 
registering many category data (e.g. multiplex data extracted from a three-dimensional 
model) for a single person.  

5. Highly Precise Algorithm Using Multiple Database Images for FARCO 

Section 6 applies this system to a temporal sequence of moving images. The multiplexed 
database is extracted from video data, and contains various images taken from different 
angles. Our experiments confirmed that temporal sequential images functioned effectively 
as part of the system. From the results, we conclude that this is a promising system for a 
variety of purposes such as security and medical safety, where a large number of images 
have to be handled at high speed( (a)Watanabe & Kodate et al., 2005). 
5.1 Highly Precise Algorithm Using Multiple Database Images 
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Figure 14. The face recognition algorithm for the FARCO employing a temporal image 
sequence 

Now we have applied this system to a temporal sequence of moving images. The 
multiplexed database is extracted from video data, and contains various images taken from 
different angles. The algorithm for video recognition is shown in Fig.14. The database that 
registers N persons contains N x M images, where M is the number of times one person is 
multiplexed. The sequences of L input images are taken from the video camera, and for each 
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input image taken, correlation values were calculated. The highest correlation value is 
chosen among the M images of a single registrant. The normalized highest correlation 
values are averaged over all N registrants to derive the so-called “comparison value”. The 
lowest of the comparison values for a sequence of L input images is taken to compare 
against the pre-defined threshold to judge whether the person in the input images is one of 
the registrants or not. 
We carried out simulation experiments on the FARCO using 60 persons (30 registrants, 30 
non-registrants), during a period of four weeks. The facial images taken during the first 
week were used as the database, and the images in the following weeks were compared 
with this database. Recognition results are shown in Fig.15. (y-Coaxial: recognition rate, x-
Coaxial: the number of input facial images). In the case where 40 multiplexed images and 20 
multiplexed input facial images were applied, a high recognition rate of 99.2% was used. In 
this experiment, increasing the number of database images M resulted in a higher 
recognition rate than increasing the number of input images L.  
Our experiments confirmed that temporal sequential images functioned effectively as part 
of the system. Thus this system is promising for a variety of purposes such as security and 
medical safety, where a large number of images have to be handled at high speed. We are 
currently developing the image search engine that integrates holographic memory and the 
optical correlation technology used in FARCO to achieve correlation times of less than 
10us/frame. We will present this system in session 9. 
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Figure 15. Recognition results 

6. Three Dimensional Facial Image Database Using 3-D Model 

Taking advantage of FARCO’s fast data processing capability, we tested the robustness of 
the recognition system by registering the 3-D facial data of one person in this Section. 
We presented the process of constructing a 3-D facial image database based on laser-beam 
Sectioning technology( (b)Watanabe & Kodate et al., 2005). 
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6.1 Application of the 3-D Face Model to FARCO  

In applying this 3-D face model with angle information, the number of input categories 
inevitably increases.  

6.2 2-D Database from 3-D Face Model 

Photographs were taken at 10 degrees from the front (left and right) using 3-D 
digitizer,VIVID910, using its quick processing and precise measurement. 
Making the database from the 3D face model, 2D facial images (441 pictures for each of 10 
persons, i.e. 4410) are clipped from part of the model shifting each by 1 degrees from top to 
bottom, and then from left to right (Fig. 16). These 2D facial images were then processed 
with a PC. The size of the facial image was normalized to 128x128 pixel by the center of 
gravity. 
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Figure 16. An example of three dimensional face images  

6.3 Experimental Results of Input Facial Images with Varying Angles 

We conducted simulation experiments with FARCO using 10 persons using input images 
taken by a video from different angles, maximum 30 degrees. 
The database was composed of images taken from 49 directions, horizontal and relational 
directions in each within ±10 degrees per 1 degrees. An error rate of  experimental results is 
shown in Fig.17. Where the intensity threshold value was 1050, and 0% EER was obtained. 
Hence, applying the 3D face model to the face database confirms the effectiveness of the 
system in searching for a person from a large database, in spite of difficult conditions with 
varying angles. On assessment, the 3D modeling system proved to be most effective 
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7. Construction of the Cellular Phone Face Recognition System  

7.1 The Cellular Phone Face Recognition System 

A cellular phone is applied in a wide range of mobile systems, including e-mail, internet, 
cameras and GPS. At Japan Women's University, the project entitled "Research and 
development of an educational content and delivery system among more than two 
universities for next-generation Internet" has been undertaken as a three-year plan, first 
requested by the Telecommunications Advancement Organization of Japan (TAO) in the 
fiscal year 2001, with the collaboration of Waseda University. Because the security of these e-
learning systems is mostly based on ID cards and PIN numbers, unregistered persons can 
get access to the contents by imposture. Therefore, similar to other mobile systems, security 
levels should be heightened for this sort of e-learning system (Watanabe & Kodate. et al., 
2006. Inaba Kodate & Watanabe,  2003.). 
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Figure 17. Error rate dependences on threshold: (a) FAR for different images, (b) FRR for 
different images of same person and (c) false non-match rate for identical images 

In this Section, we propose a high security facial recognition system using a cellular phone 
on the mobile network. Experimental results, which are tested on 30 women students over a 
period of three months and tested on 30 students each day, will be presented. 

7.2 Structure of the System 

The block diagram of the cellular phone face recognition system for lecture attendance is 
shown in Fig.18. This system consists of the FARCO soft for facial recognition, a control 
server for pre- and post-processing, and a camera-attached cellular phone.  
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7.3 Operation of the System 

7.3.1 Registration 

The registration process using student’s facial images has four steps. First, the administrator 
sends students the URL of i-appli by e-mail. Second, the students connect to the URL and 
download the Java application for taking input images on their own cellular phone. Third, 
the students start up Java and take their facial images as a reference, then transmit them to 
the server with their student IDs, which are given beforehand. Fourth, the administrator 
checks if student IDs and images in the server match, and successively upload their facial 
images into the database.  

7.3.2 Recognition 

Step 1. Students start up the camera with Java application and take their own facial images.  
Step 2. The students transmit the image and ID, which is allocated at registration, back to the 
face image recognition server. Because the image and information are transferred on the 
https protocol, the privacy of the student is safely transmitted.  
Step 3. In the face recognition server, the position coordinates of both eyes and nostrils are 
extracted from the input images. After normalization on the basis of the coordinate to 
128×128pixel, cutting, edge-enhancing and binarization are to be performed.  
Step 4. Subsequent to the FARCO Soft, the correlation signal intensity in proportion to the 
resemblance of the two images will be calculated.  
Step 5. Using the intensity level, in the face recognition server, it attempts to recognize the 
student’s face based on the threshold value, which is set beforehand.  
Step 6. If the student in question is recognized as a registered person, the server creates a 
once-only password and sends it with the recognition result to the student.  
Step 7. The student who acquired the password can log in using the password for the 
remote lecture contents server. In addition, the face recognition server controls the 
following: student registration, its database and recognition record. The administrator can 
check this information by a web browser. Facial images and registration times are recorded, 
which can help minimize identity fraud. Furthermore, the registration face images can be 
renewed by recorded face images. The four screens of i-appli are shown in Fig. 19.  

7.4 Attendance Management System: Student-based Experiment 

Assuming that the constructed system was used as a lecture attendance management 
system, we collected images of 30 students during three months. Photographing site and 
illumination were arbitrary except for its indoor condition, and the D505is and D506i 
(Mitsubishi Co.) were chosen for the cellular phone. Students take their own facial images 
with the cellular phone and transmitted them to the server. Images are in the jpeg format, 
and the size is 120x120pixel and 7kB. Two images acquired by the similar method before 
using this system were applied for each person as the registration image. In order to 
recognize the person without applying too much psychological burden on the students, we 
added input images for recognition as new reference image. As a result, the number of 
reference images amounted to 20 per student over three months. The input image is 
recognized by the intensity value of the correlation signal. If the intensity value exceeds a 
threshold value, input image would be that of the registered person and otherwise it would 
be the unregistered person. The values of error rate for three months are shown in Table 4.  
As a result, when threshold values were set at 507 (a.u.), we acquired considerably low error 
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rates: 0 % as FAR and 2.0 % as FRR. This recognition system was tested on 300 students for 
each day. Experimental results of error rates against the threshold value of the intensity are 
shown in Fig. 20. The threshold value is set at 711 (a.u.). As a result, this system is deemed 
effective. In the future, it is necessary to devise a database, interface and pre-processing for 
the variation of the illumination, so that a more accurate system could be constructed. At 
present, an attempt is being made to package the mathematical software of FARCO and put 
it on the market. 

8. Super High Speed FARCO Optical Correlator for Face Recognition Using  
co-axial Holographic System  

The recognition time of FARCO is limited to several thousands frame/s due to the data 
transfer speed and to the storage capacity of the RAM used to store digital reference images. 
The time of data transfer speed is converting from the digital data to optical image data in 
optical system. Using the ability of parallel transformation as optical holographic memory, 
the recognition rate can be vastly improved. In addition, the large capacity of optical storage 
allows us to increase the size of the reference database. To combine the large storage 
capacity of an optical disk and the parallel processing capability of an optical correlator, an 
optical disk-based photorefractive correlator has been developed. It can achieve a high 
correlation rate without the need for a fast 2 Spatial Light Modulator (SLM). However, their 
systems have practical problems mainly due to their complexity. The reference beam for the 
read-out process is separated spatially with an on-Coaxial optical configuration, therefore 
spatial fluctuation of the storage media should then be strictly controlled, and a large and 
heavy system is indispensable, which, in turn, prevents the removability and
interchangeability of the media as well as the miniaturization of the system. 
Recently, a novel holographic optical storage system that utilizes  holography was 
demonstrated. This scheme can realize practical and small holographic optical storage 
systems more easily than conventional off-Coaxial holographic systems. At present, their 
system seems to be most promising as ultra-high density volumetric optical storage. 
In this Section, we propose the optical correlator that integrates the optical correlation 
technology used in FARCO and a co-axial holographic storage system. Preliminary 
correlation experiments using the co-axial optical set-up show an excellent performance of 
high correlation peaks and low error rates. 
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Table 3. Error rate of face recognition experiment during 3 months 
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Figure 20. Error rate for cellular phone face recognition system 

8.1 Optical Correlation Using Holographic Correlation Filter 

It is known that a planer hologram can be employed as a correlation filter in a VanderLugt 
correlator. Our new optical correlator is based on the same principle, although a volumetric 
hologram is employed. In this Section, we present our pre-processing for facial recognition, 
and how a VanderLugt correlator is implemented in the co-axial holographic system. 
((a)Watanabe & Kodate, 2006. (b)Watanabe & Kodate, 2006) 

8.2 Correlation Filter in co-axial Holographic System 
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Figure 21. Optical configuration of co-axial holography. The inset is the close-up of the 
Fourier transformation part 

Figure 21 shows the schematic of our optical configuration, which is identical to the one 
used in a co-axial holographic optical storage system(Horimai & Tan, 2006). Note that in a 
co-axial holographic system the recording plane is the Fourier plane of the digital mirror 
devices (DMD) image, as shown in the close-up. The recording image is composed of a 
reference point and the image to be recorded in the database, as shown in Fig. 21(a). This 
image is Fourier transformed by the objective lens as shown in Fig. 21(b), and recorded as a 
hologram. This hologram works as the correlation filter. 
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Figure 22. (a) recording, (b) holographic correlation filter, (c) input, and (d) output images 
for optical correlation of co-axial holography 

8.3 Correlation and Post-processing  

In the correlation process, the input facial image (Fig.22(c)) is placed in the same position as 
the recorded image (without the reference point). This image is Fourier transformed by the 
same objective lens as the recording process, and then superimposed on the hologram. 
The diffracted light (after reflection in the mirror in the recording media) is again Fourier 
transformed by the objective lens, and the reconstructed image is detected by a  
complementary metal oxide semiconductor CMOS  camera. This image contains the 
reference point, as shown in Fig. 22. The intensity of this reconstructed reference point 
represents the correlation, and it is compared with the (heuristically defined) threshold for 
verification.3) For the actual recognition process, the hologram media is spatially shifted so 
that the input image is taken in correlation with multiple images in the database. 

8.4 Experimental Results with S-FARCO 

We performed a correlation experiment using facial images of 30 women, of which 15 
images were registered in the database, and the remaining 15 were not. Some of the input 
facial images and images already in the database are compared in Fig. 23. These images are 
normalized using our pre-processing method described in Section 3 
The configuration of the optical setup is shown in Fig. 21. We use the objective lens with 
specifications of NA = 0.55 and focal length of 4.00mm for optical Fourier transformation. 
We use photopolymer as holographic recording material. The structure of the holographic 
recording media is also shown in Fig.21, which has the reflection layer beneath the 
recording layer. We determine the thickness of recording layer as 500 μm referring to the 
paper.
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Figure 24. Error rate dependences on threshold: (a) false-match rate for different images, (b) 
false non-match rate for different images of same person and (c) false non-match rate for 
identical images 

Figure 24 shows the dependences of the recognition error rates on the threshold; (a) the false 
matched rate, and false non-matched rates for (b) the correlation between different images 
of the same person, and for (c) the correlation between identical images. The crossing point 
of (a) and (b) represents the Equal Error Rate (when the threshold is chosen optimally), and 
in this experiment EER of 0% was achieved using an co-axial holographic optical system. 
Figure 25 is the concept of the high speed optical correlator based on a co-axial holographic 
optical desk. This system can also be applied for various image searches. Among a number 
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of large data storages, only the holographic storage can function not only as memory but 
also as calculator for e.g. inner product or correlation. We believe that our experimental 
results contribute to add the value and to broaden the application of holographic storage 
system. A practical image search system and the analysis of volumetric holographic storage 
as optical correlator will be reported in another paper. We expect optical correlation of 10 
μs/frame, assuming 12,000 pages of hologram in one track rotating at 600 rpm. This means 
that it is possible to take correlation of more than 100,000 faces/s when applied to face 
recognition for example.(Fig.25) 
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9. Future Works  

We have proposed a network-style recognition server system based on FARCO. Excellent 
experimental results, shown in Section 9, proved a wide range of possible applications such 
as a server into Web and CCTV cameras for public safety. (Fig.26) With its high speed and 
compactness, these appliances can be used at hospital, school and in the office. Therefore, it 
has great potential for general use. As one recent example, online search engines such as 
Google can be counted as a possible venues for exploring potential. At the moment, these 
types of search engines operate only by keywords. Instead, we are proposing an application 
of our system to image-search, utilizing its small processing time.   
Under this image-to-image search, output images with high rate of correlation to the input 
image will be sieved out and sorted in order. At present, it is very difficult to establish such 
a system, due to the extremely high volume of the database loaded with images. However, 
to overcome these obstacles, we are developing a super high-speed and precision image 
search system using our proposed novel all-optical correlation methods as shown in this 
chapter. 

10. Conclusions  

This chapter provides an overview of the basic concept of optical correlation and then 
explains the significance of the phase information of images. 
Performance improved greatly by emphasizing the range of wave length on the Fourier 
plane. Optimizing the algorithms for the face recognition system based on optical 
correlation, our fast and highly-precise face recognition system, FARCO, was introduced. As 
an application, a cellular phone-based face recognition system was presented. It is used as 
an attendance management system for e-learning students at university. False match and 
false non-match rates are both remarkably low, less than 1 %.  In addition, a holographic 
optical database was applied for a further reduction in processing time. The S-FARCO 
system was introduced and some prospects for its application were shown. In the future, all-
optical correlation, as an ideal type of correlation optical computing, will be more closely 
examined and experimented on, not only for improving our face recognition system but also 
for developing image search and installing the system into robots for wider use.  
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1. Introduction 

Recently, various types of human-friendly robots such as pet robots, amusement robots, and 
partner robots, have been developed for the next generation society. The human-friendly 
robots should perform human recognition, voice recognition, and gesture recognition in 
order to realize natural communication with a human. Furthermore, the robots should 
coexist in the human environments based on learning and adaptation. However, it is very 
difficult for the robot to successfully realize these capabilities and functions under real 
world conditions. Two different approaches have been discussed to improve these 
capabilities and functions of the robots. One approach is to use conventional intelligent 
technologies based on various sensors equipped on a robot. As a result, the size of a robot 
becomes large. The other approach is to use ambient intelligence technologies of 
environmental systems based on the structured information available to a robot. The robot 
directly receives the environmental information through a local area network without 
measurement by the robot itself. In the following, we explain the current status of researches 
on sensor networks and interactive behavior acquisition from the viewpoint of ambient 
intelligence. 

1.1 Ambient Intelligence 

For the development of sensor network and ubiquitous computing, we should discuss the 
intelligence technologies in the whole system of robots and environmental systems. Here 
intelligence technologies related with measurement, transmission, modeling, and control of 
environmental information is called ambient intelligence. The concept of ambient 
intelligence was discussed by Hagras et.al. (Doctor et al., 2005). Their main aim is to 
improve the qualities of life based on computational artifacts, but we focus on the 
technologies for the co-existence of humans and robots in the same space. From the sensing 
point of view, a robot is considered as a movable sensing device, and an environmental 
system is considered as a fixed sensing device. If the environmental information is available 
from the environmental system, the flexible and dynamic perception can be realized by 
integrating environmental information. 
The research on wireless sensor networks combines three components of sensing, 
processing, and communicating into a single tiny device (Khemapech et al., 2005). The main 
roles of sensor networks are (1) environmental data gathering, (2) security monitoring, (3) 
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and object tracking. In the environmental data gathering, the data measured at each node 
are periodically transmitted to a database server. While the synchronization of the 
measurement is very important to improve the accuracy of data in the environmental data 
gathering, an immediate and reliable emergency alert system is very important in the 
security monitoring. Furthermore, a security monitoring system does not need to transmit 
data to an emergency alert system, but the information on features or situations should be 
transmitted as fast as possible. Therefore, the basic network architecture is different between 
data gathering and security monitoring. On the other hand, the object tracking is performed 
through a region monitored by a sensor network. Basically, objects can be tracked by 
tagging them with a small sensor node. Radio frequency identification (RFID) tags are often 
used for the tracking system owing to low cost and small size.  
Sensor networks and ubiquitous computing have been incorporated into robotics. These 
researches are called network robotics and ubiquitous robotics, respectively (Kim et al., 
2004). The ubiquitous computing integrates computation into the environment (Satoh, 2006). 
The ubiquitous computing is conceptually different from sensor networks, but both aim at 
the same research direction. If the robot can receive the environmental data through the 
network without the measurement by sensors, the size of the robot can be easily reduced 
and the received environmental data are more precise because the sensors equipped in the 
environment is designed suitable to the environmental conditions. On the other hand, 
network robots are divided into three types; visible robots, unconscious robots, and virtual 
robots (Kemmotsu, 2005). The role of visible robots is to act on users with their physical 
body. The role of unconscious robots is mainly to gather environmental data, and this kind 
of unconscious robot is invisible to users. A virtual robot indicates a software or agent in a 
cyber world. A visible robot can easily perceive objects by receiving object information from 
RFID tags, and this technology has been applied for the robot navigation and the 
localization of the self-position (Kulyukin et al., 2004). Hagras et al. developed iDorm as a 
multi-function space (Doctor et al., 2005). Furthermore, Hashimoto et al. proposed 
Intelligent Space (iSpace) in order to achieve human-centered services, and developed 
distributed intelligent network devices composed of color CCD camera including processing 
and networking units (Morioka & Hashimoto, 2004). A robot can be used not only as a 
human-friendly life-support system (Mori et al., 2005), but also as an interface connecting 
the physical world with the cyber world.  

1.2 Interactive Behavioral Acquisition 

In general, the behavioral acquisition used in robotics can be classified into supervised 
learning and self-learning (Figure1). The self-learning is defined as unsupervised learning 
performed by trial-and-error without exact target teaching signals for motion reproduction. 
Supervised learning in behavior acquisition is divided into social learning and error-based 
learning. For example, least mean square algorithms are applied for behavioral learning 
when exact target teaching signals are given to a robot. On the other hand, the observed 
data,  instead of exact target teaching signals, are used in social leaning. The social learning 
is performed between two or more agents. Basically, social learning is divided into imitative 
learning, instructive learning, and collaborative learning (Morikawa et al., 2001).  
Imitation (Billard, 2002) is a powerful tool for gestural interaction among children and for 
teaching how to behave to children by parents. Furthermore, the imitation is often used for 
communication among children, and the gestures are useful to understand the intentions 
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and emotional expressions. Basically, imitation is defined as the ability to recognize and 
reproduce other's actions. The concept of imitative learning has been applied to robotics. In 
the traditional researches of learning by observation, motion trajectories of a human arm 
assembling or handling objects are measured, and the obtained data are analyzed and 
transformed for the motion control of a robotic manipulator. Furthermore, various neural 
networks have been applied to imitative learning for robots. The discovery of mirror 
neurons is especially important (Rizzolatti et al., 1996). Each mirror neuron activates not 
only by performing a task, but also by observing somebody performing the same task. Rao 
and Meltzoff classified imitative abilities into four stage progression: (i) body babbling, (ii) 
imitation of body movements, (iii) imitation of actions on objects, and (iv) imitation based 
on inferring intentions of others (Rao & Meltzoff, 2003). If a robot can perform all stages of 
imitation, the robot might develop in the same way as humans. While the imitative learning 
is basically unidirectional from a demonstrator to a learner, the instructive learning is 
bidirectional between an instructor and a learner. An instructor assesses the learning state of 
the learner, and then shows additional and suitable demonstrations to the learner. 
Collaborative learning is slightly different from the imitative learning and instructive 
learning, because neither exact teaching data nor target demonstration is given to agents 
beforehand in the collaborative learning. The solution is found or searched through 
interaction among multiple agents. Therefore, the collaborative learning may be classified as 
the category of self-learning.  

Imitative
Learning

Instructive
Learning

Reinforcement
Learning

Evolutionary
Learning

Human
Model

Error-based
Learning

 Social 
 Learning

(Supervised Leaning)

Unsupervised
Learning

BidirectionalDistance-based
clustering ...

Collaborative
Learning

Figure 1. Learning methods in robotics 

1.3 Human Detection and Gesture Recognition 

Human interaction based on gestures is very important to realize the natural 
communication. The meaning of gesture can be understood through the actual interaction 
and imitation. Therefore, we focus on the human detection and gesture recognition for 
imitative learning of human-friendly network robots. Basically, imitative learning is 
composed of model observation and model reproduction. Furthermore, model learning is 
required to memorize and generalize motion patterns as gestures. In addition, the model 
clustering is required to distinguish a specific gesture from others, and model selection as a 
result of the human interaction is also performed. In this way, the imitative learning 
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requires various learning capabilities of model observation, model clustering, model 
selection, model reproduction, and model learning simultaneously. First of all, the robot 
detects a human based on image processing with a steady-state genetic algorithm (SSGA) 
(Syswerda, 1991). Next, a series of the movements of the human hand by image processing 
as model observation, or the hand motion pattern, is extracted by a spiking neural network 
(Gerstner, 1999). Furthermore, SSGA is used for generating a trajectory similar to the human 
hand motion pattern as model reproduction (Kubota, Nojima et al., 2006). In the following, 
we explain the methods for the human detection and gesture recognition based on ambient 
intelligence. 

2. Partner Robots and Environmental System 

We developed two different types of partner robots; a human-like robot called Hubot 
(Kubota, Nojima et al., 2006) and a mobile PC called MOBiMac (Kubota, Tomioka et al., 
2006) in order to realize the social communication with humans. Hubot is composed of a 
mobile base, a body, two arms with grippers, and a head with pan-tilt structure. The robot 
has various sensors such as a color CCD camera, two infrared line sensors, a microphone, 
ultrasonic sensors, and touch sensors (Figure 2(a)). The color CCD camera can capture an 
image with the range of -30˚ and 30˚ in front of the robot. Two CPUs are used for sensing, 
motion control, and wireless network communication. The robot can take various behaviors 
like a human. MOBiMac is also composed of two CPUs used for PC and robotic behaviors 
(Figure 2(b)). The robot has two servo motors, four ultrasonic sensors, four light sensors, a 
microphone, and a CCD camera. The basic behaviors of these robots are visual tracking, 
map building, imitative learning (Kubota, 2005), human classification, gesture recognition, 
and voice recognition. These robots are networked, and share environmental data among 
each other. Furthermore, the environmental system based on a sensor network provides a 
robot with its environmental data measured by the equipped sensors.  
Human detection is one of the most important functions in the ambient intelligence space. 
The visual angle of the robot is very limited, while the environmental system is designed to 
observe the wide range of the environment. Therefore, human detection can be easily 
performed by the monitoring of the environmental system or by the cooperative search of 
several robots based on the ambient intelligence (Figure 3). In the following sections, we 
explain how to detect a human based on image processing.  

(a) Hubot (b) MOBiMac 

Figure 2. Hardware architecture of partner robots 

sensors
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Figure 3. The sensor network among robots and their environmental system 

3. Human Detection and Gesture Recognition Based on Ambient Intelligence 

3.1 Human Detection 

Human detection is performed by both robots and envrionmental sytem. Pattern matching 
has been performed by various methods such as template matching, cellular neural 
network, neocognitron, and dynamic programming (DP) matching (Fukushima, 2003; Mori 
et al., 2006). In general, pattern matching is composed of two steps of target detection and 
target recognition. The aim of target detection is to extract a target from an image, and the 
aim of the target recognition is to identify the target from classification candidates. Since the 
image processing takes much time and computational cost, a full size of image processing to 
every image is not practical. Therefore, we use a reduced size of image to detect a moving 
object for fast human detection. First, the robot calculates the center of gravity (COG) of the 
pixels different from the previous image as the differential extraction. The size of image 
used in the differential extraction is updated according to the previous human detection 
result; the maximum and minimum of the image sizes are 640×480 and 80×60, respectively. 
The differential extraction calculates the difference of the number of pixels between the 
previous and current images. If the robot does not move, the COG of the difference 
represents the location of the moving object. Therefore, the main search area for fast human 
detection can be formed according to the COG for fast human detection.  
We use a steady-state genetic algorithm (SSGA) for human detection and object detection as 
one of search methods, because SSGA can easily obtain feasible solutions through 
environmental changes at low computational costs. SSGA simulates a continuous model of 
the generation, which eliminates and generates a few individuals in a generation (iteration) 
(Syswerda, 1999). Here SSGA for human detection is called SSGA-H, while  SSGA for object 
detection used as human hand detection is called SSGA-O. 
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Human skin and hair colors are extracted by SSGA-H based on template matching. Figure 4 
shows a candidate solution of a template used for detecting a target. A template is 
composed of numerical parameters of gi,1H, gi,2H, gi,3H, and gi,4H. The number of individuals is 
G. One iteration is composed of selection, crossover, and mutation. The worst candidate 
solution is eliminated ("Delete least fitness" selection), and is replaced by the candidate 
solution generated by the crossover and the mutation. We use elitist crossover and adaptive 
mutation. The elitist crossover randomly selects one individual and generates an individual 
by combining genetic information from the randomly selected individual and the best 
individual. Next, the following adaptive mutation is performed to the generated individual, 

gi , j
H ← gi , j

H + α j
H ⋅

fmax
H − fi

H

fmax
H − fmin

H
+ β j

H ⋅N 0,1( ) (1) 

where fiH is the fitness value of the ith individual, fmaxH and fminH are the maximum and 
minimum of fitness values in the population; N(0,1) indicates a normal random variable 
with a mean of zero and a variance of one;  jH and  jH are the coefficient (0<  jH<1.0) and 
offset (  jH>0), respectively. In the adaptive mutation, the variance of the normal random 
number is relatively changed according to the fitness values of the population. Fitness value 
is calculated by the following equation,

fi
H = CSkin

H + CHair
H +η1

H ⋅CSkin
H ⋅CHair

H −η2
H ⋅COther

H  (2) 

where CSkinH, CHairH and COtherH indicate the numbers of pixels of the colors corresponding to 
human skin, human hair, and other colors, respectively;  1H and  2H are the coefficients 
( 1H,  2H>0). Therefore, this problem results in the maximization problem. The iteration of 
SSGA-H is repeated until the termination condition is satisfied.

Figure 4. A template used for human detection in SSGA-H 

3.2 Human Hand Detection 

We proposed a method for human hand detection based on the finger color and edges 
(Kubota & Abe, 2006), but we assume the human uses objects such as balls and blocks for 
performing a gesture interacting with a robot. Because the main focus is the gesture 
recognition based on human hand motion and the exact human hand detection is out of 
scope in this chapter. Therefore, we focus on color-based object detection with SSGA-O 
based on template matching. The shape of a candidate template is generated by the SSGA-O. 
We assume the human uses objects such as balls and blocks for performing a gesture 
interacting with a robot. Figure 5 shows a candidate template used for detecting a target 
where the jth point gi,jO of the ith template is represented by (gi,1O+gi,jOcos(gi,j+1O),
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gi,2O+gi,jOsin(gi,j+1O)), i=1, 2, ... , n, j=3, ... , 2�m+2; Oi (=(gi,1O, gi,2O)) is the center of a candidate 
template on the image; n and m are the number of candidate templates and the searching 
points used in a template, respectively. Therefore, a candidate template is composed of 
numerical parameters of (gi,1O, gi,2O,... , gi,2m+2O). We used an octagonal template (m=8). The 
fitness value of the ith candidate template is calculated as follows. 

fi
O = CT arg et

O −ηO ⋅COther
O  (3) 

where O is the coefficient for penalty ( O>0); CTargetO and COtherO indicate the numbers of 
pixels of a target and other colors included in the template, respectively. The target color is 
selected according to the pixel color occupied mostly in the template candidate. Therefore, 
this problem also results in the maximization problem. The robot extracts human hand 
motion from the series of images by using SSGA-O where the maximal number of images is 
TG. The sequence of the hand positions is represented by G(t)=(Gx(t), Gy(t)) where t=1, 2, ... , 
TG.

Figure 5. A template used for object detection in SSGA-O 

3.3 Human Hand Motion Extraction 

Various types of artificial neural networks have been proposed to realize clustering, 
classification, nonlinear mapping, and control (Jang et al., 1997; Kuniyoshi & Shimozaki, 
2003; Rumelhart et al., 1986). Basically, artificial neural networks are classified into pulse-
coded neural networks and rate-coded neural networks from the viewpoint of abstraction 
level (Gerstner, 1999). A pulse-coded neural network approximates the dynamics with the 
ignition phenomenon of a neuron, and the propagation mechanism of the pulse between 
neurons. Hodgkin-Huxley model is one of the classic neuronal spiking models with four 
differential equations. An integrate-and-fire model with a first-order linear differential 
equation is known as a neuron model of a higher abstraction level. A spike response model 
is slightly more general than the integrate-and-fire model, because the spike response model 
can choose kernels arbitrarily. On the other hand, rate-coded neural networks neglect the 
pulse structure, and therefore are considered as neuronal models of the higher level of 
abstraction. McCulloch-Pitts and Perceptron are well known as famous rate coding models 
(Anderson & Rosenfeld, 1988). One important feature of pulse-coded neural networks is the 
capability of temporal coding. In fact, various types of spiking neural networks (SNNs) have 
been applied for memorizing spatial and temporal contexts. Therefore, we apply a SNN for 
memorizing several motion patterns of a human hand, because the human hand motion has 
specific dynamics. 
We use a simple spike response model to reduce the computational cost. First of all, the 
internal state hi(t) is calculated as follows; 
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hi(t) = tanh hi
syn(t)+ hi

ext (t)+ hi
ref (t)( ) (4) 

Here hyperbolic tangent is used to avoid the bursting of neuronal fires, hiext(t) is the input to 
the ith neuron from the external environment, and hisyn(t) including the output pulses from 
other neurons is calculated by,  

hi
syn(t) = γ syn ⋅hi(t − 1)+ wj ,i ⋅hj

EPSP (t)
j=1, j≠i

N

 (5) 

Furthermore, hiref(t) indicates the refractoriness factor of the neuron; wj,i is a weight 
coefficient from the jth to ith neuron; hjEPSP(t) is the excitatory postsynaptic potential (EPSP) 
of the jth neuron at the discrete time t; N is the number of neurons; syn is a temporal 
discount rate. The presynaptic spike output is transmitted to the connected neuron 
according to EPSP. The EPSP is calculated as follows; 

hi
EPSP(t) = κ npi(t − n)

n=0

T

 (6) 

where  is the discount rate (0<k<1.0); pi(t) is the output of the ith neuron at the discrete time 
t; T is the time sequence to be considered. If the neuron is fired, R is subtracted from the 
refractoriness value in the following,

hi
ref (t) =

γ ref ⋅hi
ref (t − 1)− R if pi(t − 1) = 1

γ ref ⋅hi
ref (t − 1) otherwise

 (7) 

where ref is a discount rate. When the internal potential of the ith neuron is larger than the 
predefined threshold, a pulse is outputted as follows; 

pi(t) =
1 if hi

ref (t) ≥ qi

0 otherwise
 (8) 

where qi is a threshold for firing. Here spiking neurons are arranged on a planar grid (Figure 
6) and N=25. By using the value of a human hand position, the input to the ith neuron is 
calculated by the Gaussian membership function as follows; 

hi
ext (t) = exp −

ci − G(t)
2

2σ 2
 (9) 

where ci=(cx,i, cy,i) is the position of the ith spiking neuron on the image; � is a standard 
deviation. The sequence of pulse outputs pi(t) is obtained by using the human hand 
positions G(t). The weight parameters are trained based on the temporal Hebbian learning 
rule as follows, 

wj ,i ← tanh γ wgt ⋅wj ,i +ξwgt ⋅hj
EPSP (t − 1)⋅hi

EPSP (t)( ) (10) 
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where wht is a discount rate and wgt is a learning rate. Because the adjacent neurons along 
the trajectory of the human hand position are easily fired as a result of the temporal Hebbian 
learning, the SNN can memorize the temporally firing patterns of various gestures. 

Figure 6. Spiking neurons for gesture recognition 

3.4 Gesture Recognition and Learning 

This subsection explains a method for clustering human hand motions. Cluster analysis is 
used for grouping or segmenting observations into subsets or clusters based on similarity. 
Self-organizing map (SOM), K-means algorithm, and Gaussian mixture model are often 
applied as clustering algorithms (Hastie et al., 2001; Kohonen, 2001). SOM can be used as 
incremental learning, while K-means algorithm and Gaussian mixture model use all 
observed data in the learning phase (batch learning). In this paper, we apply SOM for 
clustering spatio-temporal patterns of pulse outputs from the SNN, because the robot 
observes a human hand motion at a time. Furthermore, the neighboring structure of units 
can be used in the further discussion for the similarity of clusters.  
SOM is often applied for extracting a relationship among observed data, since SOM can 
learn the hidden topological structure from the data. The inputs to SOM is given as the 
weighted sum of pulse outputs from neurons, 

v = v1 ,v2 ,...,vN( ) (11) 

where vi is the state of the ith neuron. In order to consider the temporal pattern, we use  
hiEPSP(t) as vi, although the EPSP is used when the presynaptic spike output is transmitted. 
When the ith reference vector of SOM is represented by ri, the Euclidian distance between an 
input vector and the ith reference vector is defined as 

di = v−ri  (12) 

Where ri=(r1,i, r2,i, ... , rN,i) and the number of reference vectors (output units) is M. Next, the 
kth output unit minimizing the distance di is selected by  

k = arg min
i

v−ri{ } (13) 

Furthermore, the reference vector of the ith output unit is trained by 

ri ←ri +ξSOM ⋅ζ k ,i
SOM ⋅ v−ri( ) (14) 

where  SOM is a learning rate (0< SOM <1.0); k,i SOM is a neighborhood function (0<  k,i SOM

<1.0). Accordingly, the selected output unit is the nearest pattern among the previously 
learned human hand motion patterns.
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4. Experiments 

This section shows several experimental results of human detection and gesture recognition. 
We conducted several experiments of human detection by the environmental system and 
the robot (Kubota & Nishida, 2006; Sasaki & Kubota, 2006). Figures 7 and 8 show human 
detection results by SSGA-H from the ceiling view and from the robot view, respectively. 
The environmental system detects two people in the complicated background in Figure 7. In 
Figure  8 (a), first the robot used the high resolution of images to detect a walking human. 
Afterward, as the human gradually came toward the front of the robot, the robot used the 
lower resolution of images to reduce computational cost and detected the human (Figure 8 
(b)).

Figure 7. Human detection results from the ceiling camera of the environmental system by 
SSGA-H 

Figure 8. Human detection results from the robot by SSGA-H 

We conducted several experiments of gesture recognition. The number of units used in SOM 
is 8. Figures 9 and 10 show examples of human hand motion and the learning of SNN, 
respectively. The human moves his hand from the upper left to the lower right through 
upper right on the human position. The EPSP based on spike outputs does not cover the 
human hand motion at the first trial (Figure 10 (a)), but after learning, the EPSP successfully 
covers the human hand motion based on the trained weight connections where the depth of 
color indicates the strength of weight connections between two neurons (Figure 10 (b)). 
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Figure 11 shows the learning results of various human hand motion patterns. The weight 
connections are trained according to the frequency of local movements between two 
neurons according to the human hand motion patterns. A different unit of SOM is selected 
when the different human hand motion is shown to the robot. The selected unit is depicted 
as dark boxes where each small box indicates the magnitude of the value in the reference 
vector. The 8th and 5th units are selected as gestures according to human hand motions, 
respectively. Furthermore, the comparison between SNN and RNN and the detailed 
analysis are discussed in (Kubota, Tomioka et al., 2006). 

Figure 9. A human hand motion  

Original Image Weight
Connections

Selected Unit of 
SOM

Detected Hand 
Position 

Human Color 
Extraction EPSP

(a) The initial state of EPSP at the first trial 

(b) The state of EPSP after learning 

Figure 10. Learning of SNN with the human hand motion of Figure 9  
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(a) A recognition result of human hand motion of the 8 figure; the 8th unit is selected. 

A recognition result of the human hand motion from the left to right; the 5th unit is selected. 

Figure 11. Gesture recognition by SNN and SOM after learning 

5. Summary 

This chapter introduced the methods for human detection and gesture recognition based on 
ambient intelligence. The experimental results show the effectiveness of the methods for 
human detection and gesture recognition, but we should use various types of sensory 
information in addition to visual images. We proposed the concept of evolutionary robot 
vision. The main sensory information is vision, but we can integrate and synthesize various 
types of sensory information for image processing. Possible sensory information to improve 
the performance is distance. We developed a 3D modeling method based on CCD cameras 
and a laser range finder with a small and compact pan-tilt mechanism. We intend to 
develop a gesture recognition method based on various types of sensory information. 
Furthermore, network robots based on ambient intelligece are an attractive approach to 
realize sophisticated services in the next generation society. One of attractive approaches is 
the SICE City project. The aim of SICE city project is to build up the methodology and 
concept in the city design to realize sophisticated services for residents based on 
measurement technology, network technology, control technology, and systems theory. We 
will discuss the applicability of human detection, human recognition, gesture recognition, 
and motion recognition based on ambient intelligence to human-friendly functions in the 
city design. 



Human Detection and Gesture Recognition Based on Ambient Intelligence 273

6. Acknowledgment 

The author would like to thank K.Nishida, T. Shimizu, and Y. Tomioka for all their help. 
This research is partially supported by grants-in-aid for scientific research on priority areas 
(B) 17700204 from Japan Society for the Promotion of Science. 

7. References 

Anderson, J. A. & Rosenfeld, E. (1988). Neurocomputing, The MIT Press, Cambridge, 
Massachusetts, US  

Billard, A. (2002). Imitation, Handbook of Brain Theory and Neural Networks, Arbib, M. A., 
(Ed.), 566-569, MIT Press, Cambridge, Massachusetts, US  

Doctor, F.;  Hagras, H. & Callaghan, V. (2005). A type-2 fuzzy embedded agent to realise 
ambient intelligence in ubiquitous computing environments,  Information Sciences,
Vol.171, Issue 4, pp.309-334 

Fukushima, K. (2003). Neural network model restoring partly occluded patterns, Knowledge-
Based Intelligent Information and Engineering Systems, (7th International Conference, 
KES 2003), Part II, eds: V. Palade, R. J. Howlett, L. Jain, Berlin - Heidelberg: 
Springer-Verlag,  pp. 131-138 

Gerstner, W. (1999). Spiking neurons, Pulsed Neural Networks, Maass, W. & Bishop, C.M., 
(Ed.), 3-53, MIT Press, Cambridge, Massachusetts, US  

Hastie, T.; Tibshirani, R. & Friedman, J. (2001). The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction, Springer-Verlag, New York 

Jang, J.-S.R.; Sun, C.-T. & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, Prentice-Hall 
Inc. 

Kemmotsu, K.; Tomonaka, T.; Shiotani, S.; Koketsu, Y. & Iehara, M. (2005). Recognizing 
human behaviors with vision sensors in network robot systems, Proceedings of The 
1st Japan-Korea Joint Symposium on Network Robot Systems (JK-NRS2005) 

Khemapech, I.; Duncan, I. & Miller, A. (2005). A survey of wireless sensor networks 
technology, Proceedings of The 6th Annual PostGraduate Symposium on The 
Convergence of Telecommunications, Networking and Broadcasting

Kim, J-H.; Kim, Y-D. & Lee, K-H. (2004). The third generation of robotics: ubiquitous robot, 
Proceedings of 2nd International Conference on Autonomous Robots and Agents(ICARA 
2004), pp.1-12, Palmerston North, New Zealand  

Kohonen, T. (2001). Self-Organizing Maps, 3rd Edition, Springer-Verlag, Berlin, Heidelberg 
Kubota, N. (2005). Computational Intelligence for Structured Learning of A Partner Robot 

Based on Imitation, Information Science, No. 171, pp.403-429  
Kubota, N. & Abe, M. (2006). Human hand detection for gestures recognition of a partner 

robot, Proceedings of World Automation Congress (WAC) 2006, ifmip_214, 
Budapest, Hungary 

Kubota, N. & Nishida, K. (2006). Cooperative perceptual systems for partner robots based 
on sensor network, International Journal of Computer Science and Network Security 
(IJCSNS), Vol. 6, No. 11, pp. 19-28, ISSN 1738-7906  

Kubota, N.; Nojima, Y.; Kojima, F. & Fukuda, T. (2006). Multiple Fuzzy State-Value 
Functions for Human Evaluation through Interactive Trajectry Planning of a 
Partner Robot, Soft Computing, Vol.10, No.10 pp.891-901 



Face Recognition 274

Kubota, N.; Tomioka, Y. & Abe, M. (2006). Temporal coding in spiking neural network for 
gestures recognition of a partner robot, Proceedings of Joint 3rd International 
Conference on Soft Computing and Intelligent Systems and 7th International Symposium 
on advanced Intelligent Systems (SCIS & ISIS 2006), pp. 737-742, Tokyo, Japan  

Kulyukin, et al., (2004). RFID in robot-assisted indoor navigation for the visually impaired, 
Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS 2004), pp. 1979-1984  

Kuniyoshi, Y. & Shimozaki, M. (2003). A self-organizing neural model for context-based 
action recognition, Proceedings of IEEE EMBS Conference on Neural Engineering, pp. 
442-445, Capri Island, Italy. 

Mori, A.; Uchida, S.; Kurazume, R.; Taniguchi, R.; Hasegawa, T. & Sakoe, H. (2006). Early 
recognition and prediction of gestures, Proceedings of International Conference on 
Pattern Recognition, pp. 560-563, Hong Kong, China 

Morikawa, K.; Agarwal, S.; Elkan, C. & Cottrell, G. (2001). A taxonomy of computational 
and social learning, Proceedings of Workshop on Developmental Embodied 
Cognition  

Morioka, K. & Hashimoto, H. (2004). Appearance based object identification for distributed 
vision sensors in intelligent space, Proceedings of IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS 2004), pp.199-204 

Nolfi, S. & Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence, and Technology 
of Self-Organizing Machines, The MIT Press, Cambridge, Massachusetts, US  

Rao, R. P. N. & Meltzoff, A. N. (2003). Imitation leaning in infants and robots: towards 
probabilistic computational models, Proceedings of Artificial Intelligence and 
Simulation of Behaviors, pp. 4-14 

Rumelhart, D. E.; McClelland, J. L. & the PDP Research Group. (1986). Parallel Distributed 
Processing: Explorations in the Microstructure of Cognition, Volumes 1, The MIT Press, 
Cambridge, Massachusetts, US 

Sasaki, H. & Kubota, N. (2006). Map building and monitoring for environmental 
information gathering based on intelligent networked robots, Proceedings of 
Environmental Modelling and Simulation 2006, 556-070, ISBN 0-88986-619-8, St. 
Thomas, USVI, USA.  

Satoh, I. (2006). Location-based services in ubiquitous computing environments, 
International Journal of Digital Libraries, ISNN 1432-1300 

Syswerda, G. (1991) A study of reproduction in generational and steady-state genetic 
algorithms, Genetic Algorithms, Morgan Kaufmann Publishers Inc., San Mateo  



14

Investigating Spontaneous Facial Action 
Recognition through 

AAM Representations of the Face 

Simon Lucey, Ahmed Bilal Ashraf and Jeffrey F. Cohn 
Carnegie Mellon University 

USA

1. Introduction 

The Facial Action Coding System (FACS) [Ekman et al., 2002] is the leading method for 
measuring facial movement in behavioral science. FACS has been successfully applied, but 
not limited to, identifying the differences between simulated and genuine pain, differences 
betweenwhen people are telling the truth versus lying, and differences between suicidal and 
non-suicidal patients [Ekman and Rosenberg, 2005]. Successfully recognizing facial actions 
is recognized as one of the “major” hurdles to overcome, for successful automated 
expression recognition. 
How one should represent the face for effective action unit recognition is the main topic of 
interest in this chapter. This interest is motivated by the plethora of work in existence in 
other areas of face analysis, such as face recognition [Zhao et al., 2003], that demonstrate the 
benefit of representation when performing recognition tasks. It is well understood in the 
field of statistical pattern recognition [Duda et al., 2001] given a fixed classifier and training 
set that how one represents a pattern can greatly effect recognition performance. The face 
can be represented in a myriad of ways. Much work in facial action recognition has centered 
solely on the appearance (i.e., pixel values) of the face given quite a basic alignment (e.g., 
eyes and nose). In our work we investigate the employment of the Active Appearance 
Model (AAM) framework [Cootes et al., 2001, Matthews and Baker, 2004] in order to derive 
effective representations for facial action recognition. Some of the representations we will be 
employing can be seen in Figure 1. 
Experiments in this chapter are run across two action unit databases. The Cohn- Kanade 
FACS-Coded Facial Expression Database [Kanade et al., 2000] is employed to investigate the 
effect of face representation on posed facial action unit recognition. Posed facial actions are 
those that have been elicited by asking subjects to deliberately make specific facial actions or 
expressions. Facial actions are typically recorded under controlled circumstances that 
include full-face frontal view, good lighting, constrained head movement and selectivity in 
terms of the type and magnitude of facial actions. Almost all work in automatic facial 
expression analysis has used posed image data and the Cohn-Kanade database may be the 
database most widely used [Tian et al., 2005]. The RU-FACS Spontaneous Expression 
Database is employed to investigate how these same representations affect spontaneous facial
action unit recognition. Spontaneous facial actions are representative of “real-world” facial 
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actions. They typically occur in less controlled environments, with non-frontal pose, smaller 
face image size, small to moderate head movement, and less intense and often more 
complex facial actions. Spontaneous actions units are elicited indirectly from subjects 
through environmental variables (e.g., showing a subject something associated with 
happiness which then indirectly results in a smile). Although harder to collect and annotate, 
spontaneous facial actions are preferable to posed as they are representative of real world 
facial actions. Most automated facial action recognition systems have only been evaluated 
on posed facial action data [Donato et al., 1999, Tian et al., 2001] with only a small number of 
studies being conducted on spontaneous data [Braathen et al., 2001, Bartlett et al., 2005]. 
This study extends much of the earlier work we conducted in [Lucey et al., 2006]. We greatly 
expand upon our earlier work in a number of ways. First, we expand the number of AUs 
analyzed from 4, centered around the brow region, to 15, stemming from all regions of the 
face. Second, we investigate how representation affects both posed and spontaneous actions 
units by running our experiments across both kinds of datasets. Third, we report results in 
terms of verification performance (i.e., accept or reject that a claimed AU observation is that 
AU) rather than identification performance (i.e., determine out of a watchlist of AU 
combinations which class does this observation belong to?). The verification paradigm is 
preferable over identification as it provides a natural mechanism for dealing with 
simultaneously occurring AUs and is consistent with existing literature [Bartlett et al., 2005]. 

1.1 Background 

One of the first studies into representations of the face, for automatic facial action 
recognition, was conducted by Donato et al. [1999]. Motivated by the plethora of work 
previously performed in the face recognition community, this study was restricted to 2-D 
appearance based representations of the face (e.g. raw pixels, optical flow, Gabor filters, etc.) 
as well as data-driven approaches for obtaining compact features (e.g. PCA, LDA, ICA, etc.). 
These appearance based approaches were broadly categorized into holistic, also referred to 
as monolithic, and parts-based representations. In the ensuing literature, appearance based 
approaches have continued to be popular as demonstrated by the recent feature evaluation 
paper by Bartlett et al. [2005]. A major criticism of purely appearance based approaches 
however, is their lack of shape registration. When “realworld” variation occurs, their lack of 
shape registration (i.e. knowledge of the position of the eyes, brow, mouth, etc.) makes 
normalizing for translation and rotation difficult to achieve. 
Model-based approaches offer an alternative to appearance based approaches for 
representing the face. Typical approaches have beenActive ShapeModels (ASMs) [Cootes et 
al., 2001] and Active Appearance Models (AAMs) [Cootes et al., 2001, Matthews and Baker, 
2004] in which both appearance and shape can be extracted and decoupled from one 
another. Model-based approaches to obtaining representations, like those possible with 
AAMs, have an inherent benefit over purely appearance based representations in the sense 
they can account and attempt to normalize for many types of “real-world” variation. 
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(a) (b) (c) 
Figure 1. This figure depicts the different levels of shape removal from the appearance. 
Column (a) depicts the initial scenario in which all shape and appearance is preserved. In (b) 
geometric similarity is removed from both the shape and appearance; and in (c) shape 
(including similarity) has been removed leaving the average face shape and what we refer to 
as the face image’s canonical appearance. Features derived from the representations in 
columns (b) and (c) are used in this paper for the task of facial action unit recognition 

1.2 Scope 

Contraction of the facialmuscles produces changes in the appearance and shape of facial 
landmarks (e.g., brows) and in the direction and magnitude of motion on the surface of the 
skin and in the appearance of transient facial features (e.g., wrinkles). It is due to the 
differing nature of these changes in face shape and appearance that we hypothesize that 
AAM derived representations could be beneficial to the task of automatic facial action 
recognition. 
The scope of this paper was restricted to the specific task of peak versus peak AU 
verification. Typically, when an AU is annotated there may be a time stamp noted for its 
onset (i.e., start), offset (stop) and/or peak (maximum intensity). For the Cohn-Kanade 
database, time stamps were provided for onset and peak AU intensity of each image 
sequence. For RU-FACS, time stamps were available for onset, peak, and offset. For both 
databases, AUs typically were graded for intensity, with A being the lowest grade intensity 
(i.e. ”trace” or barely visible; not coded in the original edition of FACS) and E being the 
highest [Ekman et al., 2002]. Only AUs of at least intensity B were employed in our 
experiments. Onset time stamps were assumed to be representative of a local AU 0 (i.e. 
neutral expression). AU 0 is employed later in our experiments in a normalization 
technique. 
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The reliability of annotated action units was considered in selecting image sequences for 
analysis. If manual FACS coding is contaminated by error, the potential verification rate is 
proportionately reduced. For the Cohn-Kanade database, reliability of annotated AU was 
evaluated by independently scoring a random subset of the image sequences. Reliability for 
AU occurrence was moderate to high [Kanade et al., 2000]. We therefore used all available 
image sequences for analysis. For RU-FACS, reliability is not reported. In its absence, a 
certified FACS coder fromthe University of Pittsburgh verified all action units. Sequences 
for which manual FACS coding was not confirmed were excluded. 

2. AAMs 

In this section we describe active appearance models (AAMs). AAMs have been 
demonstrated to be an excellentmethod for aligning a pre-defined linear shapemodel, that 
also has linear appearance variation, to a previously unseen source image containing that 
object. AAMs typically fit their shape and appearance components through a 
gradientdescent fit, although other optimization approaches have been employed with 
similar results [Cootes et al., 2001]. To ensure a quality fit, for the datasets employed in this 
study, a subject-dependent AAM was created for each subject in each database. Keyframes 
taken from each subject were manually labeled in order to create the subjectdependent 
AAM. The residual frames for the subject were then aligned in an automated fashion using a 
gradient-descent AAM fit. Please see [Matthews and Baker, 2004] for more details on this 
approach.

2.1 AAM Derived Representations 

The shape s of an AAM [Cootes et al., 2001] is a 2D triangulated mesh. In particular, s is a 
column vector containing the vertex locations of the mesh (see row 1, column (a), of Figure 1 
for examples of this mesh). These vertex locations correspond to a source appearance image, 
fromwhich the shapewas aligned (see row 2, column (a), of Figure 1). 
AAMs allow linear shape variation. This means that the shape s can be expressed as a base 
shape s0 plus a linear combination of m shape vectors si :

(1)

where the coefficients p = (p1, . . . , pm)T are the shape parameters. These shape parameters 
can typically be divided into similarity parameters ps and object-specific parameters p0, such 
that pT = [psT, p0T ]. Similarity parameters are associated with the geometric similarity 
transform (i.e., translation, rotation and scale). The object-specific parameters, are the 
residual parameters associated with geometric variations associated with the actual object 
shape (e.g., the mouth opening, eyes shutting, etc.). Procrustes alignment [Cootes et al., 
2001] is employed to estimate the base shape s0.
A similarity normalized shape sn can be obtained by synthesizing a shape instance of s,
using Equation 1, that ignores the similarity parameters of p. An example of this similarity 
normalized mesh can seen in row 1, column (b), of Figure 1. A similarity normalized 
appearance can then be synthesized by employing a piece-wise affine warp on each triangle 
patch appearance in the source image (see row2, column (b), of Figure 1) so the appearance 
contained within s now aligns with the similarity normalized shape sn. We shall refer to this 
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as the face’s similarity normalized appearance an. A shape normalized appearance can then be 
synthesized by applying the same technique, but instead ensuring the appearance contained 
within s now aligns with the base shape s0. We shall refer to this as the face’s canonical 
appearance (see row 2, column (c), of Figure 1 for an example of this canonical appearance 
image) a0.

(a) (b) (c) 
Figure 2. This figure depicts a visualization of delta features for S-PTS (row 1), S-APP (row 2) 
and C-APP (row 3). The peak and neutral frames for these different features can be seen in 
columns (a) and (b) respectively. The delta features can be seen in column (c) 

2.2 Features 

Based on the AAM derived representations in Section 2.1 we define three representations: 
S-PTS: similarity normalized shape sn representation (see Equation 1) of the face and its facial 

features. There are 74 vertex points in sn for both x- and y- coordinates, resulting in a 
raw 148 dimensional feature vector. 

S-APP: similarity normalized appearance an representation. Due to the number of pixels in an

varying from image to image, we apply a mask based on s0 so that the same number of 
pixels (approximately 126, 000) are in an for each image. 

C-APP: canonical appearance a0 representation where all shape variation has been removed 
from the source appearance except the base shape s0. This results in an approximately 
126, 000 dimensional raw feature vector based on the pixel values within s0.

The naming convention S-PTS, S-APPand C-APP will be employed throughout the rest of 
this chapter. 
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In previous work [Cohn et al., 1999, Lucey et al., 2006] it has been demonstrated that some 
formof subject normalization is beneficial in terms of recognition performance. The 
employment of delta features are a particularly useful method for subject normalization (see 
Figure 2). A delta feature x  is defined as, 

x  = xpeak -– xneutral (2)

where xpeak is the feature vector taken at the peak time stamp for the current AU being 
verified. The xneutral feature vector is taken from a neutral time stamp for that same subject. 
The feature x is just notation for any generic feature, whether it stem from S- PTS S-APP or
C-APP. The employment of delta features is advantageous as it can lessen the effect of 
subject-dependent bias during verification. A visualization of delta features can be seen in 
Figure 2 for S-PTS (row 1), S-APP (row 2) and C-APP (row 3). 

3. Classifiers 

Becausewe are dealingwith peak-to-peakAUverification,we explored two commonly 
[Donato et al., 1999, Bartlett et al., 2005] used classifiers for facial action recognition. 

3.1 Support Vector Machine (SVM) 

Support vector machines (SVMs) have been demonstrated to be extremely useful in a 
number of pattern recognition tasks including face and facial action recognition. This type of 
classifier attempts to find the hyper-plane that maximizes the margin between positive and 
negative observations for a specified class. A linear SVM classification decision is made for 
an unlabeled test observation x_ by, 

(3)

where w is the vector normal to the separating hyperplane and b is the bias. Both w and b
were estimated so that they minimize the structural risk of a train-set. Typically, w is not 
defined explicitly, but through a linear sum of support vectors. As a result SVMs offer 
additional appeal as they allow for the employment of non-linear combination functions 
through the use of kernel functions such as the radial basis function (RBF), polynomial, sigmoid 
kernels. A linear kernel was used in our experiments throughout this chapter, however, due 
to its good performance, and ability to perform well in many pattern recognition tasks Hsu 
et al. [2005]. Please refer to [Hsu et al., 2005] for additional information on SVM estimation 
and kernel selection. 
Since SVMs are intrinsically binary classifiers, special steps must be taken to extend them to 
the multi-class scenario required for facial action recognition. In our work, we adhered to 
the “one-against-one” approach [Hsu et al., 2005] in which K(K - 1)/2 classifiers are 
constructed, where K are the number of AU classes, and each one trains data from two 
different classes. In classification we use a voting strategy, where each binary classification 
is considered to be a single vote. A classification decision is achieved by choosing the class 
with the maximum number of votes. 
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3.2 Nearest Neighbor (NN) 

Nearest neighbor (NN) classifiers are typically employed in scenarios where there are many 
classes, and there is a minimal amount of training observations for each class (e.g. face 
recognition); making them well suited for the task of facial action recognition. 
A NN classifier seeks to find of N labeled train observations  the single closest 
observation to the unlabeled test observation x*; classifying x* as having the nearest 
neighbor’s label. 

AU N P FAR FRR 
1 141 93.35 20.57 0.88
2 94 97.09 7.45 1.81
4 154 88.98 28.57 2.75
5 77 93.35 16.88 4.70
6 111 88.98 24.32 7.03
7 108 88.98 34.26 4.29
9 50 98.75 10.00 0.23

12 113 96.88 7.08 1.90
15 73 96.88 13.70 1.23
17 153 95.63 3.92 4.57
20 69 94.59 33.33 0.73
23 43 95.01 44.19 1.14
24 43 95.84 41.86 0.46
25 293 98.13 3.07 0.00
27 76 97.30 3.95 2.47

Average 94.65 19.54 2.28

Table 1. Verification results for similarity removed geometric shape S-PTS features. Results 
are depicted for each action unit (AU), with the number of positive examples (N), total 
percentage agreement between positive and negative labels (P), false accept rate (FAR), false 
reject rate (FRR) 

When N is small the choice of distancemetric D(a, b) between observation points becomes 
especially important [Fukunaga, 1990]. One of themost common distancemetrics employed 
in face recognition and facial action recognition is the Mahalanobis distance, 

 (4) 

where a and b are observation vectors being compared and W is a weightingmatrix. It is 
often advantageous to attempt to learn W from the train-set. Two common approaches to 
learn W are,
Principal Component Analysis (PCA) attempts to find the K eigenvectors ,

corresponding to the K largest eigenvalues, of the train-set’s covariance matrix. These K
eigenvectors can be thought of as the K largest modes of linear variation in the train-set. 
The weighting matrix can then be defined as W = VVT . Typically, K << N thereby
constraining the matching of a and b to a subspace where training observations have 
previously spanned. 
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Linear Discriminant Analysis (LDA) attempts to find the K eigenvectors of 
SbSw -1 where Sb and Sw are the within- and between- class scatter matrices of the train-
set. These K eigenvectors can be thought of as the K largest modes of discrimination in 
the train-set. Since SbSw-1 is not symmetrical, we must employ simultaneous 
diagonalization Fukunaga [1990] to find the solution. PCA is typically applied before 
LDA, especially if the dimensionality of the raw face representations is large, so as to 
minimize sample-size noise. 

In our initial experiments we found no advantage in employing NN classifiers, based on 
either PCA or LDA subspaces, when compared to SVM classifiers. This result was consistent 
with our own previous work [Lucey et al., 2006] and other previous work in literature 
[Bartlett et al., 2005]. In the interests of succinctness we shall only be reporting verification 
results for SVM classifiers. 

4 Experiments 

4.1 Evaluation 

Verification is performed by accepting a claimed action unit when its match-score is greater 
than or equal to Th and rejecting the claimed action unit when the match-score is less than 
Th, where Th is a given threshold. Verification performance is evaluated using twomeasures; 
being false rejection rate (FRR), where a true action unit is rejected against their own claim, 
and false acceptance rate (FAR), where an action unit is accepted as the falsely claimed 
action unit. The FAR and FRR measures increase or decrease in contrast to each other based 
on the threshold Th. In our experiments an optimized threshold Th* was learnt in 
conjunction with the SVM classifier that minimizes the total number of falsely classified 
training observations. 

4.2 Posed Action Units 

In our first set of experimentswe investigated howdifferent representations affected 
verification performance of a “posed” set of action units. The set of AUs employed for our 
verification performance were based off previous verification experiments conducted by 
Bartlett et al. [2004]. Verification results can be seen in Tables 1-3. We employed the Cohn-
Kanade database for our experiments on posed action units. Due to the small size of the 
databases being employed for our evaluation, we employed a subject leave-one-out strategy 
[Duda et al., 2001] to maximize the amount of available training data. 
One can see that all three representations achieve reasonable verification performance in 
terms of FAR, FRR as well as the overall agreement in class labels for both types of error (P). 
Interestingly, however, the S-PTS+C-APP features in Table 3 obtain the best verification 
performance overall in comparison with the similarity normalized shape (S-PTS, Table 1) 
and appearance (S-APP, Table 2) features. The S-PTS+C-APP features are created by 
concatenating together the similarity normalized shape and the shape normalized 
(canonical) appearance. This result is intriguing as the S-APP features contain exactly the 
same information as the S-PTS+C-APP features. The major difference between the two 
results lies solely in the representation employed. This results demonstrates some of the 
inherent advantages in employing AAM based representations for facial action unit 
recognition. 
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AU N P FAR FRR 
1 141 93.56 19.86 0.88 
2 94 96.47 10.64 1.81 
4 154 92.31 16.88 3.36 
5 77 92.10 28.57 3.96 
6 111 88.98 23.42 7.30 
7 108 89.61 32.41 4.02 
9 50 98.75 12.00 0.00 
12 113 97.30 7.96 1.09 
15 73 95.63 24.66 0.74 
17 153 96.05 5.23 3.35 
20 69 96.05 27.54 0.00 
23 43 94.59 51.16 0.91 
24 43 95.22 48.84 0.46 
25 293 95.22 4.78 4.79 
27 76 97.71 10.53 0.74 

Averag  94.64 21.63 2.23 

Table 2. Verification results for similarity removed appearance S-APP features. Results are 
depicted for each action unit (AU), with the number of positive examples (N), total 
percentage agreement between positive and negative labels (P), false accept rate (FAR), false 
reject rate (FRR) 

AU N P FAR FRR 
1 141 95.43 14.18 0.59 
2 94 96.26 10.64 2.07 
4 54 91.68 21.43 2.14 
5 77 94.18 19.48 3.22 
6 111 91.06 20.72 5.41 
7 108 90.44 28.70 4.02 
9 50 98.75 10.00 0.23 

12 113 97.09 7.08 1.63 
15 73 97.51 10.96 0.98 
17 153 96.26 3.92 3.66 
20 69 95.84 26.09 0.49 
23 43 95.84 37.21 0.91 
24 43 96.67 30.23 0.68 
25 293 98.34 2.73 0.00 
27 76 97.09 6.58 2.22 

Average  95.50 16.66 1.88 

Table 3. Verification results for joint S-PTS+C-APP features. For these experiments the S-
PTS and C-APP features were concatenated into a single feature vector. Results are depicted 
for each action unit (AU), with the number of positive examples (N), total percentage 
agreement between positive and negative labels (P), false accept rate (FAR), false reject rate 
(FRR)
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 Observed 
  1 1+2 4 5 

1 86.42 11.54 3.85 0.00 
1+2 3.45 96.55 0.00 0.00 

4 12.50 0.00 84.38 3.12 A
ct

ua
l

5 43.75 6.25 18.75 31.25 

Table 4. Confusion matrix for the similarity normalized shape feature S-PTS, demonstrating 
good performance on AUs 1, 1+2 and 4, but poor performance on AU 5 

When we compare these results to other verification experiments conducted in literature for 
facial action verification, most notably Bartlett et al. [2004] where experiments were carried 
out on the same database with the same set of AUs, our approach demonstrates 
improvement. Our algorithm compares favorably to their approach which reports a FAR =
2.55% and a FRR = 33.06% compared to our leading verification performance of FAR =
1.88% and a FRR = 16.66%. In both approaches a SVM was employed for classification with 
a subject leave-one-out strategy and a threshold Th* was chosen that minimizes the total 
number of falsely classified training observations. Bartlett et al.’s approach differed 
significantly to our own as they employed Gabor filtered appearance features that were then 
refined through a Adaboost feature selection process. We must note, however, there were 
slight discrepancies in the number of observations for each AU class which may also 
account for our differing performance. 

4.3 Spontaneous Action Units 

In our next set of experiments we investigated how AAM representations performed on 
“spontaneous” action units. At the time of publishing only a small number of AUs within 
the RU-FACS database were confirmed so we limited our spontaneous experiments to only 
the task of AU identification. In our experiments, we focus on two types of muscle action. 
Contraction of the frontalis muscle raises the brows in an arch-like shape (AU 1 in FACS) 
and produces horizontal furrows in the forehead (AU 1+2 in FACS). Contraction of the 
corrugator supercilii and depressor supercilii muscles draws the inner (i.e., medial) portion 
of the brows together and downward and causes vertical wrinkles to form or deepen 
between the brows (AU 4 in FACS). The levator palpebrae superioris (AU 5 in FACS) is 
associated with the raising of the upper eyelid. Because these action units and action unit 
combinations in the eye and brow region occur frequently during conversation and in 
expression of emotion, we concentrated on them in our experiments. 
In Table 4 we see the confusion matrix for the representation S-PTS. Interestingly the 
performance of the recognizer suffers mainly from the poor job it does on AU 5. Inspecting 
Table 5, however, for the S-APP appearance feature one can see this recognizer does a good 
job on AUs 1, 1+2 and 4, but does a better job on AU5 than S-PTS does. This may indicate 
that shape and appearance representations of the face may hold some complimentary 
information with regard to recognizing facial actions. The S-PTS+C-APP features were 
omitted from this evaluation as we wanted to evaluate the the advantages of shape versus 
appearance based representations. 
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Observed
 1 1+2 4 5 
1 76.92 19.23 3.85 0 

1+2 13.79 86.21 0 0 
4 15.62 18.75 62.5 3.12 A

ct
ua

l

5 18.75 12.5 12.5 56.25 

Table 5. Confusion matrix for the appearance feature 2DA, demonstrating reasonable 
performance on AUs 1, 1+2 and 4, but much better performance, with respect to S-APP, on 
AU 5 

5. Discussion 

In this paper we have explored a number of representations of the face, derived from 
AAMs, for the purpose of facial action recognition. We have demonstrated that a number of 
representations derived from the AAM are highly useful for the task of facial action 
recognition. A number of outcomes came from our experiments, 
• Employing a concatenated similarity normalized shape and shape normalized 

(canonical) appearance (S-PTS+C-APP) is superior to either similarity normalized 
shape (S-PTS) or similarity normalized appearance (S-APP). This result also validates 
the employment of AAM type representations in facial action unit recognition. 

• Comparable verification performance to [Bartlett et al., 2004] can be achieved using 
appearance and shape features stemming from a AAM representation. 

• Shape features have a large role to play in facial action unit recognition. Based on our 
initial experiments the ability to successfully register the shape of the face can be highly 
beneficial in terms of AU recognition performance. 

A major problem with the “spontaneous” action unit recognition component of this chapter 
stems from the marked amount of head movement in subjects. Additional work still needs 
to be done, with model based representations of the face, in obtaining adequate 3D depth 
information from the face. We believe further improvement in this aspect of model based 
representations of the face, could play large dividends towards the lofty goal of automatic 
ubiquitous facial action recognition. 
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1. Introduction 

Face classification can be defined as the problem of assigning a predefined label to an image 
or subpart of an image that contains one ore more faces. This definition comprises many sub 
disciplines in the visual pattern recognition field: (i) face detection, where the goal is to 
detect the presence of a face on an image, (ii) face recognition, where we assign an identifier 
label to the detected face, (iii) face verification, where the identity of the subject is given, and 
we should assure its truthfulness and (iv) gender recognition where the label male or female
is assigned to each face image. 
The information source of a facial image can divided in two sets, depending on the zone of 
the face. The internal information is composed by the eyes, nose and mouth, while the 
external features are the regions of the hair, forehead, both laterals, ears, jaw line and chin.  
Traditionally, face recognition algorithms have used only the internal information of face 
images for classification purposes since these features can be easily extracted. In fact, most 
of these algorithms use the aligned thumbnails as an input for some feature extraction 
process that yields a final feature set used to train the classifier. Classic examples of this 
approach are the eigenfaces technique (Turk & Pentland, 1991), or the use of Fisher Linear 
Discriminant Analysis (Hespanha Belhumeur & Kriegman, 1997). Moreover, in the face 
classification field, there are a lot of security related applications where the reliability 
obtained by the internal features is essential: notice that the external information is more 
variable and easier to imitate. For this reason, the use of external features for these security-
related tasks has often been ignored, given their changing nature. However, with the 
advances of technology in chip integration, small embedded computers are more integrated 
in our everyday life, favouring the appearance of new applications not directly related to 
security dealing with face classification, where the users do not make specific efforts to 
mislead the classifier. Typical examples are embedded camera-devices for human user-
friendly interfaces, user profiling, or reactive marketing. In these cases we consider the 
external features as an extra source of information for improving the accuracies obtained 
using only internal features. Furthermore, notice that this consideration can be specially 
beneficial in natural and uncontrolled environments, where usually artefacts such as strong 
local illumination changes or partial occlusions difficult the classification task. 
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The use of external features has been seldom explored in computational face classification. 
Although there exists a plethora of methods to find the center pixel of each eye in order to 
put in correspondence each face image, the external regions are more difficult to align given 
that:
• External information does not have the same size in different persons. The hair volume 

can differ considerably between subjects. Pixel values at certain position do not mean 
the same depending on the sample. 

• There is a lack of alignment on the features, given that there are no points of reference 
between samples from different subjects, or even between the same subject with 
different hairstyle. 

In this context, the main motivation of this chapter is to provide a set of techniques that 
allow an efficient extraction of the external features of facial images. Commonly the 
extraction of internal information is faced using bottom-up techniques. In the case of 
external features, this strategy is not suitable due to the problems mentioned above. We 
propose a new algorithm to follow a top-down procedure to extract the external information 
of facial images, obtaining an aligned feature vector that can be directly used for training 
any standard pattern recognition classifier. 
The chapter is organized as follows: in the next section we briefly review some 
psychological studies that support the usefulness of the external features in face 
classification in the normal human behaviour. Section 3 defines the feature extraction 
algorithm proposed for the external regions. Section 4 shows some results obtained in 
different face classification problems, using two publicly available face databases, and 
finally, section 5 concludes this chapter. 

2. Motivation 

In order to understand the human visual system’s proficiency at the task of recognizing 
faces, different psychological experiments have been performed (Sinha & Poggio, 2002), 
(Fraser et al., 1990), (Haig, 1986), (Bruce et al. 1999), (Ellis, 1986), (Young et al., 1986). The 
results showed internal features to be more useful than external ones for recognition of 
familiar faces. However, the two feature sets reverse in importance as resolution decreases 
and also for recognition of unfamiliar faces.  
Image resolution is an important factor to take into account when we try to characterize face 
recognition performance. Changes in the image information caused by increasing viewing 
distances, for instance, are very strong. See for example figure 1, where this fact is 
illustrated: comparing the internal features in low resolution of these faces we can see how 
difficult is to recognize them. However, when we add the external information the 
recognition task becomes easier.   
Understanding recognition under such adverse conditions is of great interest given their 
prevalence in the real world applications. Notice that many automated vision systems need 
to have the ability to interpret degraded images, since in several cases they are acquired in 
low resolution due both to hardware limitations and large viewing distances. For this 
reason, Jarudi and Sinha (Jarudi & Sinha, 2003) performed an study with thirty subjects, 
ranging in age from 18 to 38. They were randomly placed in four non-overlapping groups 
corresponding to four experiments: 

• Experiment A: recognition using the internal features of the face placed in a row. 
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• Experiment B: recognition using the internal features for each face in their correct 
spatial configuration. 

• Experiment C: recognition using the external features alone with the internal 
features digitally erased. 

• Experiment D: recognition using the full faces, including both internal and  
external features. 

Figure 1. The low resolution problem 

The mutual exclusion was enforced to prevent any transfer of information from one 
condition to another. 
In each case, different images from famous people were presented sequentially, proceeding 
from the most degraded to the least degraded conditions. The results show that the full-face 
condition (D) is remarkably robust to reductions in image quality and declines gradually 
with increasing image blur, while performance in condition (A) is in general modest.  
However, when the internal features are placed in their correct spatial configuration 
(condition B), performance improves relative to condition A, but continues to be extremely 
sensitive to the amount of blur applied to the stimulus images. We can deduce then that the 
absence of external features damages the recognition performance in condition (B) relative 
to condition (D). Finally, the percentage of correct recognition in condition (C) is in general 
higher than in condition (A), and it is lower than in condition (B) only when the resolution is 
high enough.  



Face Recognition 290

There are more studies on the role of internal and external features that demonstrate the 
usefulness of the external information in face recognition. For instance, (Fraser et al., 1990) 
show that certain features are more important to face recognition than others. In particular, 
a feature hierarchy was observed with the head outline as the most significant, followed by 
the eyes, mouth and then nose.
Other works using different techniques have supported this general pattern of results 
suggesting that for the recognition of unfamiliar faces external features are more important 
that internal features (Bruce et al., 1999). A visual illusion shown in figure 2 justifies this 
hypothesis: internal face features in both portraits are exactly the same, but very few human 
observers are aware of this after an attentive inspection of the images if they are not warned 
of this fact. This is because the external features of these girls are contributing a priori more 
information than the internal features. 

Figure 2. The Portraits illusion 

The studies of (Jarudi & Sinha, 2003) suggest also that it is not the internal or external 
configuration on their own that serve recognition, but rather measurements corresponding 
to how internal features are placed relative to the external features. Thus, external features, 
even though poor indicators of identity on their own provide an important frame of 
reference for analyzing facial configuration. A visual illusion that was developed a few 
years ago serves to illustrate this idea: figure 2 shows what appears to be a picture of former 
US ex-President Bill Clinton and ex-Vice President Al Gore. Upon closer examination, it 
becomes apparent that Gore's internal features have been supplanted by Clinton's ones (in 
the configuration that they have on Clinton’s face). If the appearance and mutual 
configuration of the internal features were the primary determinants of facial identity, then 
this illusion would have been much less effective. Then, it seems valid to conclude that 
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external features play a very significant role in judgments of identity. Furthermore, their 
contribution becomes evident only in concert with the internal features, because on their 
own, they do not permit reliable recognition. Thus, it seems valid to conclude that external 
features play a very significant role in judgments of identity, since their contribution 
becomes evident only in concert with the internal features in this case. 
These psychological studies have motivated our interest for the usefulness of external 
features for automatic face classification. 

Figure 3. The presidential illusion. These examples have been extracted from (Sinha & 
Poggio 1996) and (Sinha & Poggio 2002) 

3. External Feature Extraction 

The extraction of external information has two important drawbacks: the diverse nature and 
high variability of the external regions, and the lack of alignment of the external 
information. Therefore, most of the bottom-up approaches applied to internal feature 
extraction fail in obtaining an aligned D-dimensional feature vector from the external 
regions. Linear transformations such as PCA or FLD can not be directly applied. In this 
chapter we propose a top-down feature extraction algorithm that solves the alignment 
problems stated, by building a global fragment-based model of the external information 
(Lapedriza et al., 2005). The technique contains two main steps: 
• Learning the model: Given the training examples, find an optimal set of fragments that 

constitute the model. This step is performed off line, and it is usually the most 
computationally intensive. 

• Encoding of new images: Reconstruct a new unseen face image according to the 
fragments from the model that best fit with the image, and obtain a new aligned feature 
vector.

3.1 Learning the model 

The proposed algorithm is based on previous works from the field of image segmentation 
(Borenstein & Ullman 2002) and (Borenstein,  Sharon,  & Ullman 2004). In the learning stage, 
the goal is to build a model of the external facial regions by selecting a subset of fragments 
from the external zone of the training images.  
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Image patches or fragments have been used as visual features in many recognition systems. 
These patches are normally extracted from images based on local properties such as 
similarity. A particulary useful set of features are the intermediate size image fragments, 
that arise in a natural way when searching for a set of features having as information as 
possible of the class (Ullman et al., 2002). Thus, intermediate sized image fragments are 
selected from a large set of candidates to represent a model of the class. This selected set is 
called here the Building Blocks.
The learning model algorithm receives as input a training set C with images that should 
contain clearly visible and diverse enough external features. From this training set, we 
generate all the possible sub images Fi of predefined sizes and store them. This step is 
computationally demanding, and can be optimized by selecting fragments only from 
specific zones of the image. Figure 4 shows the suggested regions of interest selected in this 
chapter. These surrounding regions can be easily isolated with the information provided at 
the previous face detection step. 

Figure 4. Interest’s regions of the external face features 

Each fragment Fi is candidate to belong to the final model. Nevertheless, the size of the 
candidate set grows quadratically with the image dimensions, and the redundancy on the 
fragments is significant, being necessary a selection of the most representative fragments 
that account for the maximum diversity on the external regions. 
Given the facial set C and a large set of non face images C  the goal is to find the fragments  
that are more representative of the external information of faces. The global selection 
criterion applied is to add to the model those fragments that can be found with high 
probability in face images but with low probability in non face images. The cross-correlation  
measure is used to determine wether a given Fragment Fi is similar to any part p from image 
I, and is defined as: 
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where N is the number of pixels in Fi, p and iF are the means of p and Fi respectively, and 

p and Fi are their standard deviations. 
For each fragment Fi, we compute the maximum values of the normalized cross-correlation 
between Fi and each possible sub image p  of I∈C ( )(CNCCi ),  and in C ( )(CNCCi ).

Given a number of false positives α that can be tolerated for a fragment in C we can 
compute a threshold value iθ  in order to assure that P( )(CNCCi )<α . This value can be 
used for determining wether a given fragment is present in an unseen image. Correlations 
below this treshold mean that not enough similarity has been found between the fragment 
and the image. 
Finally, the K fragments with highest P( )(CNCCi )>α are selected. These fragments have 
the highest probability to appear in the face set, and not to appear in the non face set 
(Borenstein & Ullman 2002, Sali & Ullman 1999) . The complete algorithm is detailed in 
Table 1. 
To  ensure additional diversity on the fragment set we impose a geometrical constraint on 
the location of the fragments. The face image is divided in 3 independent regions: frontal 
part, left side and right side (see figure 4). The fragment selection process is run 
independently on each region, avoiding an important fragment concentration on small 
zones that would yield poor global reconstruction of new unseen images.  

The algorithm takes as input:  
• The face images set C 
• The set C of non face images  
• The possible sizes of the fragments to analyze },..,{ 1 si SSS ∈

• The maximum number of fragments K that will be considered as building
blocks.

• The predefined threshold of false positives α .
1. For each fragment size iS

• Extract all the possible sub images iF of size iS from the set C using a 
sliding window procedure.  

• Add each sub image to the candidate fragments set.  
• Calculate and store the normalized correlation between each 

candidate fragment  iS  and each image from C and C .

2. Compute the threshold  
iθ  for each fragment iF  that allows at most an α  false 

positive ratio from the training set, (P( )(CNCCi )>
iθ ) < α .

1. Compute the probability (frequency) of each fragment to describe 
elements from class C  using the threshold 

iθ ,  (P( )(CNCCi )>
iθ ).

2. Select the K fragments with highest value P( )(CNCCi )>
iθ .

Table 1. Building blocks learning algorithm 
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3.2 Encoding the aligned External Information from new unseen images 

Provided the learned fragment-based model of the external features, and supposing that the 
face detector has located a face in an image (internal features), the first step to extract the 
external face information is to cover the surrounding of the face area with the set of building 
blocks. To achieve this goal a function ),( iFINC  is defined as the pixel coordinates where 
the maximum ),( iFpNCC for all the possible sub images Ip∈  is reached. Therefore, for 
each building block the place where the normalized cross-correlation value is maximum is 
computed, and then, the most appropriated covering is defined as an additive composition 
of the fragments that yields an optimal reconstruction of the surroundings of the detected 
internal face features.  
The main goal of the proposed technique is to obtain an aligned feature vector of the 
external information, which can be used as an input for any traditional classifier designed 
for learning the internal features. The following three steps perform the feature extraction: 
1. Given a new unseen image x, we compute the normalized correlations between each 

fragment composing the model and the area of the image that surrounds a face. We 
store also the position of the maximum correlation NC(I,Fi) for each fragment. 

2. Using the optimal position for each fragment, a set of basis vectors B are constructed as 
follows: for each fragment an image of the same size as the original image is generated 
with the fragment set at the optimal position (obtained in the first step), and the rest of 
the pixels set to 0. 

3. Given B, we find the coefficients S that best approximate the linear transform: 

BSx ≈
To compute the set of coefficients S we use the Non Negative Matrix Factorization (NMF) 
algorithm (Lee & Seung , 1999). The NMF algorithm fulfils the three constraints inherent to 
this problem: 
• The combination of coefficients must be additive, given that each fragment contributes 

to the reconstruction of the external features. 
• The reconstruction error of the image external features using the fragments of the 

model must be minimized, and the NMF minimizes the reconstruction error (Lee at al., 
2000) in the mean squared error sense. 

• The fragment set is diverse, given that is extracted from different subjects in order to 
model the variability of the problem. Therefore, only a small part of the fragments from 
the general model can be useful to reconstruct a specific face. This fact implies that the 
coefficients S  must be sparse, and only a small part of the fragments of the model 
should be activated for each face. 

There exist several implementations of the NMF algorithm, among them we have chosen the 
version developed by Patrick Hoyer (Hoyer 2004), fixing the bases matrix B to constraint 
the NMF to our model (Lapedriza et al., 2006). This implementation has the advantage that 
the sparseness coefficient can be adjusted, in order to allow or restrict the amount of 
fragments that take part on the reconstruction.  Figure 5 shows an example of the whole 
feature extraction process. We use only the external regions marked to be put in 
correspondence with the fragment model. The reconstructed image is expressed as a linear 
combination between the fragments placed at the optimal position and the NMF weights. 
Notice that the reconstruction is not used for classification purposes. The NMF coefficients 
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encode the aligned feature vector that represents the external information of the face. Each 
feature represents the contribution of one fragment from the model in the reconstruction of 
the original external region. 

Figure 5. Example of the reconstruction process of the external information. In the first 
sample the original image is plotted, and the regions where the external information is 
marked. Some of the fragments from the model are plotted at the optimal position under the 
NC criterion, and the feature extraction process is illustrated as a linear combination of this 
fragment-basis and a set of NMF coefficients. The resulting reconstructed image is shown. 

4. Face Classification Experiments 

To test this external feature extraction system we have performed different experiments, 
including gender, verification and subject recognition, using different classifiers. In this 
section we present some results showing that the proposed method allows to obtain 
significant information from the external zones of the face.  
Two publicly available databases have been used: the AR Face Database and FRGC (Face 
Recognition Grand Challenge, http://www.bee-biometrics.org/ ). 
The AR Face Database is composed of 26 face images from 126 different subjects (70 men 
and 56 women). The images have uniform white background. The database has from each 
person 2 sets of images, acquired in two different sessions, with the following structure:  1 
sample of neutral frontal images, 3 samples with strong changes in the illumination, 2 
samples with occlusions (scarf and glasses), 4 images combining occlusions and illumination 
changes, and 3 samples with gesture effects. One example of each type is plotted in figure 6. 
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From the FRGC we have used the set of still high resolution images, which consists of facial 
images with 250 pixels between the centers of the eyes on average. This set includes 3772 
images from 275 different subjects. There are from 4 to 32 images per subject. In our 
experiments done using this database, we have excluded 277 images where the external 
features were partially occluded. Figure 7 includes some examples of images from the FRGC 
and figure 8 shows some of the excluded images. 

Figure 6. One sample from each of the image types in AR Face Database. The image types 
are the following: (1) Neutral expression, (2) Smile, (3) Anger, (4) Scream, (5) left light on, (6) 
right light on, (7) all side lights on, (8) wearing sun glasses, (9) wearing sunglasses and left 
light on, (10) wearing sun glasses and right light on, (11) wearing scarf, (12) wearing scarf 
and left light on, (13) wearing scarf and right light on. 

In these experiments we need to work always in the same resolution, since the proposed 
external face features extraction system is a fragment-based method. For this reason, all the 
images in both databases have been resized to ensure that the between eyes distance is 16 
pixels.
To evaluate the results in a reliable way we normally use a k-fold cross validation system. 
Moreover we compute also the radius of the confidence interval as follows: 

k
r σ96.1=

where σ is the standard deviation of the obtained results by these k performances. Then, 
the confidence interval is 

I = [m-r,m+r] 

where m is the mean of the results obtained by the experiments. 
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Figure 7. Examples of images in the FRGC Database 

Figure 8. Some examples of excluded images 

4.1 External Features’ model construction 

For all the experiments we need to construct a model for the external information to extract 
these features according the method presented above. We have randomly selected some 
subjects from each database to construct the corresponding building blocks set. Notice that 
these databases have different illumination conditions and for this reason we construct two 
separated models, one per database.  
The subjects considered to construct these Building Blocks are not considered in any 
classification experiments to ensure that the reconstruction of an image never takes use of 
fragments extracted from itself or from the same person.  
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The construction of the Building Blocks’ set follows the same protocol in both cases:  
• We use 80 face images from the database to extract the fragments, 40 male and 40 

female.
• We have automatically extracted 24 fragments of each image to construct the set of 

candidate fragments and run the selection algorithm explained in section 3.1, using the 
parameters: α = 0.1 and K=200. 

• A hundred of natural images (with no faces) extracted from the web have been selected 
for the C set.

4.2 Testing the external information 

Here we present some results to show that the external face features contribute notably in 
face classification purposes.  
First we perform Gender recognition experiments, where the data set has been split in a 
training set containing the 90% of the samples and a test set with the remaining 10% from 
the FRGC Database. The presence of male and female samples on each set has been 
balanced.
We have performed 50 iterations of the NMF algorithm. 
In these experiments we have used 5 different classifiers: Maximum Entropy, Support 
Vector Machines, Nearest Neighbour, Linear and Quadratic classifiers, and the accuracies 
have been computed in all cases as the mean of 100 repetitions (using a cross-validation 
strategy). The mean results of the 5 classifiers are shown in table 2. 

Algorithm ME SVM NN Linear Quadratic 

Accuracy 83.24 94.19 92.83 88.75 88.32 

Confidence Interval 0.43 0.27 0.26 0.37 0.38 

Table 2. Gender recognition experiment (FRGC) 

To ensure the relevance of these external features we also perform two subject recognition 
experiments. In this case we have considered the same set of 2640 images as in the 
experiment described above. However, for the subject recognition experiment the data set 
has been organized as follows: a training set containing 10 randomly selected images from 
each subject and a test set with the remaining images. 
We have performed also a discriminant feature extraction on the encoded external 
information (NMF coefficients) and then have classified using the Nearest Neighbour (NN) . 
The used discriminant feature extraction technique is based on the Adaboost algorithm  
(Masip & Vitrià, 2005) and (Masip & Vitrià, 2006).  
The accuracy obtained with the NN classifier directly applied on the NMF coefficients was 
43% while the best accuracy obtained using the NN classifier on the extracted features was 
obtained in dimensionality 315, having 56% of correctly classification. Note that these results 
are relevant taking into account that we consider more than 200 classes. Therefore, this 
shows that the external features contain enough relevant information for classification 
purposes.
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4.3 Comparing external and internal features 

To compare the contribution of external features and internal features in automatic face 
classification field, we perform gender recognition and subject verification experiments. 
First, we have selected 2210 images from the AR Face database, discarding subjects with 
missing images and balancing the presence of male and females. The error rates shown in 
this work were obtained repeating 100 times the next experimental protocol:  data has been 
randomly split in a training and a testing set, we have used 90% of the data for training and 
10% for testing; the splitting has been performed taking into account the person identity, so 
all samples from the same person must be in only one set to avoid person recognition 
instead of gender recognition. 
We perform the test using the maximum entropy classifier (ME). 
We have preformed the same gender classification experiments using only the internal 
features (1188 pixel values) and using only the external features (600 NMF coefficients) and 
the obtained rates are shown in table 3. The results obtained in the external case slightly 
better than the ones obtained with the internal features. This fact can be justified by the loss 
of information in the internal part of the face caused by the partial occlusions and the high 
local changes in the illumination (almost a half of the AR Face database images have 
occlusion artefacts, see figure 6).  

 ME (Confidence Interval) 

Internal Features 80.4 (0.63) 

External Features 82.8 (0.57) 

Table 3. Gender recognition using the AR Face Database 

On the other hand we have performed different subject verification experiments using 
internal and external features separately.  The selection of the different data sets used in this 
experiment is based on the Sep96 FERET testing protocol (Phillips et al., 1996). In this 
protocol, two sets are distinguished: a target set (T), composed by the known facial images, 
and the query set (Q), including the unknown facial images to be identified. Two subsets 
should be selected from each of these sets: a gallery G⊂ T and a probe set P ⊂ Q. After this 
selection, the performance of the system is characterized by two statistics. The 
first is the probability of accepting a correct identity. This is referred as the verification 
probability, denoted by VP  (also referred to as the hit rate in the signal detection literature). 
The second is the probability of incorrectly verifying a claim, that is called the false-alarm 
rate and is denoted by FP .
We have used the LBDP (Masip & Vitrià, 2005) method to reduce the dimensionality of the 
data vectors, working after that in a 300-dimensionality vectorial space. 
We perform 2 the verification experiments using both FRGC and AR Face databases. The 
details of the sets used in these experiments are specified in table 4. They have been chosen 
following the scheme of the Lausanne Protocol configuration-1 (Kang & Taylor, 2002) and 
there are two kinds of subjects: clients (known by the system) and impostors (unknown by 
the system).  
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Set Subjects N. Images Total images 

Training (G) Client : 100 3 300 

Testing (P) Client: 100 2 200 

Testing (P) Impostor: 50 5 250 

Table 4. Configuration of the Gallery and the Probe sets in the face verification experiments 

The first experiment has been made using the images from the FRGC database. The second 
one has been performed with a subset of the ARFace database, including only images 
having partial occlusions and high local changes in the illumination. The results obtained 
are shown in figure 9 and figure 10 respectively. In the FRGC experiments, the internal 
information outperforms the external one. Nevertheless, as in previous experiments, in 
presence of occlusions and illumination artefacts (AR Face data set), the external 
information becomes more relevant. 

Figure 9. Subject verification using the FRGC Database 
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Figure 10. Subject verification using the AR Face Database 

4.4 Combining external and internal information 

As can be observed from the psychological results explained in section 2, the parallel use of 
the internal features and the external features is an important issue to be studied. However, 
to combine these sources of information is not a trivial task, given that the nature of these 
features is very different (notice that we consider the values of the pixels as internal features 
while the external ones are obtained using the presented fragment based method). 
Nevertheless, we present here a first combination approach that consists in joining directly 
each information source and classifying the faces using this larger feature vector. 
To appreciate the contribution of each feature set and the combination of external and 
internal information we perform gender classification experiments using the AR Face 
Database, and present the obtained rates in each image’s type’s set. 
The error rates shown in this work were obtained repeating 100 times the next experimental 
protocol: (i) data have been randomly split in training and a testing set. There have been 
used 90% of the data for training and 10% for testing from each of the image’s type’s set ; (ii) 
the splitting has been performed taking into account the person identity, so all samples from 
the same person must be in only one set to avoid person recognition instead of gender 
recognition. 
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The results are detailed in figure 11.  The best accuracy is marked with an ’*’, and the 
methods whose confidence intervals overlap with the best results are shown in boldface. 
Notice that the use of the combined feature vector (external and internal) obtains the best 
accuracies in almost all the cases, being the contribution of the external information more 
significant in presence of occlusion problems. 

Figure 11. Gender recognition using the AR Face Database 

5. Conclusion 

In this chapter we introduce the importance of the external features in face classification 
problems, and propose a methodology to extract the external features obtaining an aligned 
feature set. The extracted features can be used as input to any standard pattern recognition 
classifier, as the classic feature extraction approaches dealing with internal face regions in 
the literature. The resulting scheme follows a top-down segmentation approach to deal with 
the diversity inherent to the external regions of facial images. 
The proposed technique is validated using two publicly available face databases in different 
face classification problems: gender recognition, face recognition and subject verification. In 
a first approach, we show that the external features encoded in the NMF coefficients yield 
enough useful information for classification purposes. Then we compare the information 
contributed by the external features and the internal features. Finally, the last step is to 
combine the information provided by the external and the internal features. We show that 
both kinds of information are complementary, providing and extra information cue that can 
improve the classification results in presence of occlusions and local changes in the 
illumination. 

6. Future Work 

The proposed method can be improved at three different levels: firstly the learning of the 
building blocks model could takes benefit from using some kind of normalization on the 
fragments generation. In particular, we propose the use of techniques of ridges and valleys 
detection to filter the images as a previous step on the feature extraction. In a second level, 
we plan to improve the selection of the fragments that compose the building blocs by 
adding a diversity measure that could model a larger rank of hairstyles. And in a third 
stage, we need to define a more robust combination rule of the internal and external 
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information. The use of ensembles of classifiers seems to be a natural continuation of this 
combination. For instance, the Adaboost (Freund & Schapire, 1996) algorithm can be studied 
for this purpose. 
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1. Introduction 

There are growing physiological and practical evidences that show usefulness of component 
(e.g., local feature) based approaches in generic object recognition (Matsugu & Cardon, 2004; 
Wolf et al., 2006; Mutch & Lowe, 2006; Serre et al., 2007) which is robust to variability in 
appearance due to occlusion and to changes in pose, size and illumination. 
It is no doubt clear that low level features such as edges are important and utilized in most 
of visual recognition tasks. However, there are only a few studies that address economical 
and efficient use of intermediate visual features for higher level cognitive function (Torralba 
et al., 2004; Opelt et al., 2006). In this chapter, inspired by cortical processing, we will 
address the problem of efficient selection and economical use of visual features for face 
recognition (FR) as well as facial expression recognition (FER). 
We demonstrate that by training our previously proposed (Matsugu et al., 2002) hierarchical 
neural network architecture (modified convolutional neural networks: MCoNN) for face 
detection (FD), higher order visual function such as FR and FER can be organized for shared 
use of such local features. The MCoNN is different from those previously proposed 
networks in that training is done layer by layer for intermediate as well as global features 
with resulting receptive field size of neurons being larger for higher layers. Higher level 
(e.g., more complex) features are defined in terms of spatial arrangement of lower level local 
features in a preceding layer. In the chapter, we will define a common framework for higher 
level cognitive function using the same network architecture (i.e., MCoNN) as substrate as 
follows. 
• In Section 2, we will demonstrate two examples of learning local features suitable for FD

in our MCoNN (Matsugu & Cardon, 2004). One approach is heuristic, supervised 
training by showing exemplar local features or patches of images, and the other is 
unsupervised training using SOM (self-organizing map) combined with supervised 
training in MCoNN.  

• In the proposed framework, both FR and FER utilize common local features (e.g., corner 
like end-stop structures) learnt from exemplary image fragments (e.g., mouth corners, 
eye-corners) for FD. Specifically, in Section 3, spatial arrangement information of such 
local features is extracted implicitly for FR as feature vectors used in SVM classifiers 
(Matsugu et al., 2004). In the case of FER described in Section 4, spatial arrangement of 
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common local features is used explicitly for rule-based analysis (Matsugu et al., 2003). 
We will show, by simulation, that learnt features for FD turn out to be useful for FR and 
FER as well. 

2. Learning Local Features for Generic Object Detection 

2.1 Modified convolutional neural network (MCoNN) 

Convolutional neural networks (CoNN), with hierarchical feed-forward structure, consist of 
feature detecting (FD) layers, each of which followed with a feature pooling (FP) layer or 
sub-sampling layer. CoNN (LeCun and Bengio, 1995) as well as Neocognitrons (Fukushima, 
1980) have been used for face detection (Matsugu et al., 2002; Osadchy et al., 2004) and 
recognition (Lawrence et al., 1995).  

Figure 1. Modified convolutional neural network (MCoNN) architecture for facedetection 

Proposed architecture in Figure 1 comes with the property of robustness in object 
recognition such as translation and deformation invariance as in well-known neocognitrons,
which also have similar architecture. The MCoNN contains the same three properties as the 
original CoNN as well as Neocognitrons: local receptive fields, shared weights, and 
alternating feature detection/pooling mechanism to detect some intermediate (in the sense 
that local but not too simple) local features. Those properties are can be widely found in 
cortical structures (Serre et al., 2005). Feature pooling (FP) neurons perform either maximum 
value detection as in Riesenhuber & Poggio (1999) and Serre et al. (2007) or local averaging 
in their receptive fields of appropriate size. 
Our model (MCoNN) for face detection as shown in Figure 1 is different from traditional 
ones in many aspects. First, it has only FD modules in the bottom and top layers. The 
intermediate features detected in FD2 constitute a set of figural alphabets (Matsugu et al., 
2002; Matsugu & Cardon, 2004). Local features in FD1 are used as bases of figural alphabets, 
which are used for eye or mouth detection. Face detecting module in the top layer is fed 
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with a set of outputs from facial component (e.g., such as eye, mouth) detectors as spatially 
ordered set of local features of intermediate complexity.  
Second, we do not train FP (or sub-sampling) layers (FP neurons perform either maximum 
value detection or local averaging in their receptive fields). Third, we use a detection result 
of skin color area as input to the face detection module in FD4. The skin area is obtained 
simply by thresholding of hue data of input image in the range of [-0.078,0.255] for the full 
range of [-0.5,0.5], which is quite broad indicating that skin color feature plays merely 
auxiliary part in the proposed system. 
Third, in our MCoNN model, in contrast to the original CoNN, local features to be detected 
in respective layers are pre-defined, and trained module by module (i.e., for each local 
feature class) for specifi category of local features; edge-like features in the first layer, and 
then in the second layer, corner-like structures (i.e., ‘<’ and ‘>’ end-stop), elongated blobs 
(i.e., upper part bright blob, and lower part bright blob) are detected.  The second and third 
layers are composed of feature detecting layer and feature pooling layer as in original 
CoNN and Neocognitrons. Local features detected in the second layer constitute some 
alphabetical local features in our framework, and details will be explained in the next 
section. Eye and mouth features are detected in the third layer. Finally, a face is detected in 
the forth layer using outputs from the third layer and skin area data defined by some 
restricted range of hue and saturation values. 
The training proceeds as follows. As in (Matsugu et al., 2002, Mitarai et al., 2003), training of 
the MCoNN is performed module by module using fragment images as positive data 
extracted from publicly available database (e.g., Softpia Japan) of more than 100 persons. 
Other irrelevant fragment images extracted from background images are used as negative 
samples. In the first step, two FD layers from the bottom, namely FD1 with 8 modules and 
FD2 with 4 modules, are trained using standard back-propagation with intermediate local 
features (e.g., eye corners) as positive training data sets. Negative examples that do not 
constitute the corresponding feature category are also used as false data. Specifically, we 
trained the FD2 layer, the second from the bottom FD layer to form detectors of 
intermediate features, such as end-stop structures or blobs (i.e., end-stop structures for left 
and right side and two types of horizontally elongated blobs (e.g., upper part bright, lower 
part bright) with varying sizes, rotation (up to 30 deg. with rotation in-plane axis as well as 
head axis). These features for training are fragments extracted from face images. More 
complex local feature detectors (e.g., eye, mouth detectors, but not restricted to these) are 
trained in the third or fourth FD layer using the patterns extracted from transforms as in the 
FD2 layer. As a result of these training sequences, the top FD layer, FD4, learns to locate 
faces in complex scenes. The size of partial images for the training is set so that only one 
class of specific local feature is contained. The number of training data set is 14847 including 
face images and background image for FD4 module, 5290 for FD3, and 2900 for FD2. 

2.2 Supervised learning of local features as figural alphabets in MCoNN 

Selecting optimal local features for multi-class object detection (Papageorgiou et al, 1998) is a 
crucial step toward generic object recognition. Face detection, face recognition, and facial 
expression recognition are no exceptions. In Burl et al. (1995) and Weber et al. (2000), an 
interest point operator and a k-means clustering algorithm are used to extract and regroup 
high-level features for estimating the parameters of the underlying probabilistic model.  
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In Ikeda et al. (2001), image entropy was adopted to select interesting areas in an image and 
also Self-Organizing Map (SOM) (Kohonen, 1985) was used to organize great amount of 
extracted high-level features, then a clustering algorithm was used to regroup similar units 
in the SOM to a certain number of macro-classes. In this section (Matsugu & Cardon, 2004), 
we explain sequential supervised training scheme to form a set of intermediate level feature 
detectors (Matsugu et al., 2002) and sub-optimal feature selection. For training the modified 
convolutional neural network (MCoNN), we extracted local image patches (Figure 2) 
around key points detected by Harris interest point operators. 

Figure 2. Local image fragments for training the second and third layers of MCoNN 

Here a variant of back-propagation algorithm is used to train each layer separately 
(sequential BP: SBP) so that the extracted features are controlled, and also some specific 
parts of the face can be detected. The first two layers are trained with intermediate-level 
features (e.g. eye-corners), while the subsequent layers are trained with more complex, high-
level features (e.g. eyes, faces...). This requires selecting a training set of features. By 
selecting a limited set of features for a specific object, we may expect to find a restricted yet 
useful set of receptive fields as in neurophysiological studies (Blackmore and Cooper, 1970; 
Hubel and Wiesel, 1962).  
To find these features we apply classical BP (hereafter referred as GBP: global BP), not the 
proposed SBP, to the entire MCoNN with connections below Layer 2(FD1-FD2-FP2) in 
Figure 3 fixed, and analyze the output of Layer3 (high-level features). The GBP converges to 
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a local minimum, therefore the algorithm will tend to extract sub-optimal features to 
minimize the detection error. 
To examine the validity of our scheme of using MCoNN trained by GBP for generic object 
detection, we applied the MCoNN for face detection to the detection of bright-colored cars 
with significant variance in shape, illumination, size and orientation. The size of the images 
used for learning was 156 x 112, and 90 images were used for training and 10 images for 
validation. We aimed to find characteristic high-level features for the detection of this type 
of objects under particular view. In addition, it was necessary to tailor our model to be able 
to distinguish between cars and other rectangular objects. For this reason, we included a set 
of negative non-car examples, with similar rectangular shape but which were not cars. 

2.3  Unsupervised learning of local features as figural alphabets in MCoNN 

In this section (Matsugu & Cardon, 2004), we present an unsupervised feature extracting 
and clustering procedure, using an interest operator combined with a SOM. In contrast with 
Opelt et al. (2006), we do not use AdaBoost framework for this task. Instead, proposed 
method combines the advantages of both Weber et al. (2000) and Ikeda et al. (2001) by 
selecting a limited number of features and regrouping them using a topographic vector 
quantizer (SOM); acting like a vector quantizer and introducing a topographic relation at the 
same time. The obtained feature classes are self-organized, low-and intermediate-level 
features that are used to train the two first layers of the MCoNN and obtain a minimum set 
of alphabetical receptive fields. 
Those alphabets as in Opelt et al. (2006) considerably reduces the complexity of the network 
by decreasing the number of parameters and can be used for detection of different object 
classes (e.g. faces, cars,...). We also introduce a method to select optimal high-level features 
and illustrate it with the car detection problem. 
The whole network for face detection as well as car detection is described in the lower part 
of Figure 3. Some specific local fragments of image extracted a priori, by using the proposed 
method in this study, are used to train the first two layers of the MCoNN. First, we train the 
MCoNN to recognize only one feature (one output plane in FD2). A sequential back-
propagation algorithm (Matsugu et al., 2002) is used for learning and weights are updated 
after each training pattern (fragments of images) is presented. A fixed number of 100 epochs 
has been used. For each training set, a different number of cell-planes in layer S1 have been 
tested. The network has essentially four distinct sets of layers: FD1, FD2-FP2, FD3-FP3, FD4 
(FDk: the kth feature detecting layer; FPj: the jth feature pooling layer for subsampling). 
Layers FD3-FP3 and above are concerned with object specific feature detection. In order to 
limit the number of features to object-relevant features, an interest point operator is used. 
This operator selects corner-like features in the image.  
Having selected a restricted number of points using keypoint detector (Harris & Stephens, 
1988; Lowe, 1999;Kadir & Brady, 2001; Csurka et al. 2004) we extract features around these 
points. These features are used as learning set for the SOM well suited for classifying and 
visualizing our feature set. It turned out that the illumination has a big influence on the 
classification of our features, so we have rescaled the feature set between -1 and 1 before 
applying the SOM. Each unit of the SOM defines a training set for the MCoNN. 
Once lower-level alphabetical feature detectors are formed, higher level feature detectors 
can be obtained from BP with connections between neurons below intermediate layers fixed. 
Since we are interested in low-level features to train the first two layers of the MCoNN, we 
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have chosen to extract small features as shown in Figure 3 (upper left). After applying SOM 
with those fragment images extracted from a database of 904 (size: 208 x 256) images (300 
faces (frontal view), 304 cars (upper view) and 300 various types of images), we obtained a 
set of 69,753 features. From these features, we manually selected some prototypical features 
that have simple characteristics (e.g., horizontal, vertical, and diagonal contrast). 

Figure 3. Schematic diagram of learning system for generic object recognition (adapted from 
Matsugu & Cardon, 2004) 

We used the SOM Toolbox in Matlab and fixed the number of units to 100 based on the 
assumption that there are not more than 100 different types of local  features (figural 
alphabets) for generic object detection. Fragmented image patches for clustering are 
appropriately cropped so that irrelevant background features are cut out. 
For each cluster we only consider the 300 features, which are the closest to the SOM-unit, in 
terms of Euclidean distance. 200 features are used for training, 50 features for validation and 
the last 50 units for testing. The results have been obtained with a test set of 50 features and 
optimal receptive fields have been selected by cross-validation. We see that for such simple 
features, only one cell-plane in S1 is sufficient to obtain good detection results. We also 
notice that the learnt receptive fields (Figure 4) have a regular pattern. Based upon these 
patterns we use a set of four alphabetical patterns V, H, S, B (hereafter, represents vertical, 
horizontal, slash, backslash, respectively) described in Figure 4. 

FD1
FD2 FP2

FD3 FP3
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We observe that some feature clusters in the SOM have a more complex aspect as shown in 
Figure 3. We claim that these more complex features can be detected using the simple 
receptive fields, described in the previous section. Considering for example the feature 
described in Figure 3, we see that this eye-corner type feature can be decomposed into two 
local alphabetical features (Figure 5).  
The usefulness of our alphabetical set appears when we want to detect, using a small 
number of receptive fields, a bit more higher-level features with more complex geometrical 
or textual structures. Let us consider the features used to detect a complete eye or a mouth  
(Matsugu et al., 2002). They can be decomposed to two horizontal, two slash and two back-
slash components (Figure 6). 

Figure 4.  Alphabetical patterns obtained from SOM which are used for training McoNN. 
Resuling receptive fields of McoNN correspond to each feature detector 

With a limited set of three fixed receptive fields H, S and B it turned out that we reach a 
detection rate of eye-corner comparable to that of using six learnt receptive fields. Our 
alphabetical set, being close to the optimal set of weights, therefore outperforms the learnt 
weights. We can extend these results for different types of complex features and construct a 
vocabulary set that can be recognized with H, V, S, and B. For illustration purposes, we have 
tested our alphabet with images from which features have been extracted. It turned out that 
we could detect, in the S2 layer, eye- and mouth-corners as well as the side mirrors of a car, 
using only three receptive fields (H, S and B). 

Figure 5. Example (corner-like structure) of local feature extracted from local image patches 
of eye as a figural alphabet and its decomposition into three elementary features 
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An interesting question to be answered is which vocabulary we should use, in other words, 
what features are important to detect a specific object. To find these features we apply 
classical BP (hereafter referred as GBP: global BP), not the proposed SBP, to the entire 
MCoNN with connections below S3 layer (FD1--FD2-FP2) fixed, and analyze the output of 
Layer3 (high-level features). The GBP converges to a local minimum, therefore the algorithm 
will tend to extract sub-optimal features to minimize the detection error. 

Figure 6. Example of visual vocabulary that constitues eye as a constellation of figural 
alphabet in the proposed system 

Having discovered the important features for our object detection problem, we obtain object 
specific vocabulary to select to construct these high-level features. We can use SBP as in  
(Matsugu et al., 2002) to train the higher level layers in the MCoNN: to train layer by layer 
with the selected vocabulary features.  
In spite of the simplicity of this alphabet it gives remarkable results, comparable and 
sometimes better than the learnt receptive fields with average detection rate over 95% for 
different types of features. After obtaining alphabetical feature detectors in the S1 and S2 
layer of MCoNN, we applied GBP to the S3 and S4 layers of MCoNN, with lower level 
weights fixed, to obtain higher level feature detectors (e.g., cars and faces), thereby 
obtaining sub-optimal vocabulary set. The optimality was examined in terms of cross-
validation.  

3. Component-based Face Recognition 

3.1 Literature overview 

Face recognition algorithms have been extensively explored (Belhumeur et al., 1997; Brunelli 
& Poggio, 1993; Turk & Pentland, 1997; Guodong et al., 2000; Heisele et al.,  2001; Heisele & 
Koshizen, 2004; Li et al., 2000; Moghaddam et al., 1998; Pontil & Verri, 1998; Wiskott et al., 
1997) and most of which address the problem separately from object detection, which is 
associated with image segmentation, and many assume the existence of objects to be 
recognized without background. Some approaches, in the domain of high-level object 
recognition, address economical use of visual features extracted in the early stage for object 
detection. However, only a few object recognition algorithms proposed so far explored 
efficiency in the combined use of object detection and recognition  (Li et al., 2000).  
For example, in the dynamic link matching (DLM) (Wiskott et al., 1997), Gabor wavelet 
coefficient features are used in face recognition and detection as well. However, we cannot 
extract shape as well as spatial arrangement information on facial components directly from 
those features since, for a set of nodes of the elastic graph, they do not contain such 
information. This necessitated to device the graph matching technique, a computationally 
expensive procedure, which requires quite different processing from feature detection stage. 
Convolutional neural networks (CoNN) (Le Cun & Bengio, 1995) have been exploited in face 
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recognition and hand-written character recognition. In (Matsugu et al., 2001, 2002), we 
proposed a MCoNN model for robust face detection. SVM has also been used for face 
recognition  (Guodong et al., 2000; Heisele et al., 2001; Heisele & Koshizen, 2004; Li et al., 
2000; Pontil & Verri, 1998). In particular, in (Heisele et al., 2001; Heisele & Koshizen, 2004), 
SVM classification was used for face recognition in the component-based approach. 
This section, in the domain of face recognition as a case study for general object recognition 
with object detection, explores the direct use of intermediate as well as low level features 
obtained in the process of face detection. Specifically, we explore the combined use of our 
MCoNN and support vector machines (SVM), the former used for feature vector generation, 
the latter for classification. Proposed algorithm is one of component-based approaches 
(Heisele et al., 2001; Heisele & Koshizen, 2004) with appearance models represented by a set 
of local, area-based features. The direct use of intermediate feature distributions obtained in 
face detection, for face recognition, brings unified and economical process that involves 
simple weighted summation of signals, implemented both in face detection and recognition. 

3.2 Proposed component based face recognition

Proposed face recognition system (Matsugu et al., 2004) utilizes intermediate features 
extracted from face detection system using MCoNN, which are fed to SVM for classification. 
This combination of MCoNN with SVM is similar in spirit to recent works by Serre et al. 
(2007) and Mutch & Lowe (2006). Figure 7 shows detailed structure of the MCoNN for face 
detection as well as face recognition. Here, we describe feature vectors and the procedure 
for their generation in face recognition. A feature vector, F, used in SVM for face recognition 
is an N dimensional vector, synthesized from a set of local output distributions, F1 (as shown 
in Figure 2(1)), in a module detecting edge-like feature in FD1 layer in addition to output 
distributions, F2, (as shown in Figure 2(2)) of two intermediate-level modules detecting eye 
and mouth in FD2 layer. Thus, F = (F1, F2) where F1 = (F11, …, F1m) and F2 = (F21, …, F2n) are 
synthesized vectors formed by component vectors, F1k (k=1, ..., m) and F2k (k=1, ..., n), 
respectively.
Each component vector represents possibility or presence of specific class of local feature in 
an assigned local area. Dimension of a component vector is the area of a rectangular region 
as in Figure 9. Thus dimension of feature vector, N, is the total summation of respective 
dimensions of component vectors. In particular, F1 =(F11, F12, …, F1,15), and local areas, total 
number of assigned areas being 15 as in Figure 9 (1),  for component vectors are set around 
eye, nose, and mouth, using the detected eye location from the MCoNN. F1 reflects shape 
information of eye, mouth, and nose. F2 = (F21, F22, F23), and each component vector reflects 
spatial arrangement of eye or eye and nose, etc., depending on how local areas in FD2 (e.g., 
positions and size) are set. 
The procedure for feature vector generation is summarized as follows. First, we define a set 
of local areas for FD1 as well as FD3 modules based on the CNN output in FD3 modules for 
eye and mouth detection. Positions of local areas in FD1 module are set around specific 
facial components (i.e., eyes, mouth) as illustrated in Figure 9 (1). The size of respective local 
areas in the output plane of FD1 module is set relatively small (e.g., 11 x 11) so that local 
shape information of figural alphabets can be retained in the output distribution, while the 
local area in the FD2 plane is relatively larger (e.g., 125 x 65) so that information concerning 
spatial arrangement of facial components (e.g., eye) is reflected in the distribution of FD2 
outputs.
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Figure 7. MCoNN for face recognition and facial expression recognition. Outputs from 
encircled modules in FD1 and FD2 layers are used for face recognition 

Figure 8. Intermediate output from MCoNN (1):input image, (2) output example from FD1, 
(3) intermediate outputs from encircled modules of FD2 in Figure 7 
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For face recognition, we use an array of linear SVMs for one-against-one multi-class 
recognition of faces. The SVM library used in the simulation is libsvm2.5, available in the 
public domain. In the SVM training, we used a dataset of FVs extracted for each person in 
the way described in Section3. 

Figure 9. Local areas for face recognition. (1): small local area for local shape description, (2): 
mid-level local area for mid-level description of intermediate local feature configuration. 
(a,b,c): outputs from ‘< end-stop’, ‘> end-stop’, ‘upper part bright horizontal blob’ detectors, 
respectively

The size of input image is of VGA, and the size of local areas for FVs is 15 x15, 125 x 65, or 45 
x 65 depending on the class of local features. As indicated in Figure 9 (1), the number of 
local areas for FD1 feature and FD2 feature is fourteen and two, respectively. The number of 
FVs for one person is 30, which are obtained under varying image capturing conditions so 
that size, pose, facial expression, and lightning conditions of respective faces are slightly 
different.

Figure 10. ROC curve of  face recognition for 20 people. Triangle-red curve: ROC from 
intermediate outputs from MCoNN, diamond-blue curve: ROC obtained from raw input 
data fed to SVM 



Face Recognition 316

Face image database used ofr training and testing is in-house DB (10 subjects, 1500 images) 
and PIE database (we used part of the DB: 15 subjects 60 images) by CMU. We compared 
results obtained from McoNN’s intermediate outputs with those obtained from raw data 
using the same local area as in Figure 9. ROC curves in Figure 10 obtained for in-house face 
database show that using intermediate outputs rather than raw data provide better 
performance. Using the same dataset, we compared our model with commercially available 
software which is based on DLM (Wiskott et al., 1997). The recognition rate turned out to be 
almost the same for the relative size of 0.8 to 1.2, while F.A.R. is slightly inferior to our 
model (i.e., F.A.R. is not perfectly zero), suggesting that our model involving much simpler 
operations equals to the performance of one of the best models (Matsugu et al., 2004). 

4. Component-based Facial Expression Recognition 

4.1 Literature overview 

Facial expressions as manifestations of emotional states, in general, tend to be different 
among individuals. For example, smiling face as it appears may have different emotional 
implications for different persons in that ‘smiling face’, perceived by others, for some person 
does not necessarily represent truly smiling state for that person. Only a few algorithms 
(e.g., Ebine & Nakamura, 1999) have addressed robustness to such individuality in facial 
expression recognition. Furthermore, in order for facial expression recognition (FER) to be 
used for human-computer-interaction, for example, that algorithm must have good ability in 
dealing with variability of facial appearance (e.g., pose, size, and translation invariance). 
Most algorithms, so far, have addressed only a part of these problems (Wallis & Rolls, 1997). 
In this study, we propose a system for facial expression recognition that is robust to 
variability that originates from individuality and viewing conditions. Recognizing facial 
expression under rigid head movements was addressed by (Black & Yacoob, 1995). Neural 
network model that learns to recognize facial expressions from an optical flow field was 
reported in (Rosenblum et al., 1996). Rule-based system was reported in (Yacoob & Davis, 
1996) and (Black & Yacoob, 1997), in which primary facial features were tracked throughout 
the image sequence. Recently, Fasel (2002) has proposed a model with two independent 
convolutional neural networks, one for facial expression and the other for face identity 
recognition, which are combined by an MLP.  

4.2 Facial expression recognition using local features extracted by MCoNN 

We show, in this section, proposed rule-based processing scheme to enhance subject 
independence in facial expression recognition. We found that some of lower level features 
extracted by the first FD layer of MCoNN for face detection as well as face recognition are 
also useful for facial expression recognition. Primary features used in our model are 
horizontal line segments made up of edge-like structures similar to step and roof edges 
(extracted by two modules in FD1 layer, circled in Figure 7 representing parts of eyes, 
mouth, and eyebrows. For example, changes in distance between end-stops (e.g., left-corner 
of left eye and left side end-stop of mouth) within facial components and changes in width 
of line segments in lower part of eyes or cheeks are detected to obtain saliency scores of a 
specific facial expression. Primary cues related to facial actions adopted in our facial analysis 
for the detection of smiling/laughing faces are as follows. 
1. Distance between endpoints of eye and mouth gets shorter (lip being raised) 
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2. Length of horizontal line segment in mouth gets longer (lip being stretched)  
3. Length of line segments in eye gets longer (wrinkle around the tail of eye gets longer)  
4. Gradient of line segment connecting the mid point and endpoint of mouth gets steeper 

(lip being raised) 
5. Step-edge or brightness inside mouth area gets increased (teeth being appeared) 
6. Strength of edges in cheeks increased (wrinkle around cheeks being grown)  
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Figure 11. Normalized saliency score subtracted by constant value for smiling face detection 

We use these multiple cues as supporting evidence of specific facial expression (i.e., smile). 
Each cue was scored based on the degree of positive changes (i.e., designated changes as 
given above) to the emotional state (e.g., happiness). Saliency score of specific emotional 
state is calculated with weighted summation of respective scores, which is then thresholded 
for judging whether the subject is smiling/laughing or not. Greater weighting factors are 
given to cues of less individuality (i.e., more common cues across individuals): (i), (ii), and 
(v). Figure 11 shows a sequence of normalized saliency scores indicating successful 
detection of smiling faces with an appropriate threshold level. The network demonstrated 
the ability to discriminate smiling from talking based on the duration of saliency score 
above threshold (longer duration implies greater possibility of smiling; Matsugu et al., 2004). 
We obtained results demonstrating reliable detection of smiles with recognition rate of 
97.6% for 5600 still images of more than 10 subjects. 
In contrast to a number of approaches (Donato et al., 1999), invariance properties in terms of 
translation, scale, and pose, inherent in our non-spiking version of MCoNN (Matsugu et al., 
2002), brings robustness to dynamical changes both in head movements and in facial 
expressions without requiring explicit estimation of motion parameters. Because of the 
topographic property of our network which preserves the position information of facial 
features from bottom to top layers, the translation invariance in facial expression recognition 
is thus inherently built into our convolutional architecture with feedback mechanism for 
locating facial features.  
Specifically, intermediate facial features such as eyes and mouth are detected and utilized 
for tracking useful primitive local features extracted by the bottom layer FD1 of MCoNN. 
Implicit location information of eyes and mouth detected in the MCoNN are used, through 
the feedback loop from the intermediate layer FP3, to confine the processing area of rule-
based facial feature analysis, which analyzes differences in terms of at least six cues. 



Face Recognition 318

It turned out that the system is quite insensitive to individuality of facial expressions with 
the help of the proposed rule-based processing using single but individual normal face. 
Because of the voting of scores for various cues in terms of differences of facial features in 
neutral and emotional states, individuality is averaged out to obtain subject independence.  

5. Conclusion 

In this chapter, we reviewed our previously proposed leaning methods (unsupervised and 
supervised) for appropriate and shared (economical) local feature selection and extraction 
for generic face related recognition. In particular, we demonstrated feasibility of our 
hierarchical, component based visual pattern recognition model, MCoNN, as an implicit 
constellation model in terms of convolutional operation of local feature, providing a 
substrate for generic object detection/recognition. Detailed simulation study showed that 
we can realize face recognition as well as facial expression recognition efficiently and 
economically with satisfactory performances by using the same set of local features 
extracted from the MCoNN for face detection. 
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In classical statistical pattern recognition tasks, we usually represent data samples with n-
dimensional vectors, i.e. data is vectorized to form data vectors before applying any 
technique. However in many real applications, the dimension of those 1D data vectors is 
very high, leading to the “curse of dimensionality“. The curse of dimensionality is a 
significant obstacle in pattern recognition and machine learning problems that involve 
learning from few data samples in a high-dimensional feature space. In face recognition, 
Principal component analysis (PCA) and Linear discriminant analysis (LDA) are the most 
popular subspace analysis approaches to learn the low-dimensional structure of high 
dimensional data. But PCA and LDA are based on 1D vectors transformed from image 
matrices, leading to lose structure information and make the evaluation of the covariance 
matrices high cost. In this chapter, straightforward image projection techniques are 
introduced for image feature extraction. As opposed to conventional PCA and LDA, the 
matrix-based subspace analysis is based on 2D matrices rather than 1D vectors. That is, the 
image matrix does not need to be previously transformed into a vector. Instead, an image 
covariance matrix can be constructed directly using the original image matrices. We use the 
terms “matrix-based“ and “image-based“ subspace analysis interchangeably in this chapter. 
In contrast to the covariance matrix of PCA and LDA, the size of the image covariance 
matrix using image-based approaches is much smaller. As a result, it has two important 
advantages over traditional PCA and LDA. First, it is easier to evaluate the covariance 
matrix accurately. Second, less time is required to determine the corresponding eigenvectors 
(Jian Yang et al., 2004). A brief of history of image-based subspace analysis can be 
summarized as follow. Based on PCA, some image-based subspace analysis approaches 
have been developed such as 2DPCA (Jian Yang et al., 2004), GLRAM (Jieping Ye, 2004), 
Non-iterative GLRAM (Jun Liu & Songcan Chen 2006; Zhizheng Liang et al., 2007), MatPCA 
(Songcan Chen, et al. 2005), 2DSVD (Chris Ding & Jieping Ye 2005), Concurrent subspace 
analysis (D.Xu, et al. 2005) and so on. Based on LDA, 2DLDA (Ming Li & Baozong Yuan 
2004), MatFLDA (Songcan Chen, et al. 2005), Iterative 2DLDA (Jieping Ye, et al. 2004), Non-
iterative 2DLDA (Inoue, K. & Urahama, K. 2006) have been developed until date. The main 
purpose of this chapter is to give you a generalized overview of those matrix-based 
approaches with detailed mathematical theory behind that. All algorithms presented here 
are up-to-date till Jan. 2007. 
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1. Introduction 

A facial recognition system is a computer-driven application for automatically identifying a 
person from a digital image. It does that by comparing selected facial features in the live 
image and a facial database. With the rapidly increasing demand on face recognition 
technology, it is not surprising to see an overwhelming amount of research publications on 
this topic in recent years. In this chapter we briefly review on linear subspace analysis 
(LSA), which is one of the fastest growing areas in face recognition research and present in 
detail recently developed image-based approaches.  

Method Reference Section 

PCA (M. Turk & A. Pentland 1991) 2.1 
LDA (Belhumeur P.N., et al., 1997) 2.2 

2DPCA (Jian Yang et al., 2004) 
MatPCA (Songcan Chen, et al. 2005) 3.1

2DLDA (Ming Li & Baozong Yuan 2004) 
MatFLDA (Songcan Chen, et al. 2005) 3.2

GLRAM 
(Jieping Ye, 2004) 
Concurrent subspace analysis (D.Xu, et al. 2005) 
2DSVD (Chris Ding & Jieping Ye 2005) 

4.1

Non-iterative GLRAM (Zhizheng Liang et al., 2007) 4.2 
Iterative 2DLDA (Jieping Ye, et al. 2004) 4.3 
Non-iterative 2DLDA (Inoue, K. & Urahama, K. 2006) 4.4 

Table 1. Summary of these algorithms presented in this chapter 

LSA has gained much attention in a wide range of problems arising in image processing, 
computer vision and especially pattern recognition. In LSA, the singular value 
decomposition (SVD) is usually the basic mathematical tool. The most popular LSA 
methods used in Face Recognition (FR) are Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA). PCA (M. Turk & A. Pentland 1991) is a subspace projection 
technique widely used for face recognition. It finds a set of representative projection vectors 
such that the projected samples retain most information about original samples. The most 
representative vectors are the eigenvectors corresponding to the largest eigenvalues of the 
covariance matrix. Unlike PCA, LDA (Belhumeur P.N., et al., 1997) finds a set of vectors that 
maximizes Fisher Discriminant Criterion. It simultaneously maximizes the between-class 
scatter while minimizing the within-class scatter in the projective feature vector space. 
While PCA can be called unsupervised learning techniques, LDA is supervised learning 
technique because it needs class information for each image in the training process. In above 
approaches, the image data first needs to be transformed into vectors before any further 
processing. Recently, two-dimensional PCA (2DPCA) and two-dimensional LDA (2DLDA) 
have been proposed in which image covariance matrices can be constructed directly using 
original image matrices. In contrast to the covariance matrices of traditional approaches 
(PCA and LDA), the size of the image covariance matrices using 2D approaches (2DPCA 
and 2DLDA) are much smaller. As a result, it is easier to evaluate the covariance matrices 
accurately, computation cost is reduced and the performance is also improved (Jian Yang et 
al., 2004). We categorize the existing techniques in image-based subspace analysis into two 
main categories. One category can be considered as a one-sided low-rank approximation 
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which includes 2DPCA (Jian Yang et al., 2004), MatPCA (Songcan Chen, et al. 2005), 2DLDA 
(Ming Li & Baozong Yuan 2004), and MatLDA (Songcan Chen, et al. 2005). The other is 
classified as two-sided low-rank approximation such as GLRAM (Jieping Ye, 2004), Non-
iterative GLRAM (Jun Liu & Songcan Chen 2006; Zhizheng Liang et al., 2007), 2DSVD (Chris 
Ding & Jieping Ye 2005), Concurrent subspace analysis (D.Xu, et al. 2005), Iterative 2DLDA 
(Jieping Ye, et al. 2004), and Non-iterative 2DLDA (Inoue, K. & Urahama, K. 2006). Tabel 1. 
gives an summary of those algorithms presented. Basis notations used in this chapter are 
summarized in Table 2. 

Notations Descriptions 
n

ix ∈ℜ the thi image point in vector form 
r c

iX
×∈ℜ the thi image point in matrix form 

iΠ the thi class of data points (both in vector and matrix form) 

n dimension of ix

m dimension of reduced feature vector iy

r number of rows in iX

c number of columns in iX

N number of data samples 

C number of classes 

iN  number of data samples in class iΠ

L transformation on the left side 

R transformation on the right side 

1l  number of rows in iY

2l  number of columns in iY

Table 2. Notations and Descriptions 

2. Linear Subspace Analysis Introduction 

In this section we briefly review about LSA which includes PCA and LDA. One approach to 
cope with the problem of excessive dimensionality of the image space is to reduce the 
dimensionality by combining features. Linear combinations are particularly attractive 
because they are simple to compute and analytically tractable. In effect, linear methods 
project the high-dimensional data onto a lower dimensional subspace. Suppose that we have 
N sample images 1 2{ , ,..., }Nx x x  taking values in an n -dimensional image space. Let us 

also consider a linear transformation mapping the original n -dimensional image space into 
an m -dimensional feature space, where m n< . The new feature vectors m

ky ∈ℜ  are 
defined by the following linear transformation: 
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( )T
k ky W x μ= −  (1) 

where 1,2,...,k N= , nμ ∈ is the mean of all samples, and n mW ×∈ℜ is a matrix with 
orthonormal columns. Atfer the linear transformation, each data point kx  can be 

represented by a feature vector m
ky ∈ℜ which is used for classification. 

2.1 Principal Component Analysis - PCA 

Different objective functions will yield different algorithms with different properties. PCA 
aims to extract a subspace in which the variance is maximized. Its objective function is as 
follows: 

1 2[ ... ] arg max T
opt m tW

W w w w W SW= =  (2) 

with the total scatter matrix is defined as 

1

1
( )( )

N
T

t k k
k

S x x
N

μ μ
=

= − −  (3) 

and
1

1 N

i
i
x

N
μ

=

= is the mean of all samples. The optimal projection 1 2[ ... ]opt mW w w w= is the 

set of n-dimensional eigenvectors of tS corresponding to the m largest eigenvalues.  

2.2 Linear Discriminant Analysis - LDA 

While PCA seeks directions that are efficient for representation, LDA seeks directions that 
are efficient for discrimination. Assume that each image belongs to one of C  classes 

1 2{ , ,..., }CΠ Π Π . Let iN  be the number of the samples in class ( 1, 2,..., )i i CΠ = ,

1

i

i
xi

x
N

μ
∈Π

= be the mean of the samples in class iΠ . Then the between-class scatter matrix 

bS  is defined as 

1

1
( )( )

C
T

b i i i
i

S N
N

μ μ μ μ
=

= − −  (4) 

and the within-class scatter matrix wS is defined as 

1

1
( )( )

k i

C
T

w k i k i
i x

S x x
N

μ μ
= ∈Π

= − −  (5) 

In LDA, the projection optW is chosen to maximize the ratio of the determinant of the 
between-class scatter matrix of the projected samples to the determinant of the within-class 
scatter matrix of the projected samples, i.e., 
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1 2arg max [ ... ]

T
b

opt W mT
w

W S W
W w w w

W S W
= =  (6) 

where{ 1,2,..., }iw i m= is the set of generalized eigenvectors of bS and wS  corresponding to 

them largest generalized eigenvalues{ 1,2,..., }i i mλ = , i.e., 

1, 2,...,b i i w iS w S w i mλ= =  (7) 

3. One-sided Image-based Subspace Analysis 

In previous section, we review the linear subspace analysis techniques which are based on 
1D vectors. However, recently, (Yang et al., 2004) proposed a novel image representation 
and recognition technique, two-dimensional PCA (2DPCA). 2DPCA has many advantages 
over classical PCA. In classical PCA, an image matrix should be mapped into a 1D vector in 
advance. 2DPCA, however, can directly extract feature matrix from the original image 
matrix. This leads to that much less time is required for training and feature extraction. 
Further, the recognition performance of 2DPCA is better than that of classical PCA. Inspired 
by (Yang et al., 2004), a lot of algorithms have been developed based directly on matrix 
images. As mentioned, we cagetorize those image-based approaches into two main 
cagetories which are one-side low-rank approximation and two-sided low-rank 
approximation.  In this section, we present two one-sided low-rank approximations which 
are 2DPCA and 2DLDA approaches. 

3.1 Two-dimensional PCA (2DPCA) 

As mentioned above, in 2D approach, the image matrix does not need to be previously 
transformed into a vector, so a set of N sample images is represented as 1 2{ , ,..., }NX X X
with r c

iX
×∈ℜ , which is a matrix space of size r c× . The total scatter matrix is defined as 

1

1
( ) ( )

N
T

t i i
i

G X M X M
N =

= − −  (8) 

with
1

1 N
r c

i
i

M X
N

×

=

= ∈ℜ is the mean image of all samples. r r
tG

×∈ℜ  is also called image 

covariance (scatter) matrix. A linear transformation mapping the original r c× image space 
into an r m× feature space, where m c< . The new feature matrices r m

iY
×∈ℜ are defined by 

the following linear transformation: 

( ) r m
i iY X M W ×= − ∈ℜ  (9) 

where 1, 2,...,i N=  and r mW ×∈ℜ  is a matrix with orthogonal columns. In 2DPCA, the 
projection optW is chosen to maximize ( )T

ttr W GW . The optimal projection
1 2[ ... ]opt mW w w w=
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with { 1,2,..., }iw i m=  is the set of c -dimensional eigenvectors of tG corresponding to the 
m largest eigenvalues.  

3.2 Two-dimensional LDA (2DLDA) 

In 2DLDA, the between-class scatter matrix bS  is re-defined as 

1

1
( ) ( )

C
T

b i i i
i

G N M M M M
N =

= − −  (10) 

and the within-class scatter matrix wS is re-defined as 

1

1
( ) ( )

k i

C
T

w k i k i
i X C

G X M X M
N = ∈

= − −  (11) 

with
1

1 N
r c

i
i

M X
N

×

=

= ∈ℜ is the mean image of all samples and 
1

k i

r c
i k

Xi

M X
N

×

∈Π

= ∈ℜ  be 

the mean of the samples in class ( 1.. )i i CΠ = .  Similarly, a linear transformation mapping 
the original r c× image space into an r m× feature space, wherem c< . The new feature 
matrices r m

iY
×∈ℜ  are defined by the following linear transformation : 

( ) r m
i iY X M W ×= − ∈ℜ  (12) 

where 1, 2,...,i N=  and c mW ×∈ℜ  is a matrix with orthogonal columns. And the 
projection optW is chosen with the criterion same as that in (6). While the classical LDA must 
face to the singularity problem, we can see that 2DLDA overcomes this problem. We need to 
prove that 1

wG
− exists, i.e. ( )wrank G c= . We have, 

1

1
( ) ( ) ( )

( ) * min( , )

k i

C
T

w k i k i
i X C

rank G rank X M X M
N

N C r c
= ∈

= − −

≤ −

 (13) 

The inequality in (13) holds because ( ) min( , )irank X r c= . So, in 2DLDA, wG is 
nonsingular when 

( )*min( , )

min( , )

c N C r c
cN C
r c

≤ −

⇔ ≥ +
 (14) 

In real situation, (14) is always true, so wG is always nonsingular.  
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3.3 Classifier for 2DPCA and 2DLDA 

After a transformation by 2DPCA or 2DLDA, a feature matrix is obtained for each image. 
Then, a nearest neighbor classifier is used for classification. Here, the distance between two 
arbitrary feature matrices iY and jY is defined by using Euclidean distance as follows: 

2

1 1

( , ) ( ( , ) ( , ))
k s

i j i j
u v

d Y Y Y u v Y u v
= =

= −  (15) 

Given a test sample tY , if ( , ) min ( , )t c t jj
d Y Y d Y Y= , then the resulting decision is tY belongs to 

the same class as cY .

4. Two-sided Image-based Subspace Analysis 

4.1 Generalized Low Rank Approximations of Matrices (GLRAM) 

In paper (Jieping Ye, 2004), Jieping considered the problem of computing low rank 
approximations of matrices which are based on a collection of matrices. By solving an 
optimization problem, which aims to minimize the reconstruction (approximation) error, 
they derive an iterative algorithm, namely GLRAM, which stands for the Generalized Low 
Rank Approximations of Matrices. GLRAM reduces the reconstruction error sequentially, 
and the resulting approximation is thus improved during successive iterations. Formally, 
they consider the following optimization problem 

2

, , 1

1 2
. . ,

min
i

N
T

i i F
L R Y i

T T

X LY R

s t L L I R R I
=

−

= =
 (16) 

where 1r lL ×∈ℜ , 2c lR ×∈ℜ , 1 2l l
iY

×∈ℜ for 1..i N= , 1 1

1

l lI ×∈ℜ and 2 2

2

l lI ×∈ℜ are identity matrices, 
where 1l r≤ and 2l c≤ . Before showing how to solve above optimization problem, we briefly 
review some theorems that support the final iterative algorithm. 
Theorem 1. Let ,L R and 1{ }Ni iY = be the optimal solution to the minimization problem in Eq. 
(16). Then T

i iY L X R= for every i .
Proof : By the property of the trace of matrices, 

( )

( ) ( ) ( )

2

1 1

1 1 1

( )( )

2

N N
T T T T

i i i i i iF
i i

N N N
T T T T

i i i i i i
i i i

X LY R tr X LY R X LY R

tr X X tr YY tr LY R X

= =

= = =

− = − −

= + −
 (17) 

Because ( )
1

N
T

i i
i
tr X X

=

is a constant, the minimization in Eq. (16) is equivalent to minimizing 

( ) ( )
1 1

2
N N

T T T
i i i i

i i
E tr YY tr LY R X

= =

= −  (18) 
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By taking derivatives of (18) , and force it equal to zero 

2 2 0T T T
i i

i

E Y R X L
Y

∂ = − =
∂

 (19) 

we obtain T
i iY L X R= . This completes the proof of the theorem. 

Theorem 2. Let ,L R and 1{ }Ni iY = be the optimal solution to the minimization problem in Eq. 
(16). Then ,L R solve the following optimization problem: 

2

, , 1

1 2
. . ,

max
i

N
T

i F
L R Y i

T T

L X R

s t L L I R R I
=

= =
 (20) 

Proof : From Theorem 1., T
i iY L X R= for every i , we obtain 

( ) ( )

( ) ( )

( )

1 1

1 1

2

1 1

2

2

N N
T T T

i i i i
i i

N N
T T T T T T

i i i i
i i
N N

T T T T
i i i F

i i

tr YY tr LY R X

tr L X RR X L tr LL X RR X

tr L X RR X L L X R

= =

= =

= =

−

= −

= − = −

 (21) 

Hence the minimization problem in Eq. (16) is equivalent to the maximization of 

2

, , 1

1 2
. . ,

max
i

N
T

i F
L R Y i

T T

L X R

s t L L I R R I
=

= =
 (22) 

To the best of our knowledge, there is no closed form solution for the maximization in Eq. 
(22). A key observation, which leads to an iterative algorith for the computation of ,L R , is 
stated in the following theorem: 
Theorem 3. Let ,L R and 1{ }Ni iY = be the optimal solution to the minimization problem in Eq. (). 
Then,
(1) For a given R , L consists of the 1l eigenvectors of the matrix   

1

N
T T

L i i
i

S X RR X
=

=  (23) 

corresponding to the largest 1l eigenvalues.
(2) For a given L , R consists of the 2l eigenvectors of the matrix   

1

N
T T

R i i
i

S X LL X
=

=  (24) 

corresponding to the largest 2l eigenvalues.
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Proof : From the Theorem 2., the objective function in (22) can be re-written as 

( )

( )

2

1 1

1

N N
T T T T

i i iF
i i

N
T T T T

i i L
i

L X R tr L X RR X L

tr L X RR X L tr L S L

= =

=

=

= =
 (25) 

where
1

N
T T

L i i
i

S X RR X
=

= . Hence for a given R , 1r lL ×∈ℜ consists of the 1l eigenvectors of the 

matrix LS  corresponding to the largest 1l  eigenvalues. Similarly, For a given L , 2c lR ×∈ℜ

consists of the 2l eigenvectors of the matrix 
1

N
T T

R i i
i

S X LL X
=

=  corresponding to the largest 2l

eigenvalues. This completes the proof of the thereom. An iterative procedure for 
computing L and R can be  presented as follow 

Algorithm – GLRAM 
Step 0 

Initialize (0)

1[ ,0]TL L I= = , and set 0k = .
Step 1

Compute 2l eigenvectors 2( 1)

1{ }lR k
i i

+
=Φ of the matrix ( ) ( )

1

N
T k k T

R i i
i

S X L L X
=

=

corresponding to the largest 2l  eigenvalues and form
2

( 1) ( 1) ( 1)

1[ .. ]k R k R k
lR + + += Φ Φ .

Step 2

Compute 1l eigenvectors 1( 1)

1{ }lL k
i i

+
=Φ of the matrix ( 1) ( 1)

1

N
k k T T

L i i
i

S X R R X+ +

=

=

corresponding to the largest 1l  eigenvalues and form
1

( 1) ( 1) ( 1)

1[ .. ]k L k L k
lL + + += Φ Φ .

Step 3
If ( 1)kL + , ( 1)kR + are not convergent then set increase k by 1 and go to Step 1, 
othervise proceed to Step 4. 

Step 4
Let * ( 1)kL L += , * ( 1)kR R += and compute * * *T

i iY L X R= for 1..i N= .

4.2 Non-iterative GLRAM 

By further analyzing GLRAM, it is of interest to note that the objective function in Eq. (16) 
(Zhizheng Liang et al., 2007) has the lower and upper bound in terms of the covariance 
matrix. They also derive an effective solution for GLRAM which is a non-iterative solution.  
In the following, we first provide a lemma which is very useful for developing non-iterative 
GLRAM algorithm.  
Lemma 1. Let B  be an m m×  symmetric matrix and H  be an m h×  which satisties 

T h hH H I ×= ∈ℜ . Then, for 1..i h= , we have 

( ) ( ) ( )T
m h i i iB H BH Bλ λ λ− + ≤ ≤  (26) 
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where ( )i Bλ  denotes the thi  largest eigenvalue of the matrix B .
Proof of this lemma can be referenced in (Zhizheng Liang et al., 2007). From Lemma 1., the 
following corollary can be obtained 
Corollary 1. Let iw  be the eigenvectors corresponding to the thi  largest eigenvalue iλ  of B
and H be an m h×  which satisties T h hH H I ×= ∈ℜ . Then,  

1.. ( ) ..T
m h i m htr H BHλ λ λ λ− + + + ≤ ≤ + +  (27) 

and the second equality holds if H WQ=  where 1[ .. ]hW w w=  and Q  is any h h×  orthogonal 
matrix. 
Some following matrices are defined (Zhizheng Liang et al., 2007) 

1

1

N
T
i i

i
G X X

=

=  (28) 

2

1

N
T

i i
i

G X X
=

=  (29) 

Let 1F  consists of the eigenvectors  of 2G  corresponding to the first 2l  largest eigenvalues  
and 2F  consists of the eigenvectors  of 1G  corresponding to the first 1l  largest eigenvalues. 
Next, we define 

1 1 1

1

N
T T

L i i
i

H X F F X
=

=  (30) 

1 2 2

1

N
T T

R i i
i

H X F F X
=

=  (31) 

Let 1K  consists of the eigenvectors  of 1LH  corresponding to the first 1l  largest eigenvalues  
and 2K  consists of the eigenvectors  of 1RH  corresponding to the first 2l  largest 
eigenvalues. Applying Corollary 1., we can obtain the following theorem 
Theorem 4. Let 1d  be the sum of the first 1l  largest eigenvalues of 1LH and 2d  be the sum of 
the first 2l  largest eigenvalues of 1RH . In such a case, the value of Eq. (22) is equal to 

1 2max{ , }d d
Proof : (a) Eq. (22) can be represented as 

( )

( )

2

1 1

1

N N
T T T T

i i iF
i i

N
T T T T

i i L
i

L X R tr L X RR X L

tr L X RR X L tr L S L

= =

=

=

= =
 (32) 

Applying Corollary 1. we have 

( ) ( )
1

T
L L l

tr L S L tr S≤  (33) 
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Since

( )
21 1

1

( ) ( )
N

T T T
L i i l

i
tr S tr X RR X tr R G R tr G

=

= = ≤  (34) 

From Eq. (33) and Eq. (34), we can obtain 

( ) ( )
2

1

T
L l

tr L S L tr G≤  (35) 

Then it is not difficult to obtain 
2 2

2

1 l lR FQ ×= where
2 2

2

l lQ × is any orthogonal matrix. Substitute 

2 2

2

1 l lR FQ ×= into LS  and obtrain 1LH , we can have 
1 1

1

1 l lL K Q ×= . Futhermore, it is 
straightforward to verify that the value of Eq. (22) is equal to 1d .
(b) In the same way we can have 

( ) ( )

( )

2

1 1 1

1

N N N
T T T T T T T

i i i i iF
i i i

N
T T T T

i i i R
i

L X R tr L X RR X L tr R X LL X R

tr R X LL X R tr R S R

= = =

=

= =

= =
 (36) 

Applying Corollary 1. we have 

( ) ( )
2

T
R R l

tr R S R tr S≤  (37) 

Since

( )
12 2

1

( ) ( )
N

T T T
R i i l

i
tr S tr X LL X tr L G L tr G

=

= = ≤  (38) 

From Eq. (37) and Eq. (38), we can obtain 

( ) ( )
1

2

T
R l

tr R S R tr G≤  (39) 

Then it is not difficult to obtain 
1 1

1

2 l lL F Q ×= where
1 1

1

l lQ × is any orthogonal matrix. Substitute 

1 1

1

2 l lL F Q ×= into RS  and obtrain 1RH , we can have 
2 2

2

2 l lR K Q ×= . Futhermore, it is 
straightforward to verify that the value of Eq. (22) is equal to 2d . From (a) and (b), the 
theorem is proven. From this proof, it is not difficult to derive the non-iterative GLRAM as  

Algorithm – Non-iterative GLRAM 
Step 1 

Compute the matrices 1G  and 2G
Step 2

Compute eigenvectors of the matrices 1G  and 2G , let 
2 2

2

1 l lR FQ ×= and
1 1

1

2 l lL F Q ×=
Step 3

Compute eigenvectors of the matrices 1LH  and 1RH , and obtain 
1 1

1

1 l lL K Q ×=
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corresponding to R in step 2 and 
2 2

2

2 l lR K Q ×= corresponding to L in step 2 and 
compute 1d , 2d

Step 4
Choose ,R L  corresponding to 1 2max{ , }d d , and compute T

i iY L X R=

4.3 Iterative 2DLDA 

In (Jieping Ye, et al. 2004), he proposed a novel LDA algorithm, namely 2DLDA, which 
stands for 2-Dimensional Linear Discriminant Analysis. However, to distinguish with 
previous 2DLDA approach, we call this approach Iterative 2DLDA. Iterative 2DLDA aims to 
find the two-sided optimal transformations (projections L and R ) such that the class 
structure of the original high-dimensional space is preserved in the low-dimensional space. 
A natural similarity metric between matrices is the Frobenius norm. Under this metric, the 
(squared) within-class and between-class distances wD and bD  can be computed as follows: 

2

1

1

( )( )

i j

i j

C

w i j F
j X

C
T

i j i j
j X

D X M

tr X M X M

= ∈Π

= ∈Π

= −

= − −
 (40) 

2

1

1

( )( )

C

b j j F
j

C
T

j j j
j

D N M M

tr N M M M M

=

=

= −

= − −
 (41) 

In the low-dimensional space resulting from the linear transformations L and R , the with-in 
and between-class distances wD and bD  can be computed as follows: 

1

( ) ( )
i j

C
T T T

w i j i j
j X

D tr L X M RR X M L
= ∈Π

= − −  (42) 

1

( ) ( )
C

T T T
b j j j

j
D tr N L M M RR M M L

=

= − −  (43) 

The optimal transformations L and R would maximize ( , ) /b wF L R D D= . Let us define 

( ) ( )
i j

R T T
w i j i j

X
S X M RR X M

∈Π
= − −  (44) 

1

( ) ( )
C

R T T
b j j j

j
S N M M RR M M

=

= − −  (45) 
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( ) ( )
i j

L T T
w i j i j

X
S X M LL X M

∈Π

= − −  (46) 

1

( ) ( )
C

L T T
b j j j

j
S N M M LL M M

=

= − −  (47) 

After defining those matrices we can derive the iterative 2DLDA algorithm as follow 

Algorithm – Iterative 2DLDA 
Step 0 

Initialize (0)

2[ ,0]TR R I= = , and set 0k = .
Step 1

Compute
( ) ( ) ( )( ) ( )

i j

R k k k T T
w i j i j

X
S X M R R X M

∈Π

= − −

( ) ( ) ( )

1

( ) ( )
C

R k k k T T
b j j j

j
S N M M R R M M

=

= − −

Step 2
Compute 1l eigenvectors 1( )

1{ }lL k
i i=Φ of the matrix ( ) 1( )R k

wS
− )(kR

bS   and 

form
1

( ) ( ) ( )

1[ .. ]k L k L k
lL = Φ Φ .

Step 3
Compute

( ) ( ) ( )( ) ( )
i j

L k T k k T
w i j i j

X
S X M L L X M

∈Π

= − −

( ) ( ) ( )

1

( ) ( )
C

L k T k k T
b j j j

j
S N M M L L M M

=

= − −

Step 4
Compute 2l eigenvectors 2( )

1{ }lR k
i i=Φ of the matrix ( ) 1( )L k

wS
− )(kL

bS  and

form
1

( 1) ( ) ( )

1[ .. ]k R k R k
lR + = Φ Φ .

Step 5
If ( )kL , ( 1)kR + are not convergent then set increase k by 1 and go to Step 1, 
othervise proceed to Step 6. 

Step 6
Let * ( )kL L= , * ( 1)kR R += and compute * * *T

i iY L X R= for 1..i N= .

4.4 Non-iterative 2DLDA 

Iterative 2DLDA computes L  and R  in turn with the initialization (0)

2[ ,0]TR R I= = .
Alternatively, we can consider another algorithm that computes and L  and R  in turn with 
the initialization (0)

1[ ,0]TL L I= = . By unifying them, in this subsection, we can select L  and 
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R  which give larger ( , )F L R  and form the selective algorithm as follow (Inoue, K. & 
Urahama, K. 2006) 

Algorithm – Selective 2DLDA 
Step 1 

Initialize 2[ ,0]TR I= , and compute L and R in turn. Let (1)L and (1)R be
computed L and R .

Step 2
Initialize 1[ ,0]TL I= , and compute L and R in turn. Let (2)L and (2)R be
computed L and R .

Step 3
If (1) (1) (2) (2)( , ) ( , )f L R f L R≥ then output (1)L L= and (1)R R= , otherwise output  

(2)L L= and (2)R R=

Also in (Inoue, K. & Urahama, K. 2006), they proposed another non-iterative 2DLDA called 
Parallel 2DLDA which computes L and R  independently. Firstly, let us define the row-row 
within-class and between-class scatter matrix as follows: 

1

( )( )
i j

C
r T
w i j i j

j X
S X M X M

= ∈Π

= − −  (48) 

1

( )( )
C

r T
b j j j

j
S N M M M M

=

= − −  (49) 

The optimal left side transformation matrix L  would maximize ( ) / ( )T r T r
b wtr L S L tr L S L . This 

optimization problem is equivalent to the following constrained optimization problem: 

1

max ( )

. .

T r
bL

T r
w

tr L S L

s t L S L I=
 (50) 

Let r T
wS U U= Λ be the eigen-decomposition of r

wS  , where Λ is a diagonal matrix whose 
diagonal elements are eigenvalues of r

wS and U is an orthonormal matrix whose columns are 

the corresponding eigenvectors. Substitution of 1/ 2 TL U L= Λ  into (50) gives 

1/ 2 1/ 2

1

max ( )

. .

T T r
bL

T

tr L U S U L

s t L L I

− −Λ Λ

=
 (51) 

Compute 1l eigenvectors 1

1{ }li i=Φ of the matrix 1/ 2 1/ 2T r
bU S U− −Λ Λ  and form the optimal solution 

of (50) as  1/ 2L U L−= Λ where
11[ .. ]lL = Φ Φ . Alternatively, we define the column-column 

within-class and between-class scatter matrix as follows: 

1

( ) ( )
i j

C
c T
w i j i j

j X
S X M X M

= ∈Π

= − −  (52) 
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1

( ) ( )
C

c T
b j j j

j
S N M M M M

=

= − −  (53) 

The optimal left side transformation matrix R would maximize ( ) / ( )T c T c
b wtr R S R tr R S R .

This optimization problem is equivalent to the following constrained optimization problem: 

2

max ( )

. .

T c
bR

T c
w

tr R S R

s t R S R I=
 (54) 

Let c T
wS V V= Λ be the eigen-decomposition of c

wS  , where Λ is a diagonal matrix whose 
diagonal elements are eigenvalues of c

wS and V is an orthonormal matrix whose columns are 

the corresponding eigenvectors. Substitution of 1/ 2 TR V R= Λ  into (54) gives 

1/ 2 1/ 2

2

max ( )

. .

T T c
bR

T

tr R V S V R

s t R R I

− −Λ Λ

=
 (55) 

Compute 2l eigenvectors 2

1{ }li i=Ψ of the matrix 1/ 2 1/ 2T c
bV S V− −Λ Λ  and form the optimal solution 

of (54) as  1/ 2R V R−= Λ where
21[ .. ]lR = Ψ Ψ . The parallel 2DLDA can be described as follow 

Algorithm – Parallel 2DLDA 
Step A1

Compute r
wS  and r

bS
Step A2  

Compute eigen-decomposition r T
wS U U= Λ

Step A3  
Compute the first 1l eigenvectors 1

1{ }li i=Φ of the matrix 1/ 2 1/ 2T r
bU S U− −Λ Λ  and 

compute 1/ 2L U L−= Λ  where
11[ .. ]lL = Φ Φ

Step B1
Compute c

wS  and c
bS

Step B2  
Compute eigen-decomposition c T

wS V V= Λ
Step B3  

Compute the first 2l eigenvectors 2

1{ }li i=Ψ of the matrix 1/ 2 1/ 2T c
bV S V− −Λ Λ  and 

compute 1/ 2R V R−= Λ where
21[ .. ]lR = Ψ Ψ

Since the algorithm computes L and R independently, we can interchange Step A1,A2,A3,A4 
and Step B1,B2,B3,B4. 

5. Conclusions 

In this chapter, we have shown the class of low-rank approximation algorithms based 
directly on image data. In general, those algorithms are reduced to a couple of eigenvalue 
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problems of row-row and column-column covariance matrices. In contrast to those 1D 
approaches, the size of the image covariance matrix using image-based approaches is much 
smaller. As a result, it is easier to evaluate the covariance matrix accurately and less time is 
required to determine the corresponding eigenvectors. Some future work should be 
considered such as the relationship between 1D approaches and 2D approaches and an 
extension of those 2D approaches to higher tensors. 
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1. Introduction 

Over the last decade, face recognition has been a widely-studied area of research. It has been 
mainly motivated by a high and always increasing demand of reliable authentication and 
security systems, as well as by numerous medical-related and human-computer interaction 
applications; such as posture/gesture recognizers, intelligent multimodal systems and 
speech therapy software. In addition, a variety of dimensionality reduction techniques and 
classification rules have been treated. In particular, linear transformations for extracting 
non-facial or non-geometric features and non-parametric pattern classifiers have been 
widely employed in the so-called pixel-based approach, which consists in operating directly on 
the acquired image, without deriving facial features such as the distance between eyes or the 
area of the mouth. 
Face recognition is a particular problem of multi-class classification. In general, we are given 
a set of training objects { }NiX M

iii ,,1,|,),(: =∈= Rxx ω , each of them (pixels from a face 
image in our particular case) consisting of a M dimensional pattern xi and its label ∈ωi .
In pixel-based face recognition problems, feature extraction and feature selection methods 
are applied in order to reduce the dimensionality. Such methods usually consist in a 
transformation ZX: →φ , such that )(: xz φ= .
The eigenface representation is the simplest and widest used dimensionality reduction 
technique employed in pixel-based face recognition. It consists in the principal component 
analysis (PCA) or the Karhunen-Loève transform (KL), differing mainly at the structure of 
the covariance matrix. Let x be a vector formed by all the rows of an image, the prototype 

faces are arranged on a matrix [ ]xx μxμxX −−= N1 , where [ ]
=

==
N

1n nN1E xxμx . Due to 

the fact that the number of training faces N is often smaller than the face dimension d, it is 
more advisable to calculate the eigenvectors of the N×N covariance matrix XXX

T' = ,

instead of those of the d×d covariance matrix TXXX = . The eigenvectors wi corresponding 
to the p largest eigenvalues are called eigenfaces and determine a transformation matrix [ ]

pN21eigen wwwW = , where NNp ≤  is the number of principal components to be 

considered in further procedures. A specific value for Np is selected according to some 
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criterion, e.g. the information percentage on the eigenvalues. A feature point is transformed 
by

( )xμxWz −= T
eigen (1)

This chapter is concerned with four subjects. The first one is a conceptual and experimental 
review of the nearest feature classifiers; some bibliographical remarks as well as theoretical 
and empirical conclusions are given. The second subject is a quantification of the 
computational complexity of the nearest feature rules, by using an economic model which 
takes into account a trade-off between classifier error and evaluation complexity. 
Complexities of these classifiers are estimated in terms of orders (big-oh notation) and 
measured in FLOPs. The study includes error-complexity curves and complexity costs, 
resembling a cost-benefit analysis. The third one corresponds to a face recognition task 
based on dissimilarity representations, which shows that normal density-based (Bayesian) 
classifiers constructed on such representations are an alternative approach to the direct 
application of the nearest neighbor rule. The last subject is aimed to present a conceptual 
discussion on the relationship between the nearest feature rules and dissimilarity 
representations, particularly the so-called generalized dissimilarity representations and their 
potential application to face recognition problems as well as to other applications. Some 
open and apparently promising issues to be considered for further research are also 
discussed in the concluding section. 

2. The nearest feature classifiers 

In classification theory, there is an approach completely independent of statistical 
knowledge or assumptions, the so-called distribution free classification, often referred to as 
nonparametric techniques. Such an approach includes classification algorithms which can be 
described without reference to probability distributions; i.e. without the assumption that the 
forms of the underlying densities are known (Duda et al., 2000). 
Nonparametric procedures can be roughly divided into two branches: firstly, methods for 
estimating the underlying density functions, including the Parzen-window method and the 
kn-nearest neighbor estimation; secondly, procedures for estimating directly the a posteriori 
probabilities such as the well-known k-nearest neighbor rule (k-NN) which, in spite of its 
simplicity, has been successfully used in a considerable variety of applications. Nonetheless, 
it requires a significant amount of storage and computational effort; such a problem can be 
partly solved by using the condensed nearest neighbor rule (CNN) (Hart, 1968). In addition, 
the k-NN classifier suffers of a potential loss of accuracy when a small set of prototypes is 
available. To overcome this shortcoming, the nearest feature classifiers were developed. 
They are also a type of nonparametric techniques, which are based on a measure of distance 
between the query point and the prototypes or a function calculated from them, such as a 
line, a plane or a space. In this work, we consider four different nearest feature rules: k-
nearest-neighbor or k-NN, k-nearest-feature-line or k-NFL, k-nearest-feature-plane or k-
NFP and nearest-feature-space or NFS. The two last ones were proposed in (Chien & Wu, 
2002) as a complete geometric generalization of k-NFL. 
Before defining the nearest feature classifiers, a brief comment on notation is given. 
Consider a collection of training faces { }c

N
iii nC,,1i,|,),(:Z ⋅=∈ω= Rzz , where C 

denotes the number of classes and nc the number of objects per class. We assume, without 
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loss of generality, a transformed point z because a dimensionality reduction technique is 
usually applied before using a classifier; however, for the sake of notation simplicity, x and z
will be used indistinctly to denote a pattern. The nearest feature rules are defined as follows. 

2.1 The k-Nearest-Neighbor Rule 

The simplest nonparametric method for classification should be considered k-NN (Cover & 
Hart, 1967). This rule classifies z by assigning it the class label  most frequently represented 
among the k nearest prototypes; i.e., by finding the k neighbors with the minimum distances 
between z and all prototype feature points {zci,1  c  C,1  i  nc}. For k=1, the rule can be 
written as follows: 

( ) ( ),,dmin,d cini1C;c1îĉ
c

zzzz
≤≤≤≤

=  (2) 

where d(z,zci)= z-zci  is usually the Euclidean norm. In this case, the number of distance 

calculations is 
=

=
C

1c cnn .

2.2 The k-Nearest-Feature-Line 

The k-nearest-feature-line rule, or k-NFL (Li & Lu, 1999), is an extension of the k-NN classifier. 
This method generalizes each pair of prototype feature points belonging to the same class, 
{zci,zcj} by a linear function c

ijL , which is called the feature line (see Figure 1). The line is 

expressed by the span ( )cjci
c
ij ,spL zz= . The query z is projected onto c

ijL  as a point c
ijp . This 

projection is computed as 

),,( cicjci
c
ij zzzzp −τ+=  (3) 

where τ=(z-zci)(z-zci)/ zcj-zci 2, which is called the position parameter. The classification of z
is done by assigning it the class label  most frequently represented among the k nearest 
feature lines, for k=1 that means: 

( ) ( ),L,dminL,d c
ijji;nji,1C;c1

ĉ
ĵî

c

zz
≠≤≤≤≤

=  (4) 

where ( ) c
ij

c
ijL,d pzz −= . In this case, the number of distance calculations is 

=
−=

C

1c ccL 2/)1n(nn .

Figure 1. Feature line and projection point onto it 
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2.3 The k-Nearest-Feature-Plane 

The k-nearest-feature-plane rule, or k-NFP, is an extension of the k-NFL classifier. This 
classifier assumes that at least three linearly independent prototype points are available for 
each class. It generalizes three feature points {zci,zcj,zcm} of the same class by a feature plane 

c
ijmF  (see Figure 2); which is expressed by the span ( )cmcjci

c
ijm ,,spF zzz= . The query z is 

projected onto c
ijmF  as a point c

ijmp . The projection point can be calculated as follows: 

,Tc
ijm

1
c
ijm

Tc
ijm

c
ijm

c
ijm zZZZZp

−
=

 (5) 

where [ ]cmcjci
c
ijm zzzZ = . Considering k=1, the query point z is classified by assigning it the 

class label , according to 

( ) ( ),F,dminF,d c
ijmmji;nmj,i,1C;c1

ĉ
m̂ĵî

c

zz
≠≠≤≤≤≤

=  (6) 

 where ( ) c
ijm

c
ijmF,d pzz −= . In this case, the number of distance calculations is 

=
−−=

C

1c cccF 6/)2n)(1n(nn .

Figure 2. Feature plane and projection point onto it 

2.4 The Nearest-Feature-Space Rule 

The nearest-feature-space rule, or NFS, extends the geometrical concept of k-NFP classifier. It 
generalizes the independent prototypes belonging to the same class by a feature space 

( )
ccn2c1c

c ,,,spS zzz= . The query point z is projected onto the C spaces as follows: 

,Tc
1

cTccc zZZZZp
−

=  (7) 

where [ ]
ccn2c1c

c zzzZ = . The query point z is classified by assigning it the class label ,
according to 

( ) ( ) c

Cc1

c

Cc1

ĉ minS,dminS,d pzzz −==
≤≤≤≤

 (8) 

The number of distance calculations is always equals to C. 
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2.5 Theoretical geometric differences 

It was geometrically shown in (Chien & Wu, 2002) that the distance of z to c
ijmF  is smaller 

than that to the feature line. Moreover, the distance to the feature line is nearer compared 
with the distance to two prototype feature points. This relation can be written as follows: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )cmcjci
c
mi

c
jm

c
ij

c
ijm ,d,,d,,dminL,d,L,d,L,dminF,d zzzzzzzzzz ≤≤ (9)

In addition,  

( ) ( )c
ijmCc1

c F,dminS,d zz
≤≤

= (10)

In consequence, k-NFL classifier is supposed to capture more variations than k-NN, k-NFP 
should handle more variations of each class than k-NFL and NFS should capture more 
variations than k-NFP. So, it is expected that k-NFL performs better than k-NN, k-NFP is 
more accurate than k-NFL and NFS outperforms k-NFP. 

2.6 Asymptotic behavior of the nearest feature rules 

The problem of determining the error bound for the nearest feature rules can be addressed 
following the procedure to derive the error rate for the nearest neighbor rule; i.e. k-NN for 
k=1. The nearest feature rules are sub-optimal procedures as the k-NN rule; that is, they lead 
to an error rate greater than the minimum possible, the Bayes rate (Duda et al., 2000). In 
particular, for the k-NN rule with an unlimited number of prototypes, the error rate is never 
worse than twice the Bayes rate. 
In this sense, the infinite-sample conditional average probability of error P(e|x) and the 
unconditional average probability of error P(e) are analyzed to find their minimum possible 
values: P*(e|x) and P*(e) respectively. Values of P(e|x) and P(e) are related, through the 
density p(x), by 

.dx)x(p)x|e(P)e(P = (11)

Let us define the m-th state of nature ωm(x) by )x|(Pmax)x|(P iim ω=ω . The probability of 

error is minimized by the Bayes’ decision rule, minimizing P(e|x) for every x, thus 

)x|(P1)x|e(*P mω−= , (12)

and

= dx)x(p)x|e(*P*P . (13)

Expression (13) is called the Bayes rate.
A conditional probability of error P(e|x,x’) must be defined because the nearest neighbor 
rule depends on the samples, particularly on both the nearest prototype x’ to a test point x 
and on the point x itself. P(e|x) is obtained by averaging over x’ 

= 'dx)x|'x(p)'x,x|e(P)x|e(P . (14)
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In order to simplify the analysis of (14), the infinite-sample case, i. e. when n goes to infinity, 
is considered. In those conditions, the conditional density p(x’|x) approaches to a delta 
function centered at x:p(x’|x)→δ(x’-x) (See also (Duda et al., 2000) for a detailed 
demonstration). Now, an expression for P(e|x,x’) is derived as follows: 
Let (x1,θ1),(x2,θ2),…,(xn,θn) be n independently drawn labelled samples, where 

{ }c1j ,, ωω∈θ  for j=1,…,n. Suppose that a test point (x,θ) and its nearest training sample 
(xj’,θj’) are selected. Since the states of nature, when x and xj’ were drawn, are independent, 
we have 

)'x|'(P)x|(P)'x,x|',(P jjjj θθ=θθ ; (15) 

according to the nearest neighbor rule, an error is made if θ≠θj and, consequently, the 
conditional probability of error Pn(e|x,xj’) is given by 

.)'x|(P)x|(P1

)'x,x|',(P1)'x,x|e(P

c

1i
jii

c

1i
jiijn

=

=

ωω−=

ω=θω=θ−=
 (16) 

Substituting (16) in (14): 

=

=
∞→

ω−=

−δωω−=

c

1i
i

2

c

1i
iinn

)x|(P1

'dx)x'x()'x|(P)x|(P1)x|e(Plim
 (17) 

In addition, if )e(PlimP nn ∞→
=  and using (11) and (17) we have 

ω−=

=

=

=

=

∞→

∞→

∞→

dx)x(p)x|(P1

dx)x(p)x|e(Plim

dx)x(p)x|e(Plim

)e(PlimP

c

1i
i

2

nn

nn

nn

 (18) 

Comparing (13) and (18), it can easily be seen that P* is a lower bound on P. In order to 

calculate an upper bound, expression 
=

ω
c

1i i
2 )x|(P  in (18) is examined to determine how it 

is minimized. Such an expression can be rewritten as 

= ≠

ω+ω=ω
c

1i mi
i

2
m

2
i

2 )x|(P)x|(P)x|(P , (19) 
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and the bound for 
=

ω
c

1i i
2 )x|(P  is found by minimizing the term 

≠
ω

mi i
2 )x|(P , s.t.: 

0)x|(P i ≥ω (20)

≠

=ω−=ω
mi

mi )x|e(*P)x|(P1)x|(P (21)

=
ω

c

1i i
2 )x|(P  is minimized if mj,i),x|(P)x|(P ji ≠∀ω=ω . Besides, from (21) we have: 

=−

≠
−=ω

mi)x|e(*P1

mi
1c

)x|e(*P
)x|(P i (22)

The following inequalities can be derived from the expressions above: 

= −
+−≥ω

c

1i

2
2

i
2

1c
)x|e(*P))x|e(*P1()x|(P (23)

and

= −
−≤ω−

c

1i
i

2 )x|e(*P
1c

c)x|e(*P2)x|(P1 (24)

By substituting (24) in (18), it can be seen that P 2P*. Furthermore, a tight expression can be 
obtained by observing the variance of P*(e|x) (Duda et al., 2000): 

[ ] [ ]
0*Pdx)x(p)x|e(*P

dx)x(p*P)x|e(*Px|)e(*Pvar

22

2

≥−=

−=
(25)

and, in consequence, 

≥ 22 *Pdx)x(p)x|e(*P (26)

Using (24) and (26) in (18), we obtain the inequality: 

−
−≤≤ *P

1c
c2*PP*P , (27)

which shows that the nearest neighbour error rate P in a multi-class (c classes) problem, 
having an infinite collection of training data, is always less than or equal to twice the Bayes 
rate. An elegant conclusion from (27) is given in (Duda et al., 2000): “at least half of the 
classification information in an infinite data set resides in the nearest neighbor”. 
Having an arbitrarily large number of prototypes, training or representation sets are fully 
informative and representative of the underlying processes. Since the nearest feature rules 
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attempt to enrich the representation and, under the condition cited above, available 
prototypes are fully representative, we intuitively do not expect a difference between the 
asymptotic behavior of the k-NN rule and the asymptotic behavior of the nearest feature 
classifiers for the infinite-sample case. The finite-sample case cannot be addressed by using 
such a simple reasoning. In fact, questions such as how rapidly the performance converges 
to the asymptotic value have still not been solved for the k-NN rule (Duda et al., 2000). 

3. Quantifying the Computational Complexity of the Nearest Feature 
Classifiers 

This section is devoted to quantifying the computational complexity of the nearest feature 
classifiers, by using an economic model which takes into account a trade-off between 
classifier error and evaluation complexity. The model is applied to the face recognition 
problem, which is the framework where these classifiers were originally proposed. 
Classifiers are also studied by measuring them in orders, denoted by the Landau symbol O 
(big-oh notation). 

3.1 Complexity of the Nearest Feature Classifiers 

Due to, as mentioned above, the nearest feature classifiers are non-parametric, the number 
of samples in the training set (prototypes) has a strong influence on the evaluation 
complexity. Since in modern computer systems, additions and multiplications are 
comparable in complexity (de Ridder et al., 2002), we can consider that: 
• sum of two d-dimensional vectors costs d additions, therefore it has a complexity of d, 
• multiplication of two d-dimensional vectors costs d additions and d multiplications, so 

it has a complexity of 2d, 
• a scalar-vector multiplication has a complexity of d, 
• multiplying a m×d matrix by a d×1 vector has a complexity of 2dm, 
• multiplying a m×d matrix by a d×m matrix has a complexity of m2(2d-1),
• a m×m matrix inversion has a complexity of O(m3).
Considering that Euclidean distance d(z1,z2) is used in all of them, whose complexity is 3d if 
z1 and z2 are d-dimensional, then we have: 
1. k-NN: distances to all prototypes have to be calculated (2nd) and the minimum will 

have to be stored in a sorted list of k nearest prototypes (n⋅log2k). The total complexity 
therefore is n(3d+log2k). 

2. k-NFL: projection points onto lines (Eq. (3)) have to be calculated (14dnL) and also 
distances to all feature lines (2dnL). The minimum will have to be stored in a sorted list 
of k nearest prototypes (nL⋅log2k). In consequence, the total complexity is nL(16d+log2k). 

3. k-NFP: projection points on planes (Eq. (5)) have to be calculated (nFO(30d+36)) and 
also distances to all feature planes (2dnF). The minimum will have to be stored in a 
sorted list of k nearest prototypes (nF⋅log2k). The total complexity therefore is 
nF(2d+log2k+O(30d+36)).

4. NFS: projection points on spaces (Eq. (7)) have to be calculated 
( )( )( )3

c
2
cc n1d2ndn4C +++  and also distances to all feature spaces (2dC) and the 

minimum will have to be found (C⋅log2C). Consequently, the total complexity is 
( )( )Clogd2n1d2ndn4C 2

3
c

2
cc +++++ .
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3.2 Error-Complexity Curves 

Complexity can be empirically studied by exploring the error-complexity trade-off. As in a 
cost-benefit analysis, a series of experiments should be conducted, varying the number of 
prototypes in order to investigate the dependency of the performance on it. For feature 
extraction, the eigenface representation was applied (cf. Section 1). Obviously, 
computational complexity can be lowered by retaining as fewer eigenfaces as possible; 
nonetheless, 40 eigenfaces are sufficient for a very good description of the training set (Chin 
& Suter, 2004). 
We have used k=1 for all the classifiers; nonetheless, k could be optimized by the leave-one-
out procedure. Data sets used here as examples are: 
• The AT&T (previously ORL) Database of Faces, with C=40, d=93×112 pixels which was 

reduced up to d=40 and { }.5,4,3Cn ⋅∈
• The Sheffield (previously UMIST) Face Database, with C=20, d=93×112 pixels which 

was reduced up to d=40 and { }.9,7,5,3Cn ⋅∈
Error e (in %, measured on an independent set of 5 examples per class) vs. computational 
complexity f (in FLOPs) for the AT&T database of faces is shown in Figure 3. Similarly, the 
error e (in %, measured on an independent set of 9 examples per class) vs. computational 
complexity f (in FLOPs) for the Sheffield Face Database is shown in Figure 4. In both cases 
the number of FLOPs corresponds to the classification of a single example z.

Figure 3. Classifier complexity f (in FLOPs) vs. e (in %) for the AT&T database of faces 

When NFS is applied for three prototypes per class, it becomes k-NFP. It is noteworthy that 
performance could decline. In practice, k-NFP classifier is not advisable because its 
computational complexity becomes too high. If a sufficient number of prototypes is 
available, for example 5 or 9 prototypes per class for each database, the best choice would be 
k-NFL. Only in those cases where the number of prototypes is not large enough to cover 
variations for each object, the more expensive nearest feature classifiers should be used. 
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Figure 4. Classifier complexity f (in FLOPs) vs. e (in %) for the AT&T database of faces 

3.3 The economics of nearest feature classification 

In (de Ridder et al., 2002), a simple economic model for comparing classification error to 
computational complexity was proposed. According to such approach, cost of classification 
errors (€ce) and cost of complexity (€cp) can be compared by the cost of a single error (€c0) as 
follows: 

pe cc = , (28) 

f1027.1
sv1015.3

fcce 10
7

c
0 ⋅×=

⋅⋅×
⋅

=⋅ − , (29) 

where e is the probability of misclassification, v is the number of FLOPs per second (there 
are 3.15×107 seconds in a year), cc is the total annual cost of ownership for a computer, f is 
the number of FLOPs needed to classify a single sample z and s is the percentage of CPU 
time allotted to classification. It was found experimentally that cc= €104, v=107 and s=0.25 are 
reasonable values. 
A direct comparison between two classifiers A and B can be done by a slight modification of 
(29):

AB

AB10
A,B ee

ff1027.1c
−
−⋅×= − , (30) 

Eq. (30) represents the cost of using classifier B instead of another classifier A. Interesting 
cases are those with (eB-eA)<0; that is, selecting a classifier which improves the performance. 
For these cases, cB,A>0 indicates that classifier B complexity is larger than that of classifier A 
and, in consequence, the improvement must be paid. Conversely, if cB,A>0 we would have a 
cheaper and better classifier. Costs of interesting cases for the AT&T Database of Faces and 
the Sheffield Face Database are shown in Tables 1 and 2, respectively. 
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AClassifier 
k-NN k-NFL k-NFP NFS 

B 3 prototypes per class 
k-NN — — — — 
k-NFL 0.0002 — — — 
k-NFP 0.0027 0.0068 — * 
NFS 0.0018 0.0044 * — 

 4 prototypes per class 
k-NN — — — — 
k-NFL 0.0007 — — — 
k-NFP 0.0143 0.0690 — * 
NFS 0.0037 0.0161 * — 

 5 prototypes per class 
k-NN — — — — 
k-NFL 0.0015 — * -0.0190 
k-NFP 0.0558 * — 0.1438 
NFS 0.0117 — — — 

*: eB=eA; —: (eB - eA) > 0 

Table 1. Economics of nearest feature classifiers. AT&T database of faces 

AClassifier 
k-NN k-NFL k-NFP NFS 

B 3 prototypes per class 
k-NN — — — — 
k-NFL 0.0001 — -0.0015 -0.0013 
k-NFP 0.0027 — — * 
NFS 0.0024 — * — 

 5 prototypes per class 
k-NN — — — — 
k-NFL 0.0022 — — — 
k-NFP 0.0253 0.0368 — * 
NFS 0.0039 0.0048 * — 

 7 prototypes per class 
k-NN — — — * 
k-NFL 0.0016 — -0.1287 -0.0041 
k-NFP 0.2623 — — 0.2452 
NFS * — — — 

 9 prototypes per class 
k-NN — — — — 
k-NFL 0.0084 — * * 
k-NFP 0.6261 * — * 
NFS 0.0233 * * — 

*: eB=eA; —: (eB - eA) > 0 
Table 2. Economics of nearest feature classifiers. Sheffield face database 
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k-NFP classifier is always the most expensive option. The cheaper solution which gives an 
acceptable error in comparison with the best possible performance is k-NFL; in fact, in 
several cases using k-NFL instead of other nearest feature classifier is a saving on the cost of 
error-complexity. In general, costs of preferring NFS are acceptable. 

4. Dissimilarity-based face recognition 

The concept of proximity is essential in learning processes. Identifying differences or, 
conversely, detecting shared commonalities are typically carried out by using a suitable 
proximity measure, often referred to as a dissimilarity. Such a proximity can be modelled in 
different ways, according to the nature of data; e.g. as a classical distance between vector 
representations or by using edit distances between structural descriptions, such as shapes or 
sequences. 
A wide-scope approach, the dissimilarity representation for pattern recognition (P kalska & 
Duin, 2005a), was proposed on the basis of such proximity measures. Statistical and 
structural learning techniques can be directly used with dissimilarity representations, 
naturally fitting for a variety of applications, e.g. face recognition problems. In addition, 
since dissimilarity measures are considered very general, they are not constrained to 
Euclidean or metric behaviors, neither to positive semidefinite structures as it is imposed 
beforehand in kernel methods. The aim of this Section is to review the practical foundations 
of the dissimilarity-based approach and to explore its application for a simple face 
recognition problem. 

4.1 Dissimilarity representations 

A dissimilarity representation of objects is based on their pairwise comparisons. Consider a 
representation set R:={p1,p2,…,pn} and a dissimilarity measure d. An object x is represented 
as a vector of the dissimilarities computed between x and the prototypes from R, i.e. 
D(x,R)=[d(x,p1),d(x,p2),…,d(x,pn)]. For a set T of N objects, it extends to an N×n dissimilarity 
matrix (P kalska et al., 2006): 

( ) =

Nn3N2N1N

n3333231

n2232221

n1131211

N

3

2

1

n321

dddd

dddd
dddd
dddd

x

x
x
x

R,TD

pppp

(31)

where djk=D(xj,pk).
For dissimilarities, the geometry is contained in the definition, giving the possibility to 
include physical background knowledge; in contrast, feature-based representations usually 
suppose a Euclidean geometry. Important properties of dissimilarity matrices, such as 
metric nature, tests for Euclidean behavior, transformations and corrections of non-
Euclidean dissimilarities and embeddings, are discussed in (P kalska & Duin, 2005b). 
When the entire T is used as R, the dissimilarity representation is expressed as an N×N
dissimilarity matrix D(T,T). Nonetheless, R may be properly chosen by prototype selection 
procedures (P kalska et al., 2006). 
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4.2 Classifiers in dissimilarity spaces 

Building a classifier in a dissimilarity space consists in applying a traditional classification 
rule, considering dissimilarities as features; that is, in practice, a dissimilarity-based 
classification problem is addressed as a traditional feature-based one. Even though the 
nearest neighbor rule is the reference method to discriminate between objects represented 
by dissimilarities, it suffers from a number of limitations. Previous studies (P kalska et al., 
2001; P kalska & Duin, 2002; Paclík & Duin, 2003; P kalska et al., 2004; Orozco-Alzate et al., 
2006) have shown that Bayesian (normal density based) classifiers, particularly the linear 
(LDC) and quadratic (QDC) normal based classifiers, perform well in dissimilarity spaces 
and, sometimes, offer a more accurate solution. For a 2-class problem, the LDC based on the 
representation set R is given by 

( )( ) ( ) ( ) ( )
)2(

)1(
)2()1(

1
T

)2()1( P
P

logC
2
1R,xDRx,Df +−×+−= − mmmm (32)

and the QDC is derived as 
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p

log2)R,x(DCR,xD1Rx,Df mm (33)

where C is the sample covariance matrix, C(1) and C(2) are the estimated class covariance 
matrices, and m(1) and m(2) are the mean vectors, computed in the dissimilarity space D(T,R). 
P(1) and P(2) are the class prior probabilities. If C is singular, a regularized version must be 
used. In practice, the following regularization is suggested for λ=0.01 (P kalska et al., 2006): 

( ) ( )CdiagC1Creg λ+λ−=λ (34)

Nonetheless, regularization parameter should be optimized in order to obtain the best 
possible results for the normal density based classifiers. 
Other classifiers can be used in dissimilarity spaces, usually by a straightforward 
implementation. Nearest mean linear classifiers, Fisher linear discriminants, support vector 
machines (SVMs), among others are particularly interesting for being used in generalized 
dissimilarity spaces. In addition, traditional as well as specially derived clustering 
techniques can be implemented for dissimilarity representations, see (P kalska & Duin, 
2005c) for a detailed discussion. 

4.3 Experimental results 

As in Section 3.2, experiments were conducted on the AT&T and the Sheffield datasets, 
using 40 eigenfaces for an initial representation. Dissimilarity representations were 
constructed by calculating pairwise Euclidean distances on the eigenface representations. In 
order to compare different classifiers, the k-NN rule and the LDC and QDC classifiers built 
on the dissimilarity representations were used. Experiments were performed 25 times for 
randomly chosen training and test sets. Since in this study we are particularly interested in 
recognition accuracy rather than in computational complexity and storage requirements, the 
entire training set T has been used as the representation set R. Nonetheless, R may be 
properly reduced by prototype selection procedures (P kalska et al., 2006). Training and 
testing sets were generated by selecting equal partitions for the classes.  
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Figures 5 and 6 present the results, in terms of classification errors as a function of the 
number of training objects randomly chosen. Figure 5 presents the results for the AT&T 
database; similarly, the results for the Sheffield dataset are shown in Figure 6. Standard 
deviations for averaged test error decrease rapidly, varying around 0.15 and 0.08 after at 
least 6 training objects per class are available; for clarity reasons, standard deviations are not 
given. 

Figure 5. Average classification error as a function of the number of prototypes per class for 
the ORL database of faces 

Figure 6. Average classification error as a function of the number of prototypes per class for 
the Sheffield database of faces 
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Experiments confirm that Bayesian classifiers outperform the 1-NN classifier, whenever a 
sufficient number of prototypes is available. Moreover, LDC for both data sets outperforms 
the 1-NN rule and the QDC; nonetheless, it shows a loss of accuracy when certain number of 
prototypes is provided. Therefore, a further study on a proper regularization for the LDC 
should be conducted. 

5. Nearest feature rules and dissimilarity representations 

Recently, a number of research advances on dissimilarity representations has been carried 
out. They showed that learning from dissimilarity representations is a feasible alternative to 
learning from feature-based descriptions (P kalska & Duin, 2002; Paclík & Duin, 2003; 
P kalska & Duin, 2005a). In spite of those remarkable advances, the work is not completed 
yet; particularly, meaningful transformations and manipulations of dissimilarity 
representations are still an open and promising field for future research. Particularly, 
manipulations to enrich the original dissimilarity representations might be useful; e.g. by 
using a geometrical generalization. 
In such a way, a dissimilarity representation of an object x, which is defined as a set of 
dissimilarities between x and the objects of a collection R:={p1,p2,…,pn}, expressed as a 
vector D(x,R)=[d(x,p1),d(x,p2),…,d(x,pn)], is generalized by considering a new set R 
composed by objects lying in another space, e.g. lines or planes. Considering such a 
generalized representation, the entire scope of pattern recognition can be studied: 
representation, data understanding, transformations, classification, etc. In addition, new 
applications should be considered in order to describe other pattern recognition problems 
where dissimilarity representations and generalized dissimilarity representations might be 
advantageous. In summary, the task consists in studying classification in generalized 
dissimilarity representations; that is, constructing classifiers on spaces equipped with a 
dissimilarity measure ρ: X×Xg→R, where Xg stands for a generalization of X. In general, 
dimension of Xg is higher than that of X. 

5.1 Generalization of Dissimilarity Representations 

The generalization consists in creating matrices DL(T,RL) and DF(T,RF) by using the 
information available at the original representation D(T,R). DL(T,RL) and DF(T,RF) are called 
generalized dissimilarity representations and their structures are:  
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where djk=DL(xj,Lk); and 
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where djk=DF(xj, Fk).
D(T, RL) and D(T, RF) are high dimensional matrices because the original representation set 
R is generalized by combining all the pairs (RL) and all the triplets (RF) of prototypes of the 
same class. In consequence, a suitable procedure for feature selection (dimensionality 
reduction) is needed in order to avoid the curse of the dimensionality. 
A dissimilarity matrix D(T,R)=(dij) is composed of C×C submatrices as follows: 
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where Dii and Dij, i  j contain intraclass and interclass distances respectively. All the 
possible dissimilarities between objects are available but the original feature points are not. 
Nonetheless, it is possible to compute the distances to feature lines from the dissimilarities. 
The problem consists in computing the height of a scalene triangle as shown in Figure 7.

Figure 7. Height of a scalene triangle corresponding to the distance to a feature line 

Let us define s=(djk+dij+dik)/2. Then, the area of the triangle is given by: 

;)ds)(ds)(ds(sA ikijjk −−−=  (38) 

but we also know that area, assuming dij as base, is: 

2
hd

A ij=  (39) 

So, we can solve (38) and (39) for h, which is the distance to the feature line. The generalized 
dissimilarity representation in (35) is constructed by replacing each entry of D(T,RL) by the 
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corresponding value of h. The distance dij in Figure 7 must be an intraclass one; that is, 
ii

ij Dd ∈ .
Computing the distances to the feature planes in terms of dissimilarities consists in 
calculating the height of an irregular (scalene) tetrahedron as shown in Figure 8. 

Figure 8. Height of an irregular tetrahedron corresponding to the distance to a feature plane 

Let us define s=(djk+dij+dik)/2. Then, the volume of a tetrahedron is given by: 

3
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V ikijjk −−−

= (40)

but volume is also (Uspensky, 1948): 
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So, we can solve (40) and (41) for h, which is the distance to the feature plane. The 
generalized dissimilarity representation in (36) is constructed by replacing each entry of 
D(T, RF) by the corresponding value of h. Distances dij, dik and djk in Figure 8 must be 
intraclass. 
Experiments have shown that nearest feature rules are especially profitable when variations 
and conditions are not fully represented by the original prototypes; for example the case of 
small or non-representative training sets. The improvement in such a case respect to the k-
NN rule (the reference method) is due to the feature lines/planes' ability to expand the 
representational capacity of the available points, accounting for new conditions not 
represented by the original set (Li & Lu, 1999; Chien and Wu, 2002; Orozco-Alzate, 2005; 
Orozco-Alzate & Castellanos-Domínguez, 2006). Those are precisely the conditions in face 
recognition problems, where the number of prototypes is typically limited to few images per 
class and the number of classes is high: tens or even one hundred people. As a result, the 
effectiveness of the nearest feature rules is remarkable for this problem.  
Representations to be studied include generalizations by feature lines, feature planes and 
the feature space. These representations are not square, having two or three zeros per 
column for feature lines and feature planes respectively. First, generalizations of metric 
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representations will be considered because the generalization procedure requires 
constructing triangles and tetrahedrons and, as a consequence, generalizing non-metric 
dissimilarity representations might produce complex numbers when solving equations for 
heights. 
To construct classifiers based on generalized dissimilarity representations, we should 
proceed similarly as dissimilarity-based classifiers are built. That is, using a training set T 
and a representation set R containing prototype examples from T. Prototype lines or planes 
considered will be selected by some prototype selection procedure; classifiers should be 
built on D(T,RL) and D(T,RF). Different sizes for the representation set R must be considered. 
Enriching the dissimilarity representations implies a considerable number of calculations. 
The number of feature lines and planes grows rapidly as the number of prototypes per class 
increases; in consequence, computational effort may become high, especially if a generalized 
representation is computed for an entire set. When applying traditional statistical classifiers 
to dissimilarity representations, dissimilarities to prototypes may be treated as features. As a 
result, classifiers built in enriched dissimilarity spaces are also subject to the curse of 
dimensionality phenomenon. In general, for generalized dissimilarity representations 
Dg(T,Rg), the number of training objects is small relative to the number of prototype lines or 
planes.
According to the two reasons above, it is important to use dimensionality reduction 
techniques —feature extraction and feature selection methods— before building classifiers 
in generalized dissimilarity representations. Systematic approaches for prototype selection 
such as exhaustive search and the forward selection process lead to an optimal 
representation set; however, they require a considerable number of calculations. 
Consequently, due to the increased dimensionality of the enriched representations, the 
application of a systematic prototype selection method will be computationally expensive. 
Nonetheless, it has been shown that non-optimal and computationally simple procedures 
such as Random and RandomC may work well (P kalska et al., 2006). 

6. Conclusion 

In this chapter, we presented a series of theoretical and experimental considerations 
regarding the nearest feature rules and dissimilarity representations for face recognition 
problems, analyzed separately as well as a combined approach. Firstly, a study about the 
asymptotic behavior of the nearest feature classifiers was conducted, following the well-
known procedure derived for the k-NN rule. We concluded that, if an arbitrarily large 
number of samples is available, there is no significant difference between k-NN and its 
geometric generalizations: the nearest feature rules. Moreover, as for k-NN, it is not possible 
to say something general about the asymptotic behavior in the finite-sample case. It might 
be possible to perform an analysis for specific distributions; perhaps without loss of 
generality. Consequently, further conceptual considerations and experiments are required. 
Quantifying the computational complexity of classifiers is very important in the selection of 
a particular algorithm. Complexity of algorithms is usually measured in terms of orders; 
nonetheless, such an approach is not precise. An evaluation of the error-complexity trade-off 
for the nearest feature classifiers has been presented in Section 3. We have also studied the 
complexity of nearest feature classifiers, in terms of the number of additions and 
multiplications associated to their evaluation, as well as through error-complexity curves 
and a comparative study considering error and complexity. It was shown that k-NFP is too 
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expensive for practical applications and that k-NFL and NFS are better options to overcome 
the representational limitations of k-NN. Even though nearest feature rules are well-
performing classifiers, their computational complexity is too high. If there is a maximum 
acceptable response delay for the particular application and a considerable number of 
prototypes is available, an effective way to overcome this shortcoming might be to use 
parallel computation. 
We have explored and tested a dissimilarity-based strategy for face recognition. Two simple 
classification problems were conducted: the classic ORL database and the Sheffield data set. 
Dissimilarity representation was derived by applying the eigenface transformation and, 
afterwards, the Euclidean distance between the eigenface representations. Such a 
representation allowed us for using traditional statistical decision rules, particularly normal 
density based classifiers. The 1-NN rule was employed as a reference for performance 
comparison. Those experiments confirm that Bayesian classifiers outperform the 1-NN 
classifier, when a sufficient number of prototypes is provided. The LDC constructed for both 
the ORL and the Sheffield problems, always outperforms the 1-NN rule; however, LDC 
shows a loss of accuracy when certain number of prototypes is provided. Therefore, a 
further study on a proper regularization for the LDC should be conducted in order to obtain 
an improvement of this classifier. 
Finally, an approach to combine the nearest feature rules and dissimilarity representations 
was proposed. There are several ways to use the nearest feature rules for enriching a given 
dissimilarity representation. To begin with, we suggested considering generalizations by 
feature lines and feature planes, restricted to metric dissimilarities in order to avoid complex 
numbers when solving equations for heights. However, such a restriction can be overcome 
by using Euclidean embeddings. In addition, combined classifiers seem to be an option 
because a new and extended representation can be constructed by combining the original 
and the generalized ones. As a result, there are several fundamental and applied research 
problems to be faced in future research work. 
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1. Introduction  

The focus of this chapter is in the problem of using technology to grant access to restricted 
areas by authorised persons, hereafter called ‘clients’, and to deny access to unauthorised or 
unidentified persons, the so called ‘impostors’. 
Conventional methods, such as magnetic or smart cards, user/password login and others, 
are being progressively recognised as insecure due to their many shortcomings, like the 
possibility of being lost, damaged or forged. Other methods, particularly those based on 
biometrics, are being increasingly used as they allow the verification of an individual’s 
identity on the basis of precise and careful measures of biological and physiological 
characteristics, such as fingerprints, hand and palm print geometry, iris and retina patterns, 
voice and face recognition. 
Automatic face recognition has very much progressed in the last few years, making its use 
practical in experimental or commercial systems. However, further research is still needed 
to make these systems more robust, reliable and less dependant on special constraints, 
particularly those imposed on the data acquisition process. 
In order to be as flexible as possible, current face recognition systems must use a large 
database of facial views for each client, so that distinct poses and emotional states can be 
accommodated, as well as other short-term variations in appearance caused by cosmetics or 
beard size, and by the use of various accessories such as spectacles or earrings. These 
multiple views are intended to increase the individual’s recognition rate for the capture of a 
single facial test image. 
The large dimension of the faces database induces a number of problems, namely the 
requirement for more storage, the increased computing time for recognition and decision, 
and the need for more complex classifiers. 
In an attempt to cope with the above problems we have devised an alternative approach, 
essentially consisting in keeping a much smaller facial image database, and in testing for 
valid matches a number of images extracted from a video fragment acquired during the 
person’s path in direction to the protected entrance. 
The main advantages to be expected from this approach can be summarised as: (a) the size 
of the reference face database is substantially reduced, as a single image or a small number 
of images for each individual are kept, (b) the clients are not subject to much discomfort 
when building the database, as a single neutral view (for each relevant appearance) is 
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required, (c) the training and updating of the database is performed much faster, as the total 
number of images is reduced, and (d) no special pose is normally required from the client, 
as the system relies on the fact that only one or a few valid matches of the images from the 
video sequence suffice for positive identification. 
The overall system concept can be briefly described in the following terms: 

The reference face database is built by using a single image of each individual, in a 
frontal pose and with a neutral expression, or by adding a few other such images, one 
for each possible aspect (e.g., with or without glasses, beard, make-up); 
Each image from the video sequence (possibly under-sampled) is paired with its 
horizontal reflection, and a morphed image version is produced which emulates the 
frontal pose of the individual, using an underlying 3-D model; 
The matching between each morphed image from the sequence and every reference 
image in the database is performed by using an appropriate technique; 
When a pre-specified number of the images in an individual’s sequence is matched to a 
certain reference image and no match is found to other reference images, the individual 
is assumed to be correctly identified; 
In an authentication context, when an impostor presents itself to the system claiming a 
false identity, the match rejection should occur for all morphed images of the sequence. 

In our implementation both the database images and the video images were subject to some 
form of pre-processing, the morphing technique used is View Morphing (as proposed by 
Seitz, see Section 3 below) and the image matching process is based on a transformation that 
uses Independent Component Analysis. 
The remainder of the chapter is organised as follows: (a) the next section details the image 
and video acquisition and pre-processing, (b) then the View Morphing methodology is 
explained in a separate section, (c) which is followed by another one detailing the 
application of the Independent Component Analysis methodology, (d) and by an 
implementation and results section, divided in two sub-sections dealing separately with the 
authentication of clients and the rejection of impostors, (e) which precedes the final section 
devoted to the conclusions and suggestions for further research. 

2. Image and Video Acquisition and Processing 

We constructed a database with a single view for each individual. The face images were 
captured in a frontal pose to the camera, with a neutral expression and with a background 
as homogenous as possible, for a total of 22 subjects. The database still images were taken 
with an off-the-shelf digital camera. 
In order to get the test images, a short video sequence was captured by the same camera, in 
a movie mode, during the individual’s approach path to the camera, and then 3 images were 
selected from each video. This small number of images was chosen for practical reasons. 
The test image acquisition process ensures that virtually no restrictions are imposed on the 
subjects, and enables the use of more than one camera in practical situations. 
One negative issue that must be stressed is that the images extracted from the video are 
often of poor quality as fixed focus and zoom factor were set in the camera, which means 
that these images may display a very small facial area and that they may also be slightly 
blurred. The original database image and one of the extracted images from the video are 
shown in Figure 1. 
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Figure 1. Original database image (2288 × 1712 resolution) and one image extracted from the 
video (640 × 480 pixels) 

An area of interest, containing essentially the facial visual information, is extracted from 
each of these images and converted to a standard size. The video capture process is shown 
in Figure 2. 

Figure 2. Image extraction from the video sequence and area of interest resizing 

Having in mind the need for fast processing in an online system, on one hand, and the 
benefits of improving image contrast and normalisation, on the other, image pre-processing 
was performed over all captured images, using a combination of a photometric 
transformation to reduce the effects of brightness variation among different images, with a 
geometric normalisation to help the comparability of images by allowing some degree of 
distortion. 
All images, both from the database and from the video fragment, are subject to a manual 
extraction of the area of interest and then converted to a standard resolution of 128 × 128 
pixels, using bi-cubic interpolation. The result of this process is shown in Figure 3. 
Moreover, the images are subject to histogram equalisation, so that comparable contrast is 
achieved throughout the whole image dataset. Pre- and post- equalised images are shown in 
Figure 4. 
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Figure 3. Areas of interest of database (left) and video (right) images, resized to 128 × 128 
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Figure 4. Effects of histogram equalisation 

Then, a geometric correction is performed on all images, such that a normalised rendering is 
achieved. Basically, a planar image transformation is performed such that the eyes’ centres 
and the midpoint of the horizontal line segment joining the corners of the lips are moved to 
fixed co-ordinates in the 128 × 128 grid. This transformation uses bilinear interpolation. 
Then, the images are horizontally cropped from both sides, reducing the image resolution to 
128 × 81 pixels. Note that this geometric transformation, when applied to the video test 
images, is in fact performed after the view-morphing step described in the next section. 
Figure 5 shows the results of the geometric normalisation. 

Figure 5. Results after geometric normalisation (database: left; view-morphed video: right) 
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In summary, the image processing steps are applied to all images in order to ease the 
authentication of clients and the rejection of impostors, both in terms of the radiometric and 
geometric properties of the images and in terms of the computation time required for online 
processing. These steps are summarised in Figure 6 for a database image; for a video image 
an intermediate view-morphing stage is to be included. 

Figure 6. Image processing steps. From left to right: 128 × 128 area of interest; geometric 
normalisation; histogram equalisation; cropping to 128 × 81 

3. View Morphing 

In image acquisition the deviations from a frontal pose are often large, particularly for the 
video test images. One way of addressing this problem is to consider image synthesis as a 
preliminary step in order to simulate a facial image capture from a frontal viewpoint. 
Ullman and Basri (Ullman & Basri, 1991) show that new views of an object can be expressed as 
a linear combination of other views of the same scene. However, their technique requires full 
correspondence between the original images and this is, quite often, very hard to achieve. 
Chen and Williams (Chen & Williams, 1991) have proposed image synthesis based on linear 
interpolation of corresponding points between the original images. As this method causes a 
geometric bending effect, the interpolated frontal image can not be considered to represent a 
new view of the same object. 
Lam and Yan (Lam & Yan , 1998) have used a snake model to extract the facial contours 
from the original images, and subsequently they detect 15 face feature points (such as the 
lips and eyes corners) and compute a 3D model based on these. The need to detect 
accurately the 15 feature points and the fact that the technique can only be applied to quasi-
frontal images are two important limitations. 
Beymer et al. (Beymer et al., 1993) have suggested the construction of a virtual view based 
on the theory that any 2D view can be expressed as a linear combination of other views. 
Their procedure, besides the need for more than 3 views to construct the new image, is also 
hampered by the requirement of a large number of image correspondences. 
To avoid the difficulty of establishing a great number of corresponding points, Feng and 
Yuen (Feng & Yuen, 2000) presented an algorithm to detect facial landmarks, using these 
ones to estimate the face orientation in an image. After this estimation the authors propose 
the construction of a 3D model to transform an initial image into a frontal pose. Their 
technique only needs one image to construct a frontal view. 
In spite of creating compelling 2D transitions between images, image morphing techniques 
often cause unnatural distortions. Seitz and Dyer (Seitz & Dyer, 1995; Seitz & Dyer, 1996; 
Seitz, 1997) propose a View-Morphing method to avoid that problem. From two images of 
the same object, in different poses, and with pixel correspondences in both images it is 
possible to compute any in-between view. The authors claim that view-morphing, using 
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basic principles of projective geometry and image geometric interpolation yields a more 
realistic transition that preserves the underlying 3D geometry. This technique works by pre-
warping two images prior to computing a morph and then by post-warping the interpolated 
images. Because no knowledge of 3D shape is required the technique may be applied to 
photographs and drawings, as well as rendered scenes.  
Xiao and Shah (Xiao & Shah, 2004) present an effective image-based approach without the 
explicit use of a 3D model. Based on the view-morphing methods, they propose a novel 
technique to synthesize a virtual view in a 2D space. Starting by establishing and refining 
corresponding feature points between each pair of images they determine the epipolar 
geometry for each pair and extract the trifocal plane by trifocal tensor computation. After 
marking a small number of feature lines, the correct dense disparity maps are obtained by 
using a triocular-stereo algorithm developed by them. Finally, after self-calibration of the 
three cameras, they can generate an arbitrary novel view, synthesized by the tri-view 
morphing algorithm. 
For our work we have developed a view-morphing algorithm closely following the Seitz 
and Dyer method. The view-morphing technique is shape-preserving, thus creating 
intermediate views that resemble the effect of rigid motion transformations in 3D. The 
intermediate images can be closer to any one of the two extreme images, this being 
controlled by a single transformation parameter. 

Figure 7. The pre-warping, morphing, and post-warping stages of the view-morphing 
technique (adapted from Seitz, 1997) 

For non-parallel original views, i.e. images obtained by cameras with non-parallel optical axes, 
the first step is to backproject those views into a single plane where they become parallel. This 
is done by using the adequate projection matrices, whose construction details are beyond the 
scope of this document. Considering Figure 7, the original images I0 and I1 are backprojected 
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to Î0 and Î1, C0 and C1 representing the optical centres of the two cameras and P being a generic 
point in space (this is the pre-warping stage). New perspective views for virtual optical centres 
located along the segment joining C0 and C1 can be synthesised through linear positional and 
intensity interpolation, using a parameter s that may vary from 0 to 1; for a particular value of 
s the image ÎS is created, which has a virtual camera optical centre located at CS (this is the 
morphing stage). Finally, a forward projection is performed, resulting in the construction of 
the desired virtual view IS (this is the post-warping stage). 
The extreme images for frontal pose estimation are an original image and its reflection on a 
vertical mirror, as shown in Figure 8. 

Figure 8. Original image and its horizontal reflection 

Figure 9. Examples of application of the view-morphing technique 

Figure 9 shows the results of applying view-morphing to two pairs of extreme images. The 
intermediate images represent three different degrees of 3D rotation, obtained for values of 
s of 0.25, 0.5 and 0.75. The case s = 0.5 represents the frontal view pose. 

s = 0

s = 0.25
s = 0.5

s = 0.75 

s = 1 

s = 0 

s = 0.25 
s = 0.5 

s = 0.75 

s = 1 
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Observe in Figure 9 that while the original male image is not far from a frontal view, the 
original female image is quite far from a frontal pose. As a consequence, a significant part of 
the synthesized views of the male individual is subjectively correct, whereas for the female 
individual only a small vertical strip of the image is satisfactory. 
The aforementioned problem is due to the practical implementation of the method, where 
only a few corresponding points in the original and reflected image were established, 
namely located on the eyes, nose and mouth, so that a very inaccurate extrapolation results 
in the outer vertical regions of the images. 

4. Independent Component Analysis 

Image recognition has been the objective of numerous studies and investigations in several 
scientific disciplines, giving rise to many different approaches of which we will only briefly 
review a few. 
Given the large data volumes present in image analysis, it is necessary to simplify the data 
by reducing its dimensionality. This goal can be reached through varied robust and efficient 
techniques, carrying out linear transformations that transform the data to a new co-ordinate 
system. The following representation, a linear statistical model, describes the observed data 
( x ) through a mixing process (represented by matrix A ) that depends on the latent 
variables or sources s :

x As=  (1) 

However, in most problems the mixing matrix A  is unknown. So, the independent 
variables must be recovered by a separation process (W  is the separation matrix): 

s W x=  (2) 

There are a lot of available methods to use for this purpose, namely second and higher order 
methods. Principal Component Analysis (PCA) and Common Factor Analysis (CFA) are 
methods that approximate the intrinsic structure of image data up to its second order 
statistics, assuming data gaussianity, and thus find a data representation using only the 
information in the covariance matrix. These methods are easier to implement than the 
higher order techniques (Hyvärinen, 1999). 
Nevertheless, the goal of many signal processing problems (such as speech enhancement, 
telecommunications and medical signal processing) is to reduce the information redundancy 
by exploiting the statistical structure of the data that is beyond second order. Independent 
Component Analysis (ICA) and Projection Pursuit (PP) are techniques that examine 
thoroughly the higher-order statistical structure in the data. Addressing higher-order 
statistical dependencies, these methods allow the separation of multivariate signals into 
additive sub-components, assuming the mutual statistical independence of the non-gaussian 
source signals (blind source separation is a special case of this), which is a much stronger 
condition than uncorrelatedness. 
Many authors have been using PCA for face recognition (Bartlett et al., 1998; Bartlett et al., 
2002; Draper et al., 2003; Fortuna et al., 2002; Torres et al., 2000; Turk & Pentland, 1991). PCA 
consists in finding the principal components of the distribution of faces. These components 
are the eigenvectors of the covariance matrix of the database of facial images, each one 
accounting for a different amount of the variation among the images, such that the greatest 
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variance of the data lies on the first co-ordinate (first principal component), the second 
greatest variance on the second co-ordinate, and so on. Each face can then be represented as 
a linear combination of the eigenfaces (eigenvectors) or approximated using only the 
“largest” eigenfaces, ordered according to the associated eigenvalues. (PCA is useful as a 
pre-processing step for other methods, as it reduces data dimensionality by keeping higher-
order principal components and ignoring lower-order ones). 
Common Factor Analysis is used to explain variability among observed random variables, 
modelling those as linear combinations of a smaller number of unobserved random 
variables called factors. This method allows the identification of the relationships between 
data items and shows the similarities and differences between them. 
Simply stated, Projection Pursuit is a kind of statistical technique which involves finding the 
most “interesting” possible projections in multidimensional data. 
In the context of face recognition, ICA and NMF (Non-Negative Matrix Factorization) were 
analysed in (Rajapakse & Wyse, 2003). Both approaches yield a sparse representation of 
localized features (from human faces) and the authors discuss the strengths and weaknesses 
of each one. 
For use in face recognition, J. Yang et al. (Yang et al., 2004) developed a new Kernel Fisher 
Discriminant analysis (KFD) algorithm, called Complete KFD (CKFD), which is claimed to 
be simpler and more powerful than the existing KFD algorithms. 
There are also studies comparing the use of Spatial-Temporal Networks (STN) and 
Conditional Probability Networks (CPN) in human face recognition (A. Fernández-
Caballero et al., 2001). These authors evaluate both techniques by testing, without any kind 
of pre-processing, 16 image faces with 6 different poses and expressions for each one. The 
results obtained with CPN slightly outperform those with STN. 
A simple application of Independent Component Analysis (ICA) is the “cocktail party 
problem”, where the underlying speech signals (sources) are separated from the mixed data 
consisting of people talking simultaneously in a room (a blind source separation problem). 
Many authors (Bartlett et al., 1998; Bartlett et al., 2002; Draper et al., 2003; Fortuna et al., 
2002) have compared face recognition results under PCA and ICA, generally claiming that 
ICA provides better performance.  
Te-Won Lee and colleagues (Lee et al., 2000; Lee & Lewicki, 2002) apply ICA to find 
statistically significant structures in images construed by classes of image types, such as text 
overlapping with natural scenes, or the natural scene itself composed by diverse structures 
or textures. Developing what they called the ICA mixture model, the authors mould up the 
underlying image with a mixture model that can capture the different types of image 
textures in classes, categorizing the data into several mutually exclusive classes and 
assuming that the data in each class are generated by a linear combination of independent, 
non-Gaussian sources, as is the case with ICA. 
Jung et al. (Jung et al., 2001), in the context of basic brain research and medical diagnosis and 
treatment, apply ICA to analyse electroencephalographic (EEG), magnetoencephalographic 
(MEG) and functional magnetic resonance imaging (fMRI) recordings. Removing artefacts and 
separating/recovering sources of the brain signals from these recordings, ICA allows the 
identification of different types of generators of the EEG and its magnetic counterpart (the 
MEG) and can be used to analyse hemodynamic signals from the brain recorded by the fMRI. 
In general terms, ICA is a statistical method that finds the independent components (or 
sources) by maximizing the statistical independence of the estimated components, according 
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to equation (1). Mutual Information and non-gaussianity (measured by kurtosis or by 
approximations to negentropy) are popular criteria for measuring statistical independence 
of signals. Typical algorithms for ICA use centring and whitening as pre-processing steps in 
order to reduce the complexity of the problem for the actual iterative algorithm. The 
Newton method, the gradient ascent method, Infomax and FastICA are possible algorithms 
for ICA (Hyvärinen, 1999; Hyvärinen & Oja, 2000; Hyvärinen et al., 2001). 
The ICA representation can be constructed under architectures I and II. The former 
considers images as random variables and pixels as observations, the second treats pixels as 
random variables and images as observations (Bartlett et al., 1998; Bartlett et al., 2001). 
Architecture II produces more global features while architecture I produces spatially 
localized features that are mostly influenced by small parts of the image, leading to better 
object recognition results.  
Based on reasons given in (Sebastião, 2006b) and detailed in (Sebastião, 2006a), we 
constructed the ICA representation considering architecture I and implemented it by the 
FastICA algorithm, using ( ) = tanh( )g y y  as the objective function. The data, X , is first 
centred, i.e. made zero-mean, according to the following equation: 

= −cX X μ  (3) 

where μ  represents the data mean. 
Then the data is whitened (or sphered), meaning it is normalised with respect to the 
variance. The sphering matrix, V , is defined by the eigenvalues and eigenvectors matrices 
of the covariance matrix:  

1
2- T=V ED E  (4) 

 where E  is the eigenvectors and D  is the eigenvalues matrix of the covariance matrix .
The data matrix X  with zero-mean and covariance matrix equal to the identity matrix is 
obtained by the following transformation: 

CX=VX =VAs=As   (5) 

where A  is an orthogonal matrix. Thus, the problem of finding an arbitrary matrix A  in the 
model given by equation (1) is reduced to the simpler problem of finding an orthogonal 
matrix A . For convenience the data matrix X  will be renamed to X , in the sequel. 
The evaluation/comparison of the two image representations, one pertaining to the training 
set (the still database images) and the other to the test set (the view-morphed images 
extracted from the video sequence), was measured by the cosine distance, as suggested by 
Bartlett et al. (Bartlett et al., 1998): 

( ) ( ) ( )
( ) ( )

test train

test train

, 1
T

T

j i
d i j

j i
⋅

= −
X X
X X

 (6) 

where ( )test jX  and ( )train
T iX  represent the row vectors j  and i  of matrices testX  and train

TX ,
respectively. 
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5. Implementation and Results 

As previously stated, we constructed a database containing the still images of 22 subjects, 
who volunteered to participate in this work. In Figure 10 some of the still images are shown, 
while in Figure 11 the same images are already pre-processed. 
Figure 13 shows the frontal view synthesis of the test images (extracted from video) of the 
same subjects represented in Figure 10, while Figure 12 shows these images prior to the 
view-morphing transformation. 

Subject “ar001” Subject “ar004” Subject “ar006” Subject “ar013” 

Subject “ar015” Subject “ar018” Subject “ar019” Subject “ar022” 
Figure 10. Some database images, stored as the areas of interest of the original still images 

It is clear, particularly from the analysis of Figure 13, that the view-morphing only works 
well in the central vertical area of the face, as previously observed. This is due to the fact 
that the morphing is based on the actual image and its horizontal reflection, using only a 
few corresponding points, manually selected, located on the eyes, nose and mouth, thus 
forcing an inaccurate extrapolation in the outer vertical regions of the faces. This effect is 
much more noticeable when the deviation angle from frontal pose is larger. 

Subject “ar001” Subject “ar004” Subject “ar006” Subject “ar013” 

Subject “ar015” Subject “ar018” Subject “ar019” Subject “ar022” 
Figure 11. Same database images as in Figure 10, but after pre-processing 
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To evaluate the advantage of using view-morphing synthesis we compare the identification 
results obtained with the original images selected from the video sequence and those 
obtained with the images synthesized from the former ones. 

The identification results were evaluated using the following rate: 

100%correct
identification

total

NR
N

= ×  (7) 

This rate is the percent quotient between the number of images correctly identified and the 
total number of test images. The image face j  from the test set is correctly identified as the 
image face i  from the training set if the distance given by (6) is the minimum for all 'si  and 
sufficiently close to zero. 

Subject “ar001” Subject “ar004” Subject “ar006” Subject “ar013” 

Subject “ar015” Subject “ar018” Subject “ar019” Subject “ar022” 

Figure 12. Images extracted from video (same subjects as in Figure 10)  

Subject “ar001” Subject “ar004” Subject “ar006” Subject “ar013” 

Subject “ar015” Subject “ar018” Subject “ar019” Subject “ar022” 
Figure 13. Frontal view synthesis of the test images in Figure 12 
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To authenticate subjects we define a threshold for each individual using the distances of 
each face of subject i , selected from the video sequence, to all the representations in the 
training set. This threshold, for each individual, is given by: 

i i iT = μ − σ  (8) 

where

( ) ( )

( )

images imagesind indN NN N 2
k k i

k 1 j 1 k 1 j 1
i i

images ind images ind

d i, j d i, j

and
N N N .N 1
= = = =

− μ

μ = σ =
⋅ −

 (9) 

with imagesN 3=  (3 frames from a video fragment) and indN 22=  (total number of images 

in the database). 
Moreover, a subject is authenticated if the distances between the representation of at least 
two of the three selected test images and the subject’s training set representation are lower 
than the threshold value. 
Comparing the identification results obtained with the view-morphed images and those 
obtained with the original images from the video sequence, we get the following rates: 

 Video Images View-morphed 
 Images 

Identification rate - identificationR 32 100%
66

× 35 100%
66

×

Table 1. Identification rates obtained for the video images and the view-morphed images 

These results support the advantage of synthesizing frontal images with the view-morphing 
method, to achieve individual identification, even in the experimental case where the view-
morphing synthesis is hampered by the uneven location of the corresponding points. The 
authentication of a subject takes approximately 8 seconds with code far from optimised, 
including full training of the database and test (using a 2.8 GHz Pentium 4 processor with 
1.00 GB of RAM). 

With the aim of improving image quality as well as the recognition rate, image pre-
processing was applied to all images, using a photometric transformation and a geometric 
normalisation, as explained in section 2. Some of the pre-processed view-morphed images 
are shown below, in Figure 14. 

Table 2 compares the identification results obtained with the view-morphed images without 
and with pre-processing. 

 Without pre-
processing 

With pre- 
processing 

Identification rate - identificationR 35 100%
66

× 40 100%
66

×

Table 2. Identification rates obtained for the view-morphed images, with and without pre-
processing 
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Subject “ar001” Subject “ar004” Subject “ar006” Subject “ar013” 

Subject “ar015” Subject “ar018” Subject “ar019” Subject “ar022” 
Figure 14. Sample pre-processed and view-morphed images (video frames) 

The above results suggest that one should use the pre-processed view-morphed images to 
get the best identification results. This way, the database is formed by the pre-processed 
images in frontal and neutral pose, and every image extracted from the video fragments is 
also subject to the full pre-processing stage. 

5.1 Authentication of Clients 

To authenticate clients we use a simple criterion, namely: at least two of the three test 
images from a video fragment must be correctly identified (meaning that the identity 
announced by the client gives the correct match in the database – a distance smaller than the 
respective threshold). The thresholds that allow the decision are associated to each 
individual, as previously defined, so that if we want to add a new subject to the database or 
to remove another one it is necessary to perform a full training test in order to establish the 
new threshold value for each subject. 
Considering the above criterion, a full authentication test was conducted and an 
authentication rate (defined similarly to the identification rate) was computed in two 
situations: (a) test images without the geometric transformation step, and (b) test images 
with the geometric transformation step. Table 3 presents the results achieved. 

 Without geometric 
transformation

With geometric 
transformation

Authentication rate - 
authenticationR

15 100%
22

× 22 100%
22

×

Table 3. Authentication rates obtained for the full set of view-morphed images, with and 
without geometric transformation 

The results in Table 3 stress the importance of the geometric transformation. 
On the other hand, the fact that an entirely correct authentication rate could be achieved 
should not be overstated. In fact, the decision thresholds definition was designed for the 
best performance with the existing test images (22 × 3 = 66 images), but it is not guaranteed 
that similar results would be achieved for other test images. 
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Training Set 

             
ar001 ar004 ar015 ar018 ar019 ar022 

I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 
ar001 0,26 0,14 0,18 0,85 0,75 0,69 0,37 0,30 0,26 0,43 0,36 0,41 0,47 0,39 0,44 0,52 0,57 0,47 

ar002 0,55 0,56 0,61 0,71 0,66 0,67 0,64 0,64 0,61 0,83 0,82 0,62 0,92 0,80 0,85 0,97 0,99 0,64 

ar003 0,49 0,49 0,52 0,84 0,79 0,94 0,65 0,31 0,30 0,18 0,23 0,48 0,24 0,20 0,42 0,42 0,41 0,55 

ar004 0,55 0,60 0,58 0,31 0,32 0,19 0,81 1,00 0,95 0,84 0,70 0,61 0,59 0,73 0,45 0,53 0,45 0,46 

ar005 0,27 0,29 0,32 0,61 0,59 0,47 0,38 0,54 0,51 0,48 0,44 0,32 0,49 0,42 0,27 0,32 0,45 0,19 

ar006 0,33 0,33 0,43 0,54 0,47 0,37 0,61 0,62 0,60 0,71 0,67 0,57 0,55 0,54 0,31 0,49 0,49 0,32 

ar007 0,27 0,18 0,25 0,68 0,59 0,54 0,45 0,41 0,36 0,36 0,34 0,39 0,37 0,25 0,25 0,32 0,37 0,33 

ar008 0,60 0,60 0,63 0,31 0,33 0,37 0,71 0,71 0,63 0,54 0,46 0,64 0,54 0,42 0,30 0,42 0,48 0,32 

ar009 0,30 0,32 0,38 1,01 0,90 0,83 0,26 0,22 0,27 0,48 0,54 0,50 0,65 0,46 0,58 0,66 0,74 0,57 

ar010 0,35 0,26 0,35 0,88 0,76 0,69 0,49 0,32 0,28 0,49 0,42 0,49 0,52 0,41 0,44 0,59 0,65 0,49 

ar011 0,37 0,42 0,40 0,66 0,69 0,66 0,31 0,42 0,40 0,37 0,42 0,41 0,46 0,31 0,31 0,42 0,54 0,24 

ar012 0,32 0,38 0,29 0,77 0,67 0,74 0,54 0,56 0,51 0,48 0,48 0,33 0,42 0,44 0,47 0,46 0,48 0,38 

ar013 0,57 0,60 0,63 0,72 0,72 0,85 0,66 0,49 0,45 0,19 0,22 0,59 0,19 0,16 0,34 0,35 0,31 0,49 

ar014 0,42 0,45 0,46 0,96 0,85 0,99 0,47 0,32 0,33 0,27 0,34 0,43 0,42 0,32 0,58 0,53 0,57 0,65 

ar015 0,47 0,43 0,52 1,16 1,08 1,03 0,28 0,08 0,15 0,39 0,52 0,46 0,65 0,49 0,62 0,61 0,76 0,67 

ar016 0,37 0,30 0,33 0,98 0,96 0,84 0,20 0,22 0,18 0,40 0,41 0,46 0,54 0,38 0,48 0,60 0,68 0,50 

ar017 0,26 0,23 0,22 0,81 0,65 0,67 0,45 0,41 0,39 0,36 0,32 0,32 0,41 0,35 0,42 0,37 0,46 0,44 

ar018 0,53 0,51 0,52 0,89 0,86 0,98 0,50 0,29 0,24 0,09 0,11 0,45 0,23 0,16 0,40 0,33 0,37 0,52 

ar019 0,54 0,50 0,53 0,66 0,64 0,82 0,60 0,42 0,39 0,18 0,23 0,51 0,24 0,13 0,36 0,32 0,35 0,49 

ar020 0,45 0,45 0,43 0,86 0,80 0,91 0,57 0,36 0,33 0,29 0,29 0,51 0,31 0,27 0,47 0,46 0,44 0,55 

ar021 0,32 0,27 0,30 0,52 0,44 0,41 0,42 0,65 0,62 0,53 0,57 0,29 0,57 0,47 0,30 0,30 0,42 0,22 

Te
st

 S
et

 

ar022 0,45 0,42 0,44 0,63 0,62 0,67 0,53 0,43 0,44 0,31 0,31 0,44 0,37 0,25 0,33 0,24 0,36 0,20 

T= μ-  0,28 0,50 0,27 0,27 0,26 0,32 
Table 4. Distances among the ICA representations of the view-morphed test images of some 
subjects and the representations of the training set formed by the database pre-processed 
images 
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However, note also that, in practice, it is possible to extract much more than only three 
images from each video sequence, which will possibly increase the number of correct 
matches. In fact, it is in the essence of the adopted approach that the increased number of 
test images, while necessarily generating many false negatives which are un-consequential, 
will augment the probability of detecting a few true positives in the case where the 
identification should occur.
Table 4 shows the distances between the ICA representations of the view-morphed images 
of some subjects and the representations of the training set formed by the database pre-
processed images. 
The analysis of the distances between all of the ICA representations of the test set and all the 
representations of the training set, led us to verify that, with a control system constructed 
under the conditions previously established, all the clients are correctly authenticated, 
giving an authentication rate of 100%. 

5.2 Rejection of impostors 

We have also performed a sort of “leave-one-out” tests to evaluate the capacity and the 
accuracy that this system could have to automatically reject the access of impostors (subjects 
announcing themselves with a false identity). This type of tests consists on the construction 
of a training set with n 1−  subjects (in our case, 21), and then evaluating the differences and 
similarities between the ICA representations of this set and the representations of the test set 
formed by the images of the subject that was left out. This procedure is repeated until all the 
individuals of the database have been left out. Considering that subject j  is left out, a 
training set with the remaining subjects is constructed. The distances between the ICA 
representations of the j  subject images and the representations of the training set allows the 
definition of a threshold given by: 

2i i iT = μ − σ  (10) 

where iμ  and iσ  can be obtained by using equation (9) with imagesN 3=  and indN 21= .

In this way, the impostors will be (wrongly) authenticated if the distances between the 
representation of at least two of the three selected images and a representation of any 
subject on the training set are lower than the threshold value given by equation (10). Table 5 
shows the results obtained. 
With these results we can conclude that, using the threshold given by equation (10), no 
impostor can gain access. The previously mentioned computer takes about 12 seconds to 
construct the training set and to evaluate an impostor authentication. These results are valid 
considering each one of the 22 subjects as an impostor and the training set formed by the 
other 21. Aside from these results, it can also be observed that considering these 21 training 
sets and the threshold defined by equation (8), all the clients (the 21 individuals that formed 
the training sets) are correctly authenticated. 
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Training Set 
      

ar001 ar004 ar015 ar018 ar019 ar022 
I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 

ar001      0,78 0,70 0,61 0,35 0,25 0,23 0,42 0,34 0,41 0,47 0,38 0,44 0,52 0,57 0,47 

ar002 0,55 0,56 0,60 0,65 0,62 0,60 0,61 0,59 0,58 0,82 0,81 0,62 0,92 0,80 0,85 0,98 0,99 0,65 

ar003 0,49 0,49 0,51 0,75 0,72 0,83 0,60 0,25 0,25 0,17 0,20 0,48 0,24 0,19 0,42 0,42 0,41 0,55 

ar004 0,55 0,60 0,57       0,77 0,94 0,90 0,83 0,69 0,61 0,59 0,74 0,45 0,53 0,45 0,46 

ar005 0,27 0,29 0,29 0,54 0,53 0,39 0,35 0,49 0,47 0,47 0,42 0,32 0,49 0,41 0,27 0,32 0,45 0,18 

ar006 0,33 0,32 0,42 0,47 0,43 0,29 0,58 0,56 0,56 0,71 0,65 0,57 0,55 0,53 0,31 0,49 0,49 0,31 

ar007 0,27 0,17 0,23 0,61 0,54 0,46 0,42 0,35 0,32 0,36 0,31 0,39 0,37 0,24 0,25 0,32 0,37 0,33 

ar008 0,60 0,60 0,63 0,24 0,29 0,29 0,67 0,65 0,59 0,53 0,44 0,64 0,54 0,41 0,30 0,42 0,48 0,31 

ar009 0,30 0,31 0,36 0,94 0,84 0,75 0,24 0,17 0,24 0,48 0,52 0,50 0,65 0,45 0,58 0,66 0,74 0,57 

ar010 0,35 0,25 0,33 0,81 0,71 0,62 0,46 0,27 0,25 0,48 0,40 0,49 0,52 0,40 0,44 0,59 0,65 0,49 

ar011 0,37 0,42 0,39 0,58 0,63 0,57 0,28 0,36 0,36 0,37 0,40 0,41 0,46 0,30 0,31 0,42 0,54 0,24 

ar012 0,32 0,38 0,26 0,69 0,61 0,65 0,50 0,51 0,46 0,48 0,46 0,33 0,42 0,43 0,47 0,46 0,48 0,38 

ar013 0,57 0,60 0,62 0,64 0,66 0,76 0,62 0,43 0,42 0,18 0,20 0,59 0,19 0,14 0,34 0,34 0,31 0,49 

ar014 0,42 0,44 0,45 0,88 0,79 0,90 0,43 0,26 0,29 0,27 0,31 0,43 0,42 0,31 0,58 0,53 0,57 0,66 

ar015 0,47 0,43 0,50 1,08 1,02 0,94      0,38 0,50 0,46 0,65 0,49 0,62 0,62 0,76 0,68 

ar016 0,37 0,29 0,31 0,90 0,90 0,75 0,18 0,17 0,14 0,39 0,39 0,46 0,54 0,37 0,48 0,60 0,69 0,50 

ar017 0,26 0,22 0,20 0,75 0,61 0,59 0,42 0,36 0,36 0,35 0,30 0,32 0,40 0,34 0,42 0,37 0,46 0,44 

ar018 0,53 0,50 0,51 0,80 0,80 0,88 0,46 0,23 0,20       0,22 0,15 0,40 0,33 0,37 0,52 

ar019 0,54 0,49 0,51 0,60 0,59 0,74 0,57 0,37 0,35 0,17 0,21 0,51      0,32 0,35 0,49 

ar020 0,45 0,44 0,41 0,78 0,74 0,82 0,54 0,31 0,29 0,29 0,27 0,51 0,31 0,26 0,47 0,46 0,44 0,55 

ar021 0,32 0,26 0,28 0,44 0,39 0,32 0,39 0,59 0,58 0,53 0,55 0,29 0,57 0,47 0,30 0,30 0,42 0,22 

Te
st

 S
et

 

ar022 0,45 0,42 0,43 0,57 0,57 0,59 0,50 0,38 0,40 0,31 0,29 0,44 0,37 0,24 0,33       

T= μ-2  0,17 0,29 0,08 0,13 0,11 0,17 

Table 5. Distances among ICA representations of view-morphed images of some subjects 
and of the training set formed by the pre-processed images of the remaining subjects 
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6. Conclusion 

This work addressed the applicability of Independent Component Analysis to face 
recognition through image analysis, namely to the facial authentication problem. 
We defined and tested the main functionality of a potentially automatic vision system. In 
fact, some aspects of the process have been performed manually, but it is well known and 
the literature clearly documents successful automated methods for those operations. 
The main purpose of the system is to validate the clients’ access to restricted areas and to 
avoid the entrance of impostors, using as few restrictions on the environment as possible, 
and causing virtually no discomfort on the clients, both by not forcing them to multiple 
image acquisitions in the database construction phase, and by allowing them to walk 
naturally (with no specific pose for image capture) in the direction of the entrance. 
The results obtained have demonstrated the usefulness of the image pre-processing steps 
described and of the view-morphing techniques to generate virtual frontal views from 
slightly lateral images of the individuals. 
The identification of clients was 100% accurate, although it can be observed from the tables 
in the text that the robustness of the method is not high, as there is a significant number of 
“near” false-positives. 
On the other hand, the tests for the rejection of impostors have also proved that this most 
important goal could be successfully achieved for the data available. 
Nevertheless, because the two experiments were conducted separately, there are limits to 
the usability of the results, as is implied by the fact that the computation of the thresholds 
for identification and for rejection resulted different (that is, one and two standard 
deviations from mean). This indicates that further work must be done to counter this 
obvious limitation. 
One must take into consideration, however, that the building of the database was not 
thoroughly addressed, as timing constraints in the development phase of the work forced 
this process to be done very fast. The experience in analysing the results shows that test 
images of much higher quality can be acquired with only a minor investment in using one 
or two standard video cameras, and in setting up an adequate illumination and 
environment conditioning system, in particular to avoid specular reflections in the field of 
view.
Also, the view-morphing point-correspondence problem was solved by manually setting the 
correspondences and, as previously pointed out, using only a small number of feature 
points located on a relatively narrow vertical strip of the faces. More accurate methods for 
matching pairs of points in an image and its reflection can be used in an automatic mode, 
not only for feature points but also for other points apart from the vertical symmetry line of 
the face, using epipolar geometry. 
As a final conclusion, one can say that the results achieved so far are quite encouraging and 
that the ideas for improving the methodology are well founded and promise a good 
outcome.
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1. Human Face and Its Expression 

The human face is the site for major sensory inputs and major communicative outputs. It 
houses the majority of our sensory apparatus as well as our speech production apparatus.  It 
is used to identify other members of our species, to gather information about age, gender, 
attractiveness, and personality, and to regulate conversation by gazing or nodding. 
Moreover, the human face is our preeminent means of communicating and understanding 
somebody’s affective state and intentions on the basis of the shown facial expression 
(Keltner & Ekman, 2000). Thus, the human face is a multi-signal input-output 
communicative system capable of tremendous flexibility and specificity (Ekman & Friesen, 
1975). In general, the human face conveys information via four kinds of signals. 
(a) Static facial signals represent relatively permanent features of the face, such as the bony 

structure, the soft tissue, and the overall proportions of the face. These signals 
contribute to an individual’s appearance and are usually exploited for person 
identification. 

(b) Slow facial signals represent changes in the appearance of the face that occur gradually 
over time, such as development of permanent wrinkles and changes in skin texture. 
These signals can be used for assessing the age of an individual. Note that these signals 
might diminish the distinctness of the boundaries of the facial features and impede 
recognition of the rapid facial signals. 

(c) Artificial signals are exogenous features of the face such as glasses and cosmetics. These 
signals provide additional information that can be used for gender recognition. Note 
that these signals might obscure facial features or, conversely, might enhance them. 

(d) Rapid facial signals represent temporal changes in neuromuscular activity that may lead 
to visually detectable changes in facial appearance, including blushing and tears. These 
(atomic facial) signals underlie facial expressions.

All four classes of signals contribute to person identification, gender recognition, 
attractiveness assessment, and personality prediction. In Aristotle’s time, a theory was 
proposed about mutual dependency between static facial signals (physiognomy) and 
personality: “soft hair reveals a coward, strong chin a stubborn person, and a smile a happy 
person”. Today, few psychologists share the belief about the meaning of soft hair and strong 
chin, but many believe that rapid facial signals (facial expressions) communicate emotions 
(Ekman & Friesen, 1975; Ambady & Rosenthal, 1992; Keltner & Ekman, 2000) and 
personality traits (Ambady & Rosenthal, 1992). More specifically, types of messages 
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communicated by rapid facial signals include the following (Ekman & Friesen, 1969; Pantic 
et al., 2006): 
(a) affective / attitudinal states and moods,1 e.g., joy, fear, disbelief, interest, dislike, stress, 
(b) emblems, i.e., culture-specific communicators like wink, 
(c) manipulators, i.e., self-manipulative actions like lip biting and yawns, 
(d) illustrators, i.e., actions accompanying speech such as eyebrow flashes, 
(e) regulators, i.e., conversational mediators such as the exchange of a look, head nodes 

and smiles. 

1.1 Applications of Facial Expression Measurement Technology  

Given the significant role of the face in our emotional and social lives, it is not surprising 
that the potential benefits from efforts to automate the analysis of facial signals, in particular 
rapid facial signals, are varied and numerous (Ekman et al., 1993), especially when it comes 
to computer science and technologies brought to bear on these issues (Pantic, 2006).  
As far as natural interfaces between humans and computers (PCs / robots / machines) are 
concerned, facial expressions provide a way to communicate basic information about needs 
and demands to the machine. In fact, automatic analysis of rapid facial signals seem to have 
a natural place in various vision sub-systems, including automated tools for tracking gaze 
and focus of attention, lip reading, bimodal speech processing, face / visual speech 
synthesis, and face-based command issuing. Where the user is looking (i.e., gaze tracking) 
can be effectively used to free computer users from the classic keyboard and mouse. Also, 
certain facial signals (e.g., a wink) can be associated with certain commands (e.g., a mouse 
click) offering an alternative to traditional keyboard and mouse commands. The human 
capability to “hear” in noisy environments by means of lip reading is the basis for bimodal 
(audiovisual) speech processing that can lead to the realization of robust speech-driven 
interfaces. To make a believable “talking head” (avatar) representing a real person, 
recognizing the person’s facial signals and making the avatar respond to those using 
synthesized speech and facial expressions is important. Combining facial expression 
spotting with facial expression interpretation in terms of labels like “did not understand”, 
“disagree”, “inattentive”, and “approves” could be employed as a tool for monitoring 
human reactions during videoconferences, web-based lectures, and automated tutoring 
sessions. Attendees’ facial expressions will inform the speaker (teacher) of the need to adjust 
the (instructional) presentation. 
The focus of the relatively recently initiated research area of affective computing lies on 
sensing, detecting and interpreting human affective states and devising appropriate means 
for handling this affective information in order to enhance current HCI designs (Picard, 
1997). The tacit assumption is that in many situations human-machine interaction could be 
improved by the introduction of machines that can adapt to their users (think about 
computer-based advisors, virtual information desks, on-board computers and navigation 
systems, pacemakers, etc.). The information about when the existing processing should be 
                                                                
1 In contrast to traditional approach, which lists only (basic) emotions as the first type of messages 
conveyed by rapid facial signals (Ekman & Friesen, 1969), we treat this type of messages as being 
correlated not only to emotions but to other attitudinal states, social signals, and moods as well. We do 
so becuase cues identifying attitudinal states like interest and boredom, to those underlying moods, and 
to those disclosing social signaling like empathy and antipathy are all visualy detectable from 
someone’s facial expressions (Pantic et al., 2005, 2006).  



Machine Analysis of Facial Expressions 379

adapted, the importance of such an adaptation, and how the processing/reasoning should 
be adapted, involves information about the how the user feels (e.g. confused, irritated, 
frustrated, interested). As facial expressions are our direct, naturally preeminent means of 
communicating emotions, machine analysis of facial expressions forms an indispensable 
part of affective HCI designs (Pantic & Rothkrantz, 2003; Maat & Pantic, 2006). 
Automatic assessment of boredom, fatigue, and stress, will be highly valuable in situations 
where firm attention to a crucial but perhaps tedious task is essential, such as aircraft and air 
traffic control, space flight and nuclear plant surveillance, or simply driving a ground 
vehicle like a truck, train, or car. If these negative affective states could be detected in a 
timely and unobtrusive manner, appropriate alerts could be provided, preventing many 
accidents from happening. Automated detectors of fatigue, depression and anxiety could 
form another step toward personal wellness technologies. Automating such assessment 
becomes increasingly important in an aging population to prevent medical practitioners 
from becoming overburdened. 
Monitoring and interpreting facial signals can also provide important information to 
lawyers, police, security, and intelligence agents regarding deception and attitude. 
Automated facial reaction monitoring could form a valuable tool in law enforcement, as 
now only informal interpretations are typically used. Systems that can recognize friendly 
faces or, more importantly, recognize unfriendly or aggressive faces and inform the 
appropriate authorities represent another application of facial measurement technology. 

1.2 Outline of the Chapter 

This chapter introduces recent advances in machine analysis of facial expressions. It first 
surveys the problem domain, describes the problem space, and examines the state of the art. 
Then it describes several techniques used for automatic facial expression analysis that were 
recently proposed by the authors. Four areas will receive particular attention: face detection, 
facial feature extraction, facial muscle action detection, and emotion recognition. Finally, 
some of the scientific and engineering challenges are discussed and recommendations for 
achieving a better facial expression measurement technology are outlined.  

2. Automatic Facial Expression Analysis: Problem Space and State of the Art 

Because of its practical importance explained above and the theoretical interest of cognitive 
and medical scientists (Ekman et al., 1993; Young, 1998; Cohen, 2006), machine analysis of 
facial expressions attracted the interest of many researchers. However, although humans 
detect and analyze faces and facial expressions in a scene with little or no effort, 
development of an automated system that accomplishes this task is rather difficult. 

2.1 Level of Description: Action Units and Emotions 

Two main streams in the current research on automatic analysis of facial expressions 
consider facial affect (emotion) detection and facial muscle action (action unit) detection. For 
exhaustive surveys of the related work, readers are referred to: Samal & Iyengar (1992) for 
an overview of early works, Tian et al. (2005) and Pantic (2006) for surveys of techniques for 
detecting facial muscle actions, and Pantic and Rothkrantz (2000, 2003) for surveys of facial 
affect recognition methods.  
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Figure 1. Prototypic facial expressions of six basic emotions: anger, surprise, sadness, 
disgust, fear, and happiness 

These two streams stem directly from two major approaches to facial expression 
measurement in psychological research (Cohn, 2006): message and sign judgment. The aim 
of message judgment is to infer what underlies a displayed facial expression, such as affect 
or personality, while the aim of sign judgment is to describe the “surface” of the shown 
behavior, such as facial movement or facial component shape. Thus, a brow furrow can be 
judged as “anger” in a message-judgment and as a facial movement that lowers and pulls 
the eyebrows closer together in a sign-judgment approach. While message judgment is all 
about interpretation, sign judgment attempts to be objective, leaving inference about the 
conveyed message to higher order decision making.  
As indicated by Cohn (2006), most commonly used facial expression descriptors in message 
judgment approaches are the six basic emotions (fear, sadness, happiness, anger, disgust, 
surprise; see Figure 1), proposed by Ekman and discrete emotion theorists, who suggest that 
these emotions are universally displayed and recognized from facial expressions (Keltner & 
Ekman, 2000). This trend can also be found in the field of automatic facial expression 
analysis. Most facial expressions analyzers developed so far target human facial affect 
analysis and attempt to recognize a small set of prototypic emotional facial expressions like 
happiness and anger (Pantic et al., 2005a). Automatic detection of the six basic emotions in 
posed, controlled displays can be done with reasonably high accuracy. However detecting 
these facial expressions in the less constrained environments of real applications is a much 
more challenging problem which is just beginning to be explored. There have also been a 
few tentative efforts to detect cognitive and psychological states like interest (El Kaliouby & 
Robinson, 2004), pain (Bartlett et al., 2006), and fatigue (Gu & Ji, 2005). 
In sign judgment approaches (Cohn & Ekman, 2005), a widely used method for manual 
labeling of facial actions is the Facial Action Coding System (FACS; Ekman & Friesen, 1978, 
Ekman et al., 2002). FACS associates facial expression changes with actions of the muscles 
that produce them. It defines 44 different action units (AUs), which are considered to be the 
smallest visually discernable facial movements (e.g, see Figure 2). FACS also provides the 
rules for recognition of AUs’ temporal segments (onset, apex and offset) in a face video. 
Using FACS, human coders can manually code nearly any anatomically possible facial 
display, decomposing it into the AUs and their temporal segments that produced the 
display. As AUs are independent of interpretation, they can be used for any higher order 
decision making process including recognition of basic emotions (Ekman et al., 2002), 
cognitive states like (dis)agreement and puzzlement (Cunningham et al., 2004), 
psychological states like suicidal depression (Heller & Haynal, 1997) or pain (Williams, 2002; 
Craig et al., 1991), and social signals like emblems (i.e., culture-specific interactive signals 
like wink), regulators (i.e., conversational mediators like nod and smile), and illustrators 
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(i.e., cues accompanying speech like raised eyebrows) (Ekman & Friesen, 1969). Hence, AUs 
are very suitable to be used as mid-level parameters in automatic facial behavior analysis, as 
the thousands of anatomically possible expressions (Cohn & Ekman, 2005) can be described 
as combinations of 5 dozens of AUs and can be mapped to any higher order facial display 
interpretation.

Figure 2(a). Examples of facial action units (AUs) and their combinations defined in FACS 

Figure 2(b). Example FACS codes for a prototypical expression of fear. FACS provides a 5-
point intensity scale (A-E) to describe AU intensity variation; e.g., 26B stands for a weak jaw 
drop

FACS provides an objective and comprehensive language for describing facial expressions 
and relating them back to what is known about their meaning from the behavioral science 
literature. Because it is comprehensive, FACS also allows for the discovery of new patterns 
related to emotional or situational states. For example, what are the facial behaviors 
associated with driver fatigue? What are the facial behaviors associated with states that are  
critical for automated tutoring systems, such as interest, boredom, confusion, or 
comprehension? Without an objective facial measurement system, we have a chicken- and-
egg problem. How do we build systems to detect comprehension, for example, when we 
don’t know for certain what faces do when students are comprehending? Having subjects 
pose states such as comprehension and confusion is of limited use since there is a great deal 
of evidence that people do different things with their faces when posing versus during a 
spontaneous experience (Ekman, 1991, 2003). Likewise, subjective labeling of expressions 
has also been shown to be less reliable than objective coding for finding relationships 
between facial expression and other state variables. Some examples of this include the 
failure of subjective labels to show associations between smiling and other measures of 
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happiness, and it was not until FACS coding was introduced that a strong relationship was 
found, namely that expressions containing an eye region movement in addition to the 
mouth movement (AU12+6) were correlated with happiness, but expressions just containing 
the mouth smile (AU12) did not (Ekman, 2003). Another example where subjective 
judgments of expression failed to find relationships which were later found with FACS is 
the failure of naive subjects to differentiate deception and intoxication from facial display, 
whereas reliable differences were shown with FACS (Sayette et al., 1992). Research based 
upon FACS has also shown that facial actions can show differences between those telling the 
truth and lying at a much higher accuracy level than naive subjects making subjective 
judgments of the same faces (Frank & Ekman, 2004).  
Objective coding with FACS is one approach to the problem of developing detectors for 
state variables such as comprehension and confusion, although not the only one. Machine 
learning of classifiers from a database of spontaneous examples of subjects in these states is 
another viable approach, although this carries with it issues of eliciting the state, and 
assessment of whether and to what degree the subject is experiencing the desired state. 
Experiments using FACS face the same challenge, although computer scientists can take 
advantage of a large body of literature in which this has already been done by behavioral 
scientists. Once a database exists, however, in which a state has been elicited, machine 
learning can be applied either directly to image primitives, or to facial action codes. It is an 
open question whether intermediate representations such as FACS are the best approach to 
recognition, and such questions can begin to be addressed with databases such as the ones 
described in this chapter. Regardless of which approach is more effective, FACS provides a 
general purpose representation that can be useful for many applications. It would be time 
consuming to collect a new database and train application-specific detectors directly from 
image primitives for each new application. The speech recognition community has 
converged on a strategy that combines intermediate representations from phoneme 
detectors plus context-dependent features trained directly from the signal primitives, and 
perhaps a similar strategy will be effective for automatic facial expression recognition.  
It is not surprising, therefore, that automatic AU coding in face images and face image 
sequences attracted the interest of computer vision researchers. Historically, the first 
attempts to encode AUs in images of faces in an automatic way were reported by Bartlett et 
al. (1996), Lien et al. (1998), and Pantic et al. (1998). These three research groups are still the 
forerunners in this research field. The focus of the research efforts in the field was first on 
automatic recognition of AUs in either static face images or face image sequences picturing 
facial expressions produced on command. Several promising prototype systems were 
reported that can recognize deliberately produced AUs in either (near-) frontal view face 
images (Bartlett et al., 1999; Tian et al., 2001; Pantic & Rothkrantz, 2004a) or profile view face 
images (Pantic & Rothkrantz, 2004a; Pantic & Patras, 2006). These systems employ different 
approaches including expert rules and machine learning methods such as neural networks, 
and use either feature-based image representations (i.e., use geometric features like facial 
points; see section 5) or appearance-based image representations (i.e., use texture of the 
facial skin including wrinkles and furrows; see section 6). 
One of the main criticisms that these works received from both cognitive and computer 
scientists, is that the methods are not applicable in real-life situations, where subtle changes 
in facial expression typify the displayed facial behavior rather than the exaggerated changes 
that typify posed expressions. Hence, the focus of the research in the field started to shift to 
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automatic AU recognition in spontaneous facial expressions (produced in a reflex-like 
manner). Several works have recently emerged on machine analysis of AUs in spontaneous 
facial expression data (Cohn et al., 2004; Bartlett et al., 2003, 2005, 2006; Valstar et al., 2006). 
These methods employ probabilistic, statistical, and ensemble learning techniques, which 
seem to be particularly suitable for automatic AU recognition from face image sequences 
(Tian et al., 2005; Bartlett et al., 2006).  

2.2 Posed vs. Spontaneous Facial Displays 

The importance of making a clear distinction between spontaneous and deliberately 
displayed facial behavior for developing and testing computer vision systems becomes 
apparent when we examine the neurological substrate for facial expression. There are two 
distinct neural pathways that mediate facial expressions, each one originating in a different 
area of the brain. Volitional facial movements originate in the cortical motor strip, whereas 
the more involuntary, emotional facial actions, originate in the subcortical areas of the brain 
(e.g. Meihlke, 1973). Research documenting these differences was sufficiently reliable to 
become the primary diagnostic criteria for certain brain lesions prior to modern imaging 
methods (e.g. Brodal, 1981.) The facial expressions mediated by these two pathways have 
differences both in which facial muscles are moved and in their dynamics (Ekman, 1991; 
Ekman & Rosenberg, 2005). Subcortically initiated facial expressions (the involuntary group) 
are characterized by synchronized, smooth, symmetrical, consistent, and reflex-like facial 
muscle movements whereas cortically initiated facial expressions are subject to volitional 
real-time control and tend to be less smooth, with more variable dynamics (Rinn, 1984; 
Ekman & Rosenberg, 2005). However, precise characterization of spontaneous expression 
dynamics has been slowed down by the need to use non-invasive technologies (e.g. video), 
and the difficulty of manually coding expression intensity frame-by-frame. Thus the 
importance of video based automatic coding systems. 
Furthermore, the two pathways appear to correspond to the distinction between biologically 
driven versus socially learned facial behavior (Bartlett et al., 2006). Researchers agree, for the 
most part, that most types of facial expressions are learned like language, displayed under 
conscious control, and have culturally specific meanings that rely on context for proper 
interpretation (Ekman, 1989). Thus, the same lowered eyebrow expression that would 
convey “uncertainty” in North America might convey ”no” in Borneo (Darwin, 1872/1998). 
On the other hand, there are a limited number of distinct facial expressions of emotion that 
appear to be biologically wired, produced involuntarily, and whose meanings are similar 
across all cultures; for example, anger, contempt, disgust, fear, happiness, sadness, and 
surprise (see section 2.1). There are also spontaneous facial movements that accompany 
speech. These movements are smooth and ballistic, and are more typical of the subcortical 
system associated with spontaneous expressions (e.g. Rinn, 1984). There is some evidence 
that arm-reaching movements transfer from one motor system when they require planning 
to another when they become automatic, with different dynamic characteristics between the 
two (Torres & Anderson, 2006). It is unknown whether the same thing happens with learned 
facial displays. An automated system would enable exploration of such research questions.  
As already mentioned above, few works have been recently reported on machine analysis of 
spontaneous facial expression data (Cohn et al., 2004; Bartlett et al., 2003, 2005, 2006; Valstar 
et al., 2006). Except of the method for discerning genuine from fake facial expressions of 
pain described in section 7.3, the only reported effort to automatically discern spontaneous 
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from deliberately displayed facial behavior is that of Valstar et al. (2006). It concerns an 
automated system for distinguishing posed from spontaneous brow actions (i.e. AU1, AU2, 
AU4, and their combinations). Conforming with the research findings in psychology, the 
system was built around characteristics of temporal dynamics of brow actions and employs 
parameters like speed, intensity, duration, and the occurrence order of brow actions to 
classify brow actions present in a video as either deliberate or spontaneous facial actions. 

2.3 Facial Expression Configuration and Dynamics 

Automatic recognition of facial expression configuration (in terms of AUs constituting the 
observed expression) has been the main focus of the research efforts in the field. However, 
both the configuration and the dynamics of facial expressions (i.e., the timing and the 
duration of various AUs) are important for interpretation of human facial behavior. The 
body of research in cognitive sciences, which argues that the dynamics of facial expressions 
are crucial for the interpretation of the observed behavior, is ever growing (Basilli, 1978; 
Russell & Fernandez-Dols, 1997; Ekman & Rosenberg, 2005; Ambadar et al., 2005). Facial 
expression temporal dynamics are essential for categorization of complex psychological 
states like various types of pain and mood (Williams, 2002). They represent a critical factor 
for interpretation of social behaviors like social inhibition, embarrassment, amusement, and 
shame (Keltner, 1997; Costa t al., 2001). They are also a key parameter in differentiation 
between posed and spontaneous facial displays (Ekman & Rosenberg, 2005). For instance, 
spontaneous smiles are smaller in amplitude, longer in total duration, and slower in onset 
and offset time than posed smiles (e.g., a polite smile) (Ekman, 2003). Another study showed 
that spontaneous smiles, in contrast to posed smiles, can have multiple apexes (multiple 
rises of the mouth corners – AU12) and are accompanied by other AUs that appear either 
simultaneously with AU12 or follow AU12 within 1s (Cohn & Schmidt, 2004). Similarly, it 
has been shown that the differences between spontaneous and deliberately displayed brow 
actions (AU1, AU2, AU4) is in the duration and the speed of onset and offset of the actions 
and in the order and the timing of actions’ occurrences (Valstar et al. 2006).   
In spite of these findings, the vast majority of the past work in the field does not take 
dynamics of facial expressions into account when analyzing shown facial behavior. Some of 
the past work in the field has used aspects of temporal dynamics of facial expression such as 
the speed of a facial point displacement or the persistence of facial parameters over time 
(e.g., Zhang & Ji, 2005; Tong et al., 2006; Littlewort et al., 2006). However, only three recent 
studies analyze explicitly the temporal dynamics of facial expressions. These studies explore 
automatic segmentation of AU activation into temporal segments (neutral, onset, apex, 
offset) in frontal- (Pantic & Patras, 2005; Valstar & Pantic, 2006a) and profile-view (Pantic & 
Patras, 2006) face videos. The works of Pantic & Patras (2005, 2006) employ rule-based 
reasoning to encode AUs and their temporal segments. In contrast to biologically inspired 
learning techniques (such as neural networks), which emulate human unconscious problem 
solving processes, rule-based techniques are inspired by human conscious problem solving 
processes. However, studies in cognitive sciences, like the one on “thin slices of behavior” 
(Ambady & Rosenthal, 1992), suggest that facial displays are neither encoded nor decoded 
at an intentional, conscious level of awareness. They may be fleeting changes in facial 
appearance that we still accurately judge in terms of emotions or personality even from very 
brief observations. In turn, this finding suggests that learning techniques inspired by human 
unconscious problem solving may be more suitable for facial expression recognition than 
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those inspired by human conscious problem solving (Pantic et al., 2005a). Experimental 
evidence supporting this assumption for the case of prototypic emotional facial expressions 
was recently reported (Valstar & Pantic, 2006b). Valstar & Pantic (2006a) also presented 
experimental evidence supporting this assumption for the case of expression configuration 
detection and its temporal activation model (neutral  onset  apex  offset) recognition.  

2.4 Facial Expression Intensity, Intentionality and Context Dependency 

Facial expressions can vary in intensity. By intensity we mean the relative degree of change 
in facial expression as compared to a relaxed, neutral facial expression. In the case of a smile, 
for example, the intensity of the expression can be characterized as the degree of upward 
and outward movement of the mouth corners, that is, as the degree of perceivable activity in 
the Zygomaticus Major muscle (AU12) away from its resting, relaxed state (Duchenne, 
1862/1990; Ekman & Friesen, 1978). It has been experimentally shown that the expression 
decoding accuracy and the perceived intensity of the underlying affective state vary linearly 
with the physical intensity of the facial display (Hess et al., 1997). Hence, explicit analysis of 
expression intensity variation is very important for accurate expression interpretation, and 
is also essential to the ability to distinguish between spontaneous and posed facial behavior 
discussed in the previous sections. While FACS provides a 5-point intensity scale to describe 
AU intensity variation and enable manual quantification of AU intensity (Ekman et al. 2002; 
Figure 2(b)), fully automated methods that accomplish this task are yet to be developed. 
However, first steps toward this goal have been made. Some researchers described changes 
in facial expression that could be used to represent intensity variation automatically (Essa & 
Pentland, 1997; Kimura & Yachida, 1997; Lien et al., 1998), and an effort toward implicit 
encoding of intensity was reported by Zhang & Ji (2005). Automatic coding of intensity 
variation was explicitly compared to manual coding in Bartlett et al. (2003a; 2006). They 
found that the distance to the separating hyperplane in their learned classifiers correlated 
significantly with the intensity scores provided by expert FACS coders.   
Rapid facial signals do not usually convey exclusively one type of messages but may convey 
any of the types (e.g., blinking is usually a manipulator but it may be displayed in an 
expression of confusion). It is crucial to determine which type of message a shown facial 
expression communicates since this influences the interpretation of it (Pantic & Rothkrantz, 
2003). For instance, squinted eyes may be interpreted as sensitivity of the eyes to bright light 
if this action is a reflex (a manipulator), as an expression of disliking if this action has been 
displayed when seeing someone passing by (affective cue), or as an illustrator of friendly 
anger on friendly teasing if this action has been posed (in contrast to being unintentionally 
displayed) during a chat with a friend, to mention just a few possibilities. To interpret an 
observed facial signal, it is important to know the context in which the observed signal has 
been displayed – where the expresser is (outside, inside, in the car, in the kitchen, etc.), what 
his or her current task is, are other people involved, and who the expresser is. Knowing the 
expresser is particularly important as individuals often have characteristic facial expressions 
and may differ in the way certain states (other than the basic emotions) are expressed. Since 
the problem of context-sensing is extremely difficult to solve (if possible at all) for a general 
case, pragmatic approaches (e.g., activity/application- and user-centered approach) should 
be taken when learning the grammar of human facial behavior (Pantic et al., 2005a, 2006). 
However, except for a few works on user-profiled interpretation of facial expressions like 
those of Fasel et al. (2004) and Pantic & Rothkrantz (2004b), virtually all existing automated 
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facial expression analyzers are context insensitive. Although machine-context sensing, that 
is, answering questions like who is the user, where is he or she, and what is he or she doing, 
has witnessed recently a number of significant advances (Nock et al., 2004, Pantic et al. 
2006), the complexity of this problem makes context-sensitive facial expression analysis a 
significant research challenge. 

2.5 Facial Expression Databases and Ground Truth 

To develop and evaluate facial behavior analyzers capable of dealing with different 
dimensions of the problem space as defined above, large collections of training and test data 
are needed (Pantic & Rothkrantz, 2003; Pantic et al., 2005a; Tian et al., 2005; Bartlett et al., 
2006).
Picard (1997) outlined five factors that influence affective data collection: 
(a) Spontaneous versus posed: Is the emotion elicited by a situation or stimulus that is 

outside the subject's control or the subject is asked to elicit the emotion? 
(b) Lab setting versus real-world: Is the data recording taking place in a lab or the emotion 

is recorded in the usual environment of the subject? 
(c) Expression versus feeling: Is the emphasis on external expression or on internal feeling? 
(d) Open recording versus hidden recording: Is the subject aware that he is being recorded? 
(e) Emotion-purpose versus other-purpose: Does the subject know that he is a part of an 

experiment and the experiment is about emotion? 
A complete overview of existing, publicly available datasets that can be used in research on 
automatic facial expression analysis is given by Pantic et al. (2005b). In general, there is no 
comprehensive reference set of face images that could provide a basis for all different efforts 
in the research on machine analysis of facial expressions. Only isolated pieces of such a 
facial database exist. An example is the unpublished database of Ekman-Hager Facial Action 
Exemplars (Ekman et al., 1999). It has been used by several research groups (e.g., Bartlett et 
al., 1999; Tian et al., 2001) to train and test their methods for AU detection from frontal-view 
facial expression sequences. Another example is JAFFE database (Lyons et al., 1999), which 
contains in total 219 static images of 10 Japanese females displaying posed expressions of six 
basic emotions and was used for training and testing various existing methods for 
recognition of prototypic facial expressions of emotions (Pantic et al., 2003). An important 
recent contribution to the field is the Yin Facial Expression Database (Yin et al., 2006), which 
contains 3D range data for prototypical expressions at a variety of intensities. 
The Cohn-Kanade facial expression database (Kanade et al., 2000) is the most widely used 
database in research on automated facial expression analysis (Tian et al., 2005; Pantic et al., 
2005a). This database contains image sequences of approximately 100 subjects posing a set 
of 23 facial displays, and contains FACS codes in addition to basic emotion labels. The 
release of this database to the research community enabled a large amount of research on 
facial expression recognition and feature tracking. Two main limitations of this facial 
expression data set are as follows. First, each recording ends at the apex of the shown 
expression, which limits research of facial expression temporal activation patterns (onset 
apex  offset). Second, many recordings contain the date/time stamp recorded over the 
chin of the subject. This makes changes in the appearance of the chin less visible and 
motions of the chin difficult to track.  
To fill this gap, the MMI facial expression database was developed (Pantic et al., 2005b). It 
has two parts: a part containing deliberately displayed facial expressions and a part 
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containing spontaneous facial displays. The first part contains over 4000 videos as well as 
over 600 static images depicting facial expressions of single AU activation, multiple AU 
activations, and six basic emotions. It has profile as well as frontal views, and was FACS 
coded by two certified coders. The second part of the MMI facial expression database 
contains currently 65 videos of spontaneous facial displays, that were coded in terms of 
displayed AUs and emotions by two certified coders. Subjects were 18 adults 21 to 45 years 
old and 11 children 9 to 13 years old; 48% female, 66% Caucasian, 30% Asian and 4% 
African. The recordings of 11 children were obtained during the preparation of a Dutch TV 
program, when children were told jokes by a professional comedian or were told to mimic 
how they would laugh when something is not funny. The recordings contain mostly facial 
expressions of different kinds of laughter and were made in a TV studio, using a uniform 
background and constant lighting conditions. The recordings of 18 adults were made in 
subjects’ usual environments (e.g., home), where they were shown segments from comedies, 
horror movies, and fear-factor series. The recordings contain mostly facial expressions of 
different kinds of laughter, surprise, and disgust expressions, which were accompanied by 
(often large) head motions, and were made under variable lighting conditions. Although the 
MMI facial expression database is the most comprehensive database for research on 
automated facial expression analysis, it still lacks metadata for the majority of recordings 
when it comes to frame-based AU coding. Further, although the MMI database is probably 
the only publicly available dataset containing recordings of spontaneous facial behavior at 
present, it still lacks metadata about the context in which these recordings were made such 
the utilized stimuli, the environment in which the recordings were made, the presence of 
other people, etc. 
Another database of spontaneous facial expressions was collected at UT Dallas (O’Toole et 
al., 2005). Similarly to the second part of the MMI facial expression database, facial displays 
were elicited using film clips. In the case of the UT Dallas database, however, there is no 
concurrent measure of expression content beyond the stimulus category. Yet, since subjects 
often do not experience the intended emotion and sometimes experience another one (e.g., 
disgust or annoyance instead of humor), concurrent measure of expression content beyond 
the stimulus category is needed. In other words, as in the case of the second part of the MMI 
facial expression database, coding in terms of displayed AUs and emotions independently 
of the stimulus category is needed.  
Mark Frank, in collaboration with Javier Movellan and Marian Bartlett, has collected a 
dataset of spontaneous facial behavior in an interview paradigm with rigorous FACS coding 
(Bartlett et al. 2006). This datased, called the RU-FACS Spontaneous Expression Dataset, 
consists of 100 subjects participating in a ’false opinion’ paradigm. In this paradigm, subjects 
first fill out a questionnaire regarding their opinions about a social or political issue. Subjects 
are then asked to either tell the truth or take the opposite opinion on an issue where they 
rated strong feelings, and convince an interviewer they are telling the truth. Interviewers 
were retired police and FBI agents. A high-stakes paradigm was created by giving the 
subjects $50 if they succeeded in fooling the interviewer, whereas if they were caught they 
were told they would receive no cash, and would have to fill out a long and boring 
questionnaire. In practice, everyone received a minimum of $10 for participating, and no 
one had to fill out the questionnaire. This paradigm has been shown to elicit a wide range of 
emotional expressions as well as speech-related facial expressions. This dataset is 
particularly challenging both because of speech-related mouth movements, and also because 
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of out-of-plane head rotations which tend to be present during discourse. Subjects faces 
were digitized by four synchronized Dragonfly cameras from Point Grey (frontal, two 
partial profiles at 30 degrees, and one view from below). Two minutes of each subject’s 
behavior is being FACS coded by two certified FACS coders. FACS codes include the apex 
frame as well as the onset and offset frame for each action unit (AU). To date, 33 subjects 
have been FACS-coded. This dataset will be made available to the research community once 
the FACS coding is completed. 
With the exception of these problems concerned with acquiring valuable data and the 
related ground truth, another important issue is how does one construct and administer 
such a large facial expression benchmark database. Except of the MMI facial expression 
database (Pantic et al., 2005b), which was built as a web-based direct-manipulation 
application, allowing easy access and easy search of the available images, the existing facial 
expression databases are neither easy to access nor easy to search. In general, once the 
permission for usage is issued, large, unstructured files of material are sent. Other related 
questions are the following. How does one facilitate reliable, efficient, and secure inclusion 
of objects constituting this database? How could the performance of a tested automated 
system be included into the database? How should the relationship between the 
performance and the database objects used in the evaluation be defined? Pantic et al. (2003, 
2005a, 2005b) emphasized a number of specific, research and development efforts needed to 
address the aforementioned problems. Nonetheless, note that their list of suggestions and 
recommendations is not exhaustive of worthwhile contributions. 

3. Face Detection 

The first step in facial information processing is face detection, i.e., identification of all 
regions in the scene that contain a human face. The problem of finding faces should be solved 
regardless of clutter, occlusions, and variations in head pose and lighting conditions. The 
presence of non-rigid movements due to facial expression and a high degree of variability in 
facial size, color and texture make this problem even more difficult. Numerous techniques 
have been developed for face detection in still images (Yang et al., 2002; Li & Jain, 2005). 
However, most of them can detect only upright faces in frontal or near-frontal view. The 
efforts that had the greatest impact on the community (as measured by, e.g., citations) 
include the following. 
Rowley et al. (1998) used a multi-layer neural network to learn the face and non-face 
patterns from the intensities and spatial relationships of pixels in face and non-face images. 
Sung and Poggio (1998) proposed a similar method. They used a neural network to find a 
discriminant function to classify face and non-face patterns using distance measures. 
Moghaddam and Pentland (1997) developed a probabilistic visual learning method based 
on density estimation in a high-dimensional space using an eigenspace decomposition. The 
method was applied to face localization, coding and recognition. Pentland et al. (1994) 
developed a real-time, view-based and modular (by means of incorporating salient features 
such as the eyes and the mouth) eigenspace description technique for face recognition in 
variable pose. Another method that can handle out-of-plane head motions is the statistical 
method for 3D object detection proposed by Schneiderman and Kanade (2000). Other such 
methods, which have been recently proposed, include those of Huang and Trivedi (2004) 
and Wang and Ji (2004). Most of these methods emphasize statistical learning techniques 
and use appearance features. 
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Arguably the most commonly employed face detector in automatic facial expression 
analysis is the real-time face detector proposed by Viola and Jones (2004). This detector 
consists of a cascade of classifiers trained by AdaBoost. Each classifier employs integral 
image filters, also called “box filters,” which are reminiscent of Haar Basis functions, and 
can be computed very fast at any location and scale. This is essential to the speed of the 
detector. For each stage in the cascade, a subset of features is chosen using a feature 
selection procedure based on AdaBoost. 
There are several adapted versions of the Viola-Jones face detector and the one that is 
employed by the systems discussed in detail in this chapter was proposed by Fasel et al. 
(2005). It uses GentleBoost instead of AdaBoost. GentleBoost uses the continuous output of 
each filter rather than binarizing it. A description of Gentle Boost classification can be found 
in Friedman et al. (2000). 

4. Facial Feature Extraction  

After the presence of a face has been detected in the observed scene, the next step is to 
extract the information about the displayed facial signals. The problem of facial feature 
extraction from regions in the scene that contain a human face may be divided into at least 
three dimensions (Pantic & Rothkrantz, 2000): 
(a) Is temporal information used? 
(b) Are the features holistic (spanning the whole face) or analytic (spanning subparts of the 

face)?
(c) Are the features view- or volume based (2D/3D)? 
Given this glossary and if the goal is face recognition, i.e., identifying people by looking at 
their faces, most of the proposed approaches adopt 2D holistic static facial features. On the 
other hand, many approaches to automatic facial expression analysis adopt 2D analytic 
spatio-temporal facial features (Pantic & Rothkrantz, 2003). This finding is also consistent 
with findings from psychological research suggesting that the brain processes faces 
holistically rather than locally whilst it processes facial expressions locally (Bassili, 1978). 
What is, however, not entirely clear yet is whether information on facial expression is 
passed to the identification process to aid person recognition or not. Some experimental data 
suggest this (Martinez, 2003; Roark et al., 2003). For surveys of computer vision efforts 
aimed at face recognition, the readers are referred to: Zhao et al. (2003), Bowyer (2004), and 
Li and Jain (2005). 
Most of the existing facial expression analyzers are directed toward 2D spatiotemporal facial 
feature extraction, including the methods proposed by the authors and their respective 
research teams. The usually extracted facial features are either geometric features such as the 
shapes of the facial components (eyes, mouth, etc.) and the locations of facial fiducial points 
(corners of the eyes, mouth, etc.) or appearance features representing the texture of the facial 
skin including wrinkles, bulges, and furrows. Typical examples of geometric-feature-based 
methods are those of Gokturk et al. (2002), who used 19 point face mesh, of Chang et al. 
(2006), who used a shape model defined by 58 facial landmarks, and of Pantic and her 
collegues (Pantic & Rothkrantz, 2004; Pantic & Patras, 2006; Valstar & Pantic, 2006a), who 
used a set of facial characteristic points like the ones illustrated in Figure 3. Typical 
examples of hybrid, geometric- and appearance-feature-based methods are those of Tian et 
al. (2001), who used shape-based models of eyes, eyebrows and mouth and transient 
features like crows-feet wrinkles and nasolabial furrow, and of Zhang and Ji (2005), who 
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used 26 facial points around the eyes, eyebrows, and mouth and the same transient features 
as Tian et al (2001). Typical examples of appearance-feature-based methods are those of 
Bartlett et al. (1999, 2005, 2006) and Guo and Dyer (2005), who used Gabor wavelets, of 
Anderson and McOwen (2006), who used a holistic, monochrome, spatial-ratio face 
template, and of Valstar et al. (2004), who used temporal templates. It has been reported that 
methods based on geometric features are often outperformed by those based on appearance 
features using, e.g., Gabor wavelets or eigenfaces (Bartlett et al., 1999). Certainly, this may 
depend on the classification method and/or machine learning approach which takes the 
features as input. Recent studies like that of Pantic & Patras (2006), Valstar and Pantic 
(2006a), and those presented in this chapter, show that in some cases geometric features can 
outperform appearance-based ones. Yet, it seems that using both geometric and appearance 
features might be the best choice in the case of certain facial expressions (Pantic & Patras, 
2006).
Few approaches to automatic facial expression analysis based on 3D face modelling have 
been recently proposed. Gokturk et al. (2002) proposed a method for recognition of facial 
signals like brow flashes and smiles based upon 3D deformations of the face tracked on 
stereo image streams using a 19-point face mesh and standard optical flow techniques. The 
work of Cohen et al. (2003) focuses on the design of Bayesian network classifiers for emotion 
recognition from face video based on facial features tracked by a method called Piecewise 
Bezier Volume Deformation tracking (Tao & Huang, 1998). This tracker employs an explicit 
3D wireframe model consisting of 16 surface patches embedded in Bezier volumes. Cohn et 
al. (2004) focus on automatic analysis of brow actions and head movements from face video 
and use a cylindrical head model to estimate the 6 degrees of freedom of head motion (Xiao 
et al., 2003). Baker and his colleagues developed several algorithms for fitting 2D and 
combined 2D+3D Active Appearance Models to images of faces (Xiao et al., 2004; Gross et 
al., 2006), which can be used further for various studies concerning human facial behavior. 
3D face modeling is highly relevant to the present goals due to its potential to produce view-
independent facial signal recognition systems. The main shortcomings of the current 
methods concern the need of a large amount of manually annotated training data and an 
almost always required manual selection of landmark facial points in the first frame of the 
input video based on which the face model will be warped to fit the face. Automatic facial 
feature point detection of the kind explained in section 5 offers a solution to these problems. 

5. Geometric Facial Feature Extraction and Tracking 

5.1 Facial Characteristic Point Detection 

Previous methods for facial feature point detection can be classified as either texture-based 
methods (modeling local texture around a given facial point) or texture- and shape-based 
methods (regarding the constellation of all facial points as a shape, which is learned from a 
set of labeled faces, and trying to fit the shape to any unknown face). A typical texture-based 
method is that of Holden & Owens (2002), who used log-Gabor wavelets, while a typical 
texture- and shape-based method is that of Chen et al. (2004), who applied AdaBoost to 
determine facial feature point candidates for each pixel in an input image and used a shape 
model as a filter to select the most possible position of feature points.  
Although these detectors can be used to localize 20 facial characteristic points illustrated in 
Figure 3, which are used by the facial expression analyzers developed by Pantic and her 
team (e.g., Pantic & Patras, 2006; Valstar & Pantic, 2006a), none performs the detection with 
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high accuracy. They usually regard the localization of a point as a SUCCESS if the distance 
between the automatically labeled point and the manually labeled point is less than 30% of 
the true inter-ocular distance (the distance between the eyes). However, 30% of the true 
inter-ocular value is at least 30 pixels in the case of the Cohn-Kanade database samples 
(Kanade et al., 2000). This means that a bias of 30 pixels for an eye corner would be regarded 
as SUCCESS even though the width of the whole eye is approximately 60 pixels. This is 
problematic in the case of facial expression analysis, since subtle changes in the facial 
expression will be missed due to the errors in facial point localization.  

Figure 3. Outline of the fully automated facial point detection method (Vukadinovic & 
Pantic, 2005) 

To handle this, Vukadinovic and Pantic (2005) developed a novel, robust, fully automated 
facial point detector. The method is illustrated in Figure 3. It is a texture based method – it 
models local image patches using Gabor wavelets and builds GentleBoost-based point 
detectors based on these regions. The method operates on the face region detected by the 
face detector described in section 3. The detected face region is then divided in 20 regions of 
interest (ROIs), each one corresponding to one facial point to be detected. A combination of 
heuristic techniques based on the analysis of the vertical and horizontal histograms of the 
upper and the lower half of the face region image is used for this purpose (Figure 3).  
The method uses further individual feature patch templates to detect points in the relevant 
ROI. These feature models are GentleBoost templates built from both gray level intensities 
and Gabor wavelet features. Previous work showed that Gabor features were among the 
most effective texture-based features for face processing tasks (Donato et al., 1999). This 
finding is also consistent with our experimental data that show the vast majority of features 
(over 98%) that were selected by the utilized GentleBoost classifier were from the Gabor 
filter components rather than from the gray level intensities. The essence of the success of 
Gabor filters is that they remove most of the variability in image due to variation in lighting 
and contrast, at the same time being robust against small shift and deformation (e.g., Lades 
et al., 1992; Osadchy et al., 2005). For a thorough analysis of Gabor filters for image 
representation see (Daugman, 1988).  
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Feature vector for each facial point is extracted from the 13×13 pixel image patch centered 
on that point. This feature vector is used to learn the pertinent point’s patch template and, in 
the testing stage, to predict whether the current point represents a certain facial point or not. 
In total, 13×13×(48+1)=8281 features are used to represent one point (Figure 3). Each feature 
contains the following information: (i) the position of the pixel inside the 13×13 pixels image 
patch, (ii) whether the pixel originates from a grayscale or from a Gabor filtered 
representation of the ROI, and (iii) if appropriate, which Gabor filter has been used (we used 
a bank of 48 Gabor filters at 8 orientations and 6 spatial frequencies). 

Figure 4. Examples of first-effort results of the facial point detector of Vukadinovic and 
Pantic (2005) for samples from (left to right): the Cohn-Kanade dataset, the MMI database 
(posed expressions), the MMI database (spontaneous expressions), and a cell-phone camera 

In the training phase, GentleBoost feature templates are learned using a representative set of 
positive and negative examples. In the testing phase, for a certain facial point, an input 
13×13 pixel window (sliding window) is slid pixel by pixel across 49 representations of the 
relevant ROI (grayscale plus 48 Gabor filter representations). For each position of the sliding 
window, GentleBoost outputs the similarity between the 49-dimensional representation of 
the sliding window and the learned feature point model. After scanning the entire ROI, the 
position with the highest similarity is treated as the feature point in question. 
Vukadinovic and Pantic trained and tested the facial feature detection method on the first 
frames of 300 Cohn-Kanade database samples (Kanade et al., 2000), using leave-one-subset-out 
cross validation. To evaluate the performance of the method, each of the automatically located 
facial points was compared to the true (manually annotated) point. The authors defined errors 
with respect to the inter-ocular distance measured in the test image (80 to 120 pixels in the case 
of image samples from the Cohn-Kanade database). An automatically detected point displaced 
in any direction, horizontal or vertical, less than 5% of inter-ocular distance (i.e., 4 to 6 pixels in 
the case of image samples from the Cohn-Kanade database) from the true facial point is 
regarded as SUCCESS. Overall, an average recognition rate of 93% was achieved for 20 facial 
feature points using the above described evaluation scheme. Typical results are shown in 
Figure 4. Virtually all misclassifications (most often encountered with points F1 and M) can be 
attributed to the lack of consistent rules for manual annotation of the points. For details about 
this method, see (Vukadinovic & Pantic, 2005). 
Fasel and colleagues developed a real-time feature detector using a GentleBoost approach 
related to the one used for their face detector (Fasel et al., 2005) and combined with a 
Bayesian model for feature positions (Fasel, 2006). The face is first detected and then the 
location and scale of the face is used to generate a prior probability distribution for each 
facial feature. The approach is similar in spirit to that of Vukadinovic and Pantic, but it was 
trained on 70,000 face snapshots randomly selected from the web. These web images contain 



Machine Analysis of Facial Expressions 393

greater pose and lighting variation than typical posed expression datasets, and were 
selected so that the machine learning systems could learn to be robust to such variations, 
and perform well in the less controlled image conditions of practical applications. When 
tested on such snapshots, the system obtains a median error of less than 0.05 interocular 
distance for eye positions, 0.06 for the nose tip, and 0.07 for the mouth center. For the strictly 
frontal subset of these web snapshots, which still contain substantial lighting variation, 
median error was 0.04, 0.045, and 0.05 interocular distance for eye, nose, and mouth 
position. This system could be combined with an approach such as that of Vukadinovic and 
Pantic to provide more robust initialization for the additional facial feature points.  

5.2 Facial Point Tracking 

Contractions of facial muscles induce movements of the facial skin and changes in the 
appearance of facial components such as the eyebrows, nose, and mouth. Since motion of 
the facial skin produces optical flow in the image, a large number of researchers have 
studied optical flow tracking (Pantic & Rothkrantz, 2000; 2003; Tian et al., 2005). The optical 
flow approach to describing face motion has the advantage of not requiring a facial feature 
extraction stage of processing. Dense flow information is available throughout the entire 
facial area, regardless of the existence of facial components, even in the areas of smooth 
texture such as the cheeks and the forehead. Because optical flow is the visible result of 
movement and is expressed in terms of velocity, it can be used to represent directly facial 
actions. One of the first efforts to utilize optical flow for recognition of facial expressions 
was the work of Mase (1991). Thereafter, many other researchers adopted this approach 
(Pantic & Rothkrantz, 2000; 2003; Tian et al., 2005). 
Standard optical flow techniques (e.g., Lucas & Kanade, 1981; Shi & Tomasi, 1994; Barron et 
al., 1994) are also most commonly used for tracking facial feature points. DeCarlo and 
Metaxas (1996) presented a model-based tracking algorithm in which a face shape model 
and motion estimation are integrated using optical flow and edge information. Gokturk et 
al. (2002) track the points of their 19-point face mesh on the stereo image streams using the 
standard Lucas-Kanade optical flow algorithm (Lucas & Kanade, 1981). To achieve facial 
feature point tracking Lien et al. (1998), Tian et al. (2001), and Cohn et al. (2004) used the 
standard Lucas-Kanade optical flow algorithm too. To realize fitting of 2D and combined 
2D+3D Active Appearance Models to images of faces, Xiao et al. (2004) use an algorithm 
based on an "inverse compositional" extension to the Lucas-Kanade algorithm. 
To address the limitations inherent in optical flow techniques such as the accumulation of 
error and the sensitivity to noise, occlusion, clutter, and changes in illumination, several 
researchers used sequential state estimation techniques to track facial feature points in 
image sequences. Both, Zhang and Ji (2005) and Gu and Ji (2005) used facial point tracking 
based on a Kalman filtering scheme, which is the traditional tool for solving sequential state 
problems. The derivation of the Kalman filter is based on a state-space model (Kalman, 
1960), governed by two assumptions: (i) linearity of the model and (ii) Gaussianity of both 
the dynamic noise in the process equation and the measurement noise in the measurement 
equation. Under these assumptions, derivation of the Kalman filter leads to an algorithm 
that propagates the mean vector and covariance matrix of the state estimation error in an 
iterative manner and is optimal in the Bayesian setting. To deal with the state estimation in 
nonlinear dynamical systems, the extended Kalman filter was proposed, which is derived 
through linearization of the state-space model. However, many of the state estimation 
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problems, including human facial expression analysis, are nonlinear and quite often non-
Gaussian too. Thus, if the face undergoes a sudden or rapid movement, the prediction of 
features positions from Kalman filtering will be significantly off. To handle this problem, 
Zhang and Ji (2005) and Gu and Ji (2005) used the information about the IR-camera detected 
pupil location together with the output of Kalman filtering to predict facial features 
positions in the next frame of an input face video. To overcome these limitations of the 
classical Kalman filter and its extended form in general, particle filters wereproposed. For an 
extended overview of the various facets of particle filters see (Haykin & de Freitas, 2004). 
The facial points tracking schemes employed by facial expression analyzers proposed by 
Pantic and colleagues (e.g., Pantic & Patras, 2006; Valstar & Pantic, 2006a) are based upon 
particle filtering.  
The main idea behind particle filtering is to maintain a set of solutions that are an efficient 
representation of the conditional probability p( |Y ), where   is the state of a temporal 
event to be tracked given a set of noisy observations Y = {y1,…, y¯, y} up to the current time 
instant. This means that the distribution p( |Y ) is represented by a set of pairs {( sk , πk)} 
such that if sk is chosen with probability equal to πk , then it is as if sk was drawn from p( |
Y). By maintaining a set of solutions instead of a single estimate (as is done by Kalman 
filtering), particle filtering is able to track multimodal conditional probabilities p( |Y ) , and 
it is therefore robust to missing and inaccurate data and particularly attractive for estimation 
and prediction in nonlinear, non-Gaussian systems. In the particle filtering framework, our 
knowledge about the a posteriori probability p( |Y ) is updated in a recursive way. Suppose 
that at a previous time instance we have a particle-based representation of the density p( ¯
|Y ¯ ) , i.e., we have a collection of K particles and their corresponding weights (i.e. {(sk ¯,
πk¯)} ). Then, the classical particle filtering algorithm, so-called Condensation algorithm, can 
be summarized as follows (Isard & Blake, 1998). 
1. Draw K particles sk¯ from the probability density that is represented by the collection 

{(sk¯, k¯)}.
2. Propagate each particle sk¯ with the transition probability p( | ¯ ) in order to arrive at 

a collection of K particles sk.
3. Compute the weights k for each particle as k = p(y |sk ) and then normalize so that k

k = 1. 
This results in a collection of K particles and their corresponding weights {(sk, k)}, which is 
an approximation of the density p( |Y ).
The Condensation algorithm has three major drawbacks. The first one is that a large amount 
of particles that result from sampling from the proposal density p( |Y¯ ) might be wasted 
because they are propagated into areas with small likelihood. The second problem is that 
the scheme ignores the fact that while a particle sk = sk1, sk2,…, skN  might have low 
likelihood, it can easily happen that parts of it might be close to the correct solution. Finally, 
the third problem is that the estimation of the particle weights does not take into account the 
interdependences between the different parts of the state .
Various extensions to classical Condensation algorithm have been proposed and some of 
those were used to track facial features. For example, Pitt and Shepard (1999) introduced 
Auxiliary Particle Filtering, which addresses the first drawback of the Condensation 
algorithm by favoring particles that end up in areas with high likelihood when propagated 
with the transition density p( | ¯ ). Pantic and Patras employed this algorithm to track 
facial characteristic points in either face-profile- (Pantic & Patras, 2006) or in frontal-face 
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image sequences (Pantic & Patras, 2005). To address the third drawback of the Condensation 
algorithm for the case of simultaneous tracking of facial components (eyes, eyebrows, nose, 
and mouth), Su et al. (2004) combined it with spatial belief propagation in order to enforce 
(pre-learned) spatial correlations between parameterizations of facial components. The 
extension to the Condensation algorithm used by Valstar and Pantic (2006a) for facial point 
tracking is the so-called Particle Filtering with Factorized Likelihoods (PFFL) proposed in 
(Patras & Pantic, 2004) combined with a robust color-based observation model (Patras & 
Pantic, 2005). This algorithm addresses the aforementioned problems inherent in the 
Condensation algorithm by extending the Auxiliary Particle Filtering to take into account 
the interdependences between the different parts of the state . More specifically, the PFFL 
tracking scheme assumes that the state  can be partitioned into sub-states i (which, in our 
case, correspond to the different facial points), such that  = 1, …, n . The density p( | ¯ ),
that captures the interdependencies between the locations of the facial features is estimated 
using a set of training data and a kernel-based density estimation scheme. As the collection 
of training data in question, four sets of annotated data were used containing the 
coordinates of facial salient points belonging to four facial components: eyebrows, eyes, 
nose-chin, and mouth (Patras & Pantic, 2004; Valstar & Pantic, 2006a). The underlying 
assumption is that correlations between the points belonging to the same facial components 
are more important for facial expression recognition than correlations between the points 
belonging to different facial components. This is consistent with psychological studies that 
suggest that: a) the brain processes facial expressions locally/ analytically rather than 
holistically whilst it identifies faces holistically (Bassili, 1978), and b) dynamic cues 
(expressions) are computed separately from static cues (facial proportions) (Humphreys et 
al., 1993). This dataset is based on 66 image sequences of 3 persons (33% female) showing 22 
AUs that the facial expression analyzer proposed by Valstar and Pantic (2006a) is able to 
recognize. The utilized sequences are from the MMI facial expression database, part 1 
(posed expressions), and they have not been used to train and test the performance of the 
system as a whole. Typical results of the PFFL, applied for tracking color-based templates of 
facial points in image sequences of faces in frontal-view are shown in Figure 5. 

Figure 5. Example of first-effort results of the PFFL tracking scheme of Patras and Pantic 
(2004, 2005) for samples from  the Cohn-Kanade dataset (1st row) and the MMI database 
(posed expressions) (2nd row) 
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6. Appearance-based Facial Features and Emotion Recognition 

6.1 Appearance-based Facial Features 

Most computer vision researchers think of motion when they consider the problem of facial 
expression recognition. An often cited study by Bassili (1978) shows that humans can 
recognize facial expressions above chance from motion, using point-light displays. 
However, the role of appearance-based texture information in expression recognition is like 
the proverbial elephant in the living room2. In contrast to the Bassili study in which humans 
were barely above chance using motion without texture, humans are nearly at ceiling for 
recognizing expressions from texture without motion (i.e. static photographs).  
Appearance-based features include Gabor filters, integral image filters (also known as box-
filters, and Haar-like filters), features based on edge-oriented histograms and those based on 
Active Appearance Models (Edwards et al., 1998). This set also includes spatio-temporal 
features like motion energy images (Essa & Pentland, 1997) and motion history images 
(Valstar et al., 2004), and learned image filters from independent component analysis (ICA), 
principal component analysis (PCA), and local feature analysis (LFA). Linear discriminant 
analysis (e.g., fisherfaces) is another form of learned appearance-based feature, derived from 
supervised learning, in contrast to the others mentioned above, which were based on 
unsupervised learning from the statistics of large image databases.  
A common reservation about appearance-based features for expression recognition is that 
they are affected by lighting variation and individual differences. However, machine 
learning systems taking large sets of appearance-features as input, and trained on a large 
database of examples, are emerging as some of the most robust systems in computer vision. 
Machine learning combined with appearance-based features has been shown to be highly 
robust for tasks of face detection (Viola & Jones, 2004; Fasel et al., 2005), feature detection 
(Vukadinovic & Pantic, 2005; Fasel, 2006), and expression recognition (Littlewort et al., 
2006).  Such systems also don’t suffer from issues of initialization and drift, which are major 
challenges for motion tracking.  
The importance of appearance-based features for expression recognition is emphasized by 
several studies that suggest that appearance-based features may contain more information 
about facial expression than displacements of a set of points (Zhang et al., 1998; Donato et 
al., 1999), although the findings were mixed (e.g., Pantic & Patras, 2006). In any case, 
reducing the image to a finite set of feature displacements removes a lot of information that 
could be tapped for recognition. Ultimately, combining appearance-based and motion-based 
representations may be the most powerful, and there is some experimental evidence that 
this is indeed the case (e.g., Bartlett et al., 1999). 
Bartlett and colleagues (Donato et al., 1999) compared a number of appearance-based 
representations on the task of facial action recognition using a simple nearest neighbor 
classifier. They found that Gabor wavelets and ICA gave better performance than PCA, 
LFA, Fisher’s linear discriminants, and also outperformed motion flow field templates.  
More recent comparisons included comparisons of Gabor filters, integral image filters, and 
edge-oriented histograms (e.g., Whitehill & Omlin, 2006), using SVMs and AdaBoost as the 
classifiers. They found an interaction between feature-type and classifier, where AdaBoost 
performs better with integral image filters, while SVMs perform better with Gabors. The 
difference may be attributable to the fact that the pool of integral image filters was much 

                                                                
2 Something so large that people fail to remark on it.
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larger. AdaBoost performs feature selection and does well with redundancy, whereas SVMs 
were calculated on the full set of filters and don’t do well with redundancy. Additional 
comparisons will be required to tease these questions apart.  

Figure 6. Outline of the real-time expression recognition system of Littlewort et al. (2006) 

6.2 Appearance-based Facial Affect Recognition 

Here we describe the appearance-based facial expression recognition system developed by 
Bartlett and colleagues (Bartlett et al., 2003; Littlewort et al., 2006). The system automatically 
detects frontal faces in the video stream and codes each frame with respect to 7 dimensions: 
neutral, anger, disgust, fear, joy, sadness, surprise. The system operates in near-real-time, at 
about 6 frames per second on a Pentium IV. A flow diagram is shown in Figure 6. The 
system first performs automatic face and eye detection using the appearance-based method 
of Fasel et al. (2005) (see section 3). Faces are then aligned based on the automatically 
detected eye positions, and passed to a bank of appearance-based features. A feature 
selection stage extracts subsets of the features and passes them to an ensemble of classifiers 
which make a binary decision about each of the six basic emotions plus neutral.  

Feature selection LDA SVM (linear)
None 44.4 88.0 
PCA 80.7 75.5 
Adaboost 88.2 93.3 

Table 1. Comparison of feature-selection techniques in the appearance-based expression 
recognition system of Littlewort et al (2006). Three feature selection options are compared 
using LDA and SVMs as the classifier 

Kernel Adaboost SVM AdaSVM LDApca

Linear 90.1 88.0 93.3 80.7 
RBF  89.1 93.3  

Table 2. Comparison of classifiers in the appearance-based expression recognition system of 
Littlewort et al (2006). AdaSVM: Feature selection by AdaBoost followed by classification 
with SVM’s. LDApca: Linear Discriminant analysis with feature selection based on principle 
component analysis, as commonly implemented in the literature 
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Littlewort et al. (2006) carried out empirical investigations of machine learning methods 
applied to this problem, including comparison of recognition engines and feature selection 
techniques. The feature selection techniques compared were (1) Nothing, (2) PCA, and (3) 
Feature selection by AdaBoost. When the output of each feature is treated as the weak 
classifier, AdaBoost performs feature selection, such that each new feature is the one that 
minimizes error, contingent on the set features that were already selected. These feature 
selection techniques were compared when combined with three classifiers: SVM-AdaBoost, 
and Linear Discriminant Analysis (LDA). The system was trained on the Cohn-Kanade 
dataset, and tested for generalization to new subjects using cross-validation. Results are 
shown in Tables 1 and 2. Best results were obtained by selecting a subset of Gabor filters 
using AdaBoost and then training SVMs on the outputs of the filters selected by AdaBoost. 
The combination of AdaBoost and SVMs enhanced both speed and accuracy of the system.  
The system obtained 93% accuracy on a 7-alternative forced choice. This is the highest 
accuracy to our knowledge on the Cohn-Kanade database, which points to the richness of 
appearance-based features in facial expressions. Combining this system with motion 
tracking and spatio-temporal analysis systems such as those developed by Pantic & Patras 
(2005) and Cohn et al. (2004) is a promising future direction for this research. 

7. Facial Muscle Action Detection 

As already mentioned in section 2.1, two main streams in the current research on automatic 
analysis of facial expressions consider facial affect (emotion) detection and facial muscle 
action detection such as the AUs defined in FACS (Ekman & Friesen, 1978; Ekman et al., 
2002). This section introduces recent advances in automatic facial muscle action coding.  

Figure 7. Outline of the AU recognition system of Valstar and Pantic (2006a) 

Although FACS provides a good foundation for AU-coding of face images by human 
observers, achieving AU recognition by a computer is not an easy task. A problematic issue 
is that AUs can occur in more than 7000 different complex combinations (Scherer & Ekman, 
1982), causing bulges (e.g., by the tongue pushed under one of the lips) and various in- and 
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out-of-image-plane movements of permanent facial features (e.g., jetted jaw) that are 
difficult to detect in 2D face images. Historically, the first attempts to encode AUs in images 
of faces in an automatic way were reported by Bartlett et al. (1996), Lien et al. (1998), and 
Pantic et al. (1998). These three research groups are still the forerunners in this research 
field. This section summarizes the recent work of two of those research groups, namely that 
of Pantic and her colleagues (section 7.1) and that of Bartlett and her colleagues (section 7.2). 
An application of automatic AU recognition to facial behavior analysis of pain is presented 
in section 7.3. 

7.1 Feature-based Methods for Coding AUs and their Temporal Segments 

Pantic and her colleagues reported on multiple efforts aimed at automating the analysis of 
facial expressions in terms of facial muscle actions that constitute the expressions. The 
majority of this previous work concerns geometric-feature-based methods for automatic 
FACS coding of face images. Early work was aimed at AU coding in static face images 
(Pantic & Rothkrantz, 2004) while more recent work addressed the problem of automatic 
AU coding in face video (Pantic & Patras, 2005, 2006; Valstar & Pantic, 2006a, 2006b). Based 
upon the tracked movements of facial characteristic points, as discussed in section 5, Pantic 
and her colleagues mainly experimented with rule-based (Pantic & Patras, 2005, 2006) and 
Support Vector Machine based methods (Valstar & Pantic, 2006a, 2006b) for recognition of 
AUs in either near frontal-view (Figure 7) or near profile-view (Figure 8) face image 
sequences. 

Figure 8. Outline of the AU recognition system of Pantic and Patras (2006) 

As already mentioned in section 2, automatic recognition of facial expression configuration 
(in terms of AUs constituting the observed expression) has been the main focus of the 
research efforts in the field. In contrast to the methods developed elsewhere, which thus 
focus onto the problem of spatial modeling of facial expressions, the methods proposed by 
Pantic and her colleagues address the problem of temporal modeling of facial expressions as 
well. In other words, these methods are very suitable for encoding temporal activation 
patterns (onset  apex  offset) of AUs shown in an input face video. This is of importance 
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for there is now a growing body of psychological research that argues that temporal 
dynamics of facial behavior (i.e., the timing and the duration of facial activity) is a critical 
factor for the interpretation of the observed behavior (see section 2.2). Black and Yacoob 
(1997) presented the earliest attempt to automatically segment prototypic facial expressions 
of emotions into onset, apex, and offset components. To the best of our knowledge, the only 
systems to date for explicit recognition of temporal segments of AUs are the ones by Pantic 
and colleagues (Pantic & Patras, 2005, 2006; Valstar & Pantic, 2006a, 2006b). 
A basic understanding of how to achieve automatic AU detection from the profile view of 
the face is necessary if a technological framework for automatic AU detection from multiple 
views of the face is to be built. Multiple views was deemed the most promising method for 
achieving robust AU detection (Yacoob et al., 1998), independent of rigid head movements 
that can cause changes in the viewing angle and the visibility of the tracked face. To address 
this issue, Pantic and Patras (2006) proposed an AU recognition system from face profile-
view image sequences. To the best of our knowledge this is the only such system to date.  
To recognize a set of 27 AUs occurring alone or in combination in a near profile-view face 
image sequence, Pantic and Patras (2006) proceed under two assumptions (as defined for 
video samples of the MMI facial expression database, part one; Pantic et al., 2005b): (1) the 
input image sequence is non-occluded (left or right) near profile-view of the face with 
possible in-image-plane head rotations, and (2) the first frame shows a neutral expression. 
To make the processing robust to in-image-plane head rotations and translations as well as 
to small translations along the z-axis, the authors estimate a global affine transformation 
for each frame and based on it they register the current frame to the first frame of the 
sequence. In order to estimate the global affine transformation, they track three referential 
points. These are (Figure 8): the top of the forehead (P1), the tip of the nose (P4), and the ear 
canal entrance (P15). These points are used as the referential points because of their stability 
with respect to non-rigid facial movements. The global affine transformation  is estimated 
as the one that minimizes the distance (in the least squares sense) between the -based
projection of the tracked locations of the referential points and these locations in the first 
frame of the sequence. The rest of the facial points illustrated in Figure 8 are tracked in 
frames that have been compensated for the transformation . Changes in the position of the 
facial points are transformed first into a set of mid-level parameters for AU recognition. 
These parameters are: up/down(P) and inc/dec(PP’). Parameter up/down(P) = y(Pt1) – y(Pt),
where y(Pt1) is the y-coordinate of point P in the first frame and y(Pt) is the y-coordinate of 
point P in the current frame, describes upward and downward movements of point P.
Parameter inc/dec(PP’) = PP’t1 – PP’t, where PP’t1 is the distance between points P and P’ in 
the first frame and PP’t is the distance between points P and P’ in the current frame, 
describes the increase or decrease of the distance between points P and P’. Further, an AU 
can be either in: 
(a) the onset phase, where the muscles are contracting and the appearance of the face 

changes as the facial action grows stronger, or in  
(b) the apex phase, where the facial action is at its apex and there are no more changes in 

facial appearance due to this particular facial action, or in  
(c) the offset phase, where the muscles are relaxing and the face returns to its neutral 

appearance, or in  
(d) the neutral phase, where there are no signs of activation of this facial action.  
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Often the order of these phases is neutral-onset-apex-offset-neutral, but other combinations 
such as multiple-apex facial actions are also possible. Based on the temporal consistency of 
mid-level parameters, a rule-based method of Pantic and Patras encodes temporal segments 
(onset, apex, offset) of 27 AUs occurring alone or in combination in the input face videos. 
E.g., to recognize the temporal segments of AU12, the following temporal rules are used: 

IF (up/down(P7) >  AND inc/dec(P5P7) ) THEN AU12-p
IF AU12-p AND {([up/down(P7)]t > [up/down(P7)]t-1 ) THEN AU12-onset
IF AU12-p AND {( | [up/down(P7)]t – [up/down(P7)]t-1 | ) THEN AU12-apex
IF AU12-p AND {([up/down(P7)]t < [up/down(P7)]t-1 ) THEN AU12-offset

The meaning of these rules is as follows. P7 should move upward, above its neutral-
expression location, and the distance between points P5 and P7 should increase, exceeding 
its neutral-expression length, in order to label a frame as an “AU12 onset”. In order to label 
a frame as “AU12 apex”, the increase of the values of the relevant mid-level parameters 
should terminate. Once the values of these mid-level parameters begin to decrease, a frame 
can be labeled as “AU12 offset”.  
Since no other facial expression database contains images of faces in profile view, the 
method for AU coding in near profile-view face video was tested on MMI facial expression 
database only. The accuracy of the method was measured with respect to the 
misclassification rate of each “expressive” segment of the input sequence (Pantic & Patras, 
2006). Overall, for 96 test samples, an average recognition rate of 87% was achieved sample-
wise for 27 different AUs occurring alone or in combination in an input video.  
For recognition of up to 22 AUs occurring alone or in combination in an input frontal-face 
image sequence, Valstar and Pantic (2006a) proposed a system that detects AUs and their 
temporal segments (neutral, onset, apex, offset) using a combination of Gentle Boost 
learning and Support Vector Machines (SVM). To make the processing robust to in-image-
plane head rotations and translations as well as to small translations along the z-axis, the 
authors estimate a global affine transformation  for each frame and based on it they register 
the current frame to the first frame of the sequence. To estimate , they track three 
referential points. These are: the nasal spine point (N, calculated as the midpoint between 
the outer corners of the nostrils H and H1, see Figure 7) and the inner corners of the eyes (B 
and B1, see Figure 7). The rest of the facial points illustrated in Figure 7 are tracked in 
frames that have been compensated for the transformation . Typical tracking results are 
shown in Figure 5. Then, for all characteristic facial points Pi depicted in Figure 7, where i = 
[1 : 20], they compute two the displacement of Pi in y- and x-direction for every frame t.
Then, for all pairs of points Pi and Pj, where i j and i,j = [1 : 20], they compute in each 
frame the distances between the points and the increase/decrease of the distances in 
correspondence to the first frame. Finally, they compute the first time derivative df /dt of all 
features defined above, resulting in a set of 1220 features per frame.  
They use further Gentle Boost (Friedman et al., 2000) to select the most informative features 
for every class c ∈ C, where C = {AU1, AU2, AU4, AU5, AU6, AU7, AU43, AU45, AU46, 
AU9, AU10, AU12, AU13, AU15, AU16, AU18, AU20, AU22, AU24, AU25, AU26, AU27}. An 
advantage of feature selection by Gentle Boost is that features are selected depending on the 
features that have been already selected. In feature selection by Gentle Boost, each feature is 
treated as a weak classifier. Gentle Boost selects the best of those classifiers and then boosts 
the weights using the training examples to weight the errors more. The next feature is 
selected as the one that gives the best performance on the errors of the previously selected 
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features. At each step, it can be shown that the chosen feature is uncorrelated with the 
output of the previously selected features. As shown by Littlewort et al. (2006), when SVMs 
are trained using the features selected by a boosting algorithm, they perform better.  
To detect 22 AUs occurring alone or in combination in the current frame of the input 
sequence (i.e., to classify the current frame into one or more of the c ∈ C), Valstar and Pantic 
use 22 separate SVMs to perform binary decision tasks using one-versus-all partitioning of 
data resulting from the feature selection stage. More specifically, they use the most 
informative features selected by Gentle Boost for the relevant AU (i.e., the relevant c ∈ C) to 
train and test the binary SVM classifier specialized in recognition of that AU. They use 
radial basis function (RBF) kernel employing a unit-width Gaussian. This choice has been 
influenced by research findings of Bartlett et al. (2006) and Littlewort et al. (2006), who 
provided experimental evidence that Gaussian RBF kernels are very well suited for AU 
detection, especially when the SVM-based classification is preceded by an ensemble-
learning-based feature selection.  
As every facial action can be divided into four temporal segments (neutral, onset, apex, 
offset), Valstar and Pantic consider the problem to be a four-valued multi-class classification 
problem. They use a one-versus-one approach to multi-class SVMs (mc-SVMs). In this 
approach, for each AU and every pair of temporal segments, a separate sub-classifier 
specialized in the discrimination between the two temporal segments is trained. This results 
in i i = 6 sub-classifiers that need to be trained (i = [1 : C – 1], C = {neutral, onset, apex, 
offset}). For each frame t of an input image sequence, every sub-classifier returns a 
prediction of the class c ∈ C, and a majority vote is cast to determine the final output ct of the 
mc-SVM for the current frame t. To train the sub-classifiers, Valstar and Pantic apply the 
following procedure using the same set of features that was used for AU detection (see 
equations (1)–(5) above). For each classifier separating classes ci, cj ∈ C they apply Gentle 
Boost, resulting in a set of selected features Gi,j. They use Gi,j to train the sub-classifier 
specialized in discriminating between the two temporal segments in question (ci, cj ∈ C).
The system achieved average recognition rates of 91% and 97% for samples from the Cohn-
Kanade facial expression database (Kanade et al., 2000) and, respectively, the MMI facial 
expression database (Pantic et al. 2005b), 84% when trained on the MMI and tested on the 
Cohn-Kanade database samples, and 52% when trained on the MMI database samples and 
tested on the spontaneous-data-part of the MMI database. 
Experiments concerning recognition of facial expression temporal activation patterns (onset 

 apex  offset) were conducted on the MMI database only, since the sequences in the 
Cohn-Kanade database end at the apex. On average, 95% of temporal patterns of AU 
activation were detected correctly by their system. The system successfully detected the 
duration of most AUs as well, with a shift of less than 2 frames in average. However, for 
AU6 and AU7, the measurement of the duration of the activation was over 60% off from the 
actual duration. It seems that human observers detect activation of these AUs not only based 
on the presence of a certain movement (like an upward movement of the lower eyelid), but 
also based on the appearance of the facial region around the eye corner (like the crow feet 
wrinkles in the case of AU6). Such an appearance change may be of a different duration 
from the movement of the eyelid, resulting in an erroneous estimation of AU duration by 
the system that takes only facial movements into account. As mentioned above, using both 
geometric and appearance features might be the best choice in the case of such AUs. 
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7.2 Appearance-based Methods for AU Coding 

Here we describe an appearance-based system for fully automated facial action coding 
developed by Bartlett and colleagues (Bartlett et al. 2003, 2006), and show preliminary 
results when applied to spontaneous expressions. This extends a line of research developed 
in collaboration with Paul Ekman and Terry Sejnowski (e.g., Bartlett et al., 1996, 1999). The 
system is the same as the one described in Section 6.1, with the exception that the system 
was trained to detect facial actions instead of basic emotions. An overview is shown in 
Figure 9. It is user independent and operates in near-real time, at about 6 frames per second 
on a Pentium IV. The system detects 30 AUs, and performance measures are available for 20 
of them, below. Bartlett and colleagues (2006) also found that this system captures 
information about AU intensity that can be employed for analyzing facial expression 
dynamics. 
Appearance-based approaches to AU recognition such as the one presented here, differ from 
those of Pantic (e.g., Pantic & Rothkrantz, 2004a) and Cohn (e.g., Tian et al., 2001), in that 
instead of employing heuristic, rule-based methods, and/or designing special purpose 
detectors for each AU, these methods employ machine learning in a general purpose system 
that can detect any AU given a set of labeled training data. Hence the limiting factor in 
appearance-based machine learning approaches is having enough labeled examples for a 
robust system. Previous explorations of this idea showed that, given accurate 3D alignment, 
at least 50 examples are needed for moderate performance (in the 80% range), and over 200 
examples are needed to achieve high precision (Bartlett et al., 2003). Another prototype 
appearance-based system for fully automated AU coding was presented by Kapoor et al. 
(2003). This system used infrared eye tracking to register face images. The recognition 
component is similar to the one presented here, employing machine learning techniques on 
feature-based representations, where Kapoor et al. used PCA (eigenfeatures) as the feature 
vector to be passed to an SVM. As mentioned in Section 6.1, we previously found that PCA 
was a much less effective representation than Gabor wavelets for facial action recognition 
with SVMs. An appearance-based system was also developed by Tong et al. (2006). They 
applied a dynamic Bayesian model to the output of a front-end AU recognition system 
based on the one developed in the Bartlett’s laboratory. While Tong et al. showed that AU 
recognition benefits from learning causal relations between AUs in the training database, 
the analysis was developed and tested on a posed expression database. It will be important 
to extend such work to spontaneous expressions for the reasons described in Section 2.2. 

Figure 9. Outline of the Appearance-based facial action detection system of Bartlett et al. 
(2006)
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Here we show performance of the system of Bartlett et al. (2006) for recognizing facial 
actions in posed and spontaneous expressions (Figure 10). The system was trained on both 
the Cohn-Kanade and Ekman-Hager datasets. The combined dataset contained 2568 training 
examples from 119 subjects. Performance presented here was for training and testing on 20 
AUs. Separate binary classifiers, one for each AU, were trained to detect the presence of the 
AU regardless of the co-occurring AUs. Positive examples consisted of the last frame of each 
sequence which contained the expression apex. Negative examples consisted of all apex 
frames that did not contain the target AU plus neutral images obtained from the first frame 
of each sequence, for a total of 2568-N negative examples for each AU. 

Figure 10. System performance (area under the ROC) for the AU detection system of Bartlett 
et al. (2006): (a) posed facial actions (sorted in order of detection performance), and (b) 
spontaneous facial actions (performance is overlayed on the posed results of (a); there were 
no spontaneous examples of AU 27 in this sample) 
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We first report performance for generalization to novel subjects within the Cohn-Kanade and 
Ekman-Hager databases. Generalization to new subjects was tested using leave-one-subject-
out cross-validation in which all images of the test subject were excluded from training. The 
system obtained a mean of 91% agreement with human FACS labels. Overall percent correct 
can be an unreliable measure of performance, however, since it depends on the proportion 
of targets to non-targets, and also on the decision threshold. In this test, there was a far 
greater number of non-targets than targets, since targets were images containing the desired 
AU (N), and non-targets were all images not containing the desired AU (2568-N). A more 
reliable performance measure is area under the ROC (receiver-operator characteristic curve, 
or A’). This curve is obtained by plotting hit rate (true positives) against false alarm rate 
(false positives) as the decision threshold varies. A  is equivalent to percent correct in a 2- 
alternative forced choice task, in which the system must choose which of two options 
contains the target on each trial. Mean A  for the posed expressions was 92.6. 
A correlation analysis was performed in order to explicitly measure the relationship 
between the output margin and expression intensity. Ground truth for AU intensity was 
measured as follows: Five certified FACS coders labeled the action intensity for 108 images 
from the Ekman-Hager database, using the A-E scale of the FACS coding manual, where A 
is lowest, and E is highest. The images were four upper-face actions (1, 2, 4, 5) and two 
lower-face actions (10, 20), displayed by 6 subjects. We first measured the degree to which 
expert FACS coders agree with each other on intensity. Correlations were computed 
between intensity scores by each pair of experts, and the mean correlation was computed 
across all expert pairs. Correlations were computed separately for each display subject and 
each AU, and then means were computed across display subjects. Mean correlation between 
expert FACS coders within subject was 0.84. 

Action unit 
 1 2 4 5 10 20 Mean
Expert-Expert .92 .77 .85 .72 .88 .88 .84 
SVM-Expert .90 .80 .84 .86 .79 .79 .83 

Table 3. Correlation of SVM margin with intensity codes from human FACS experts 

Correlations of the automated system with the human expert intensity scores were next 
computed. The SVMs were retrained on the even-numbered subjects of the Cohn-Kanade 
and Ekman-Hager datasets, and then tested on the odd-numbered subjects of the Ekman-
Hager set, and vice versa. Correlations were computed between the SVM margin and the 
intensity ratings of each of the five expert coders. The results are shown in Table 3. Overall 
mean correlation between the SVM margin and the expert FACS coders was 0.83, which was 
nearly as high as the human-human correlation of .84.  Similar findings were obtained using 
an AdaBoost classifier, where the AdaBoost output, which is the likelihood ratio of target/ 
nontarget, correlated positively with human FACS intensity scores (Bartlett et al., 2004).  
The system therefore is able to provide information about facial expression dynamics in 
terms of the frame-by-frame intensity information. This information can be exploited for 
deciding the presence of an AU and decoding the onset, apex, and offset. It will also enable 
studying the dynamics of facial behavior. As explained in section 2, enabling investigations 
into the dynamics of facial expression would allow researchers to directly address a number 
of questions key to understanding the nature of the human emotional and expressive 
systems, and their roles interpersonal interaction, development, and psychopathology.  
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We next tested the system on the RU-FACS Dataset of spontaneous expressions described in 
section 2.5. The results are shown in Figure 10. The dataset included speech related mouth 
and face movements, and significant amounts of in-plane and in-depth rotations. Yaw, 
pitch, and roll ranged from -30 to 20 degrees. Preliminary recognition results are presented 
for 12 subjects. This data contained a total of 1689 labeled events, consisting of 33 distinct 
action units, 19 of which were AUs for which we had trained classifiers. All detected faces 
were passed to the AU recognition system. Faces were detected in 95% of the video frames. 
Most non-detects occurred when there was head rotations beyond ±100 or partial occlusion.  

Figure 11. Output of automatic FACS coding system from Bartlett et al. (2006).  Frame-by-
frame outputs are shown for AU 1 and AU 2 (brow raise) for 200 frames of video.  The 
output is the distance to the separating hyperplane of the SVM. Human codes (onset, apex, 
and offset frame) are overlayed for comparison 

Figure 12. Output trajectory for a 2’ 20’’ video (6000 frames), for one subject and one action 
unit. Shown is the margin (the distance to the separating hyperplane). The human FACS 
labels are overlaid for comparison: Frames within the onset and offset of the AU are shown 
in red. Stars indicate the AU apex frame. Letters A-E indicate AU intensity, with E highest 

Example system outputs are shown in Figure 11 and 12. The system obtained a mean of 93% 
correct detection rate across the 19 AUs in the spontaneous expression data. As explained 
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above, however, percent correct can be misleading when there are unequal numbers of 
targets and nontargets. Mean area under the ROC for the spontaneous action units was .75 
(and thus percent correct on a 2-alternative forced choice would be 75%). This figure is 
nevertheless encouraging, as it shows that fully automated systems can indeed get a signal 
about facial actions, despite generalizing from posed to spontaneous examples, and despite 
the presence of noise from speech and out-of-plane head rotations. As with the posed 
expression data, the SVM margin correlated positively with AU intensity in the spontaneous 
data (Figure 12). Mean correlation of AU 12 with FACS intensity score was .75, and the 
mean over eight AUs tested was 0.35.  

7.3 Automatic Detection of Pain 

The automated AU recognition system described above was applied to spontaneous facial 
expressions of pain (Littlewort et al., 2006b). The task was to differentiate faked from real 
pain expressions using the automated AU detector. Human subjects were videotaped while 
they submerged their hand in a bath of water for three minutes. Each subject experienced 
three experimental conditions: baseline, real pain, and posed pain. In the real pain 
condition, the water was 3 degrees Celsius, whereas in the baseline and posed pain 
conditions the water was 20 degrees Celsius. The video was coded for AUs by both human 
and computer. Our initial goal was to correctly determine which experimental condition is 
shown in a 60 second clip from a previously unseen subject. For this study, we trained 
individual AU classifiers on 3000 single frames selected from three datasets: two posed 
expression sets, the Cohn-Kanade and the Ekman-Hager datasets, and the RU-FACS dataset 
of spontaneous expression data. We trained linear SVM for each of 20 AUs, in one versus all 
mode, irrespective of combinations with other AUs. The output of the system was a real 
valued number indicating the distance to the separating hyperplane for each classifier. 
Applying this system to the pain video data produced a 20 channel output stream, 
consisting of one real value for each learned AU, for each frame of the video. This data was 
further analyzed to predict the difference between expressions of real pain and fake pain. 
The 20-channel output streams were passed to another set of three SVMs, trained to detect 
real pain, fake pain, and baseline. In a preliminary analysis of 5 subjects tested with cross-
validation, the system correctly identified the experimental condition (posed pain, real pain, 
and baseline) for 93% of samples in a 3-way forced choice. The 2-way performance for fake 
versus real pain was 90%. This is considerably higher than the performance of naive human 
observers, who are near chance for identifying faked pain (Hadjistavropoulos et al., 1996). 

8. Challenges, Opportunities and Recommendations 

Automating the analysis of facial signals, especially rapid facial signals (facial expressions) 
is important to realize more natural, context-sensitive (e.g., affective) human-computer 
interaction, to advance studies on human emotion and affective computing, and to boost 
numerous applications in fields as diverse as security, medicine, and education. This chapter 
introduced recent advances in machine analysis of facial expressions and summarized the 
recent work of two forerunning research groups in this research field, namely that of Pantic 
and her colleagues and that of Bartlett and her colleagues.  
In summary, although most of the facial expression analyzers developed so far target 
human facial affect analysis and attempt to recognize a small set of prototypic emotional 
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facial expressions like happiness and anger (Pantic et al., 2005a), some progress has been 
made in addressing a number of other scientific challenges that are considered essential for 
realization of machine understanding of human facial behavior. First of all, the research on 
automatic detection of facial muscle actions, which produce facial expressions, witnessed a 
significant progress in the past years. A number of promising prototype systems have been 
proposed recently that can recognize up to 27 AUs (from a total of 44 AUs) in either (near-) 
frontal view or profile view face image sequences (section 7 of this chapter; Tian et al. 2005). 
Further, although the vast majority of the past work in the field does not make an effort to 
explicitly analyze the properties of facial expression temporal dynamics, a few approaches 
to automatic segmentation of AU activation into temporal segments (neutral, onset, apex, 
offset) have been recently proposed (section 7 of this chapter). Also, even though most of the 
past work on automatic facial expression analysis is aimed at the analysis of posed 
(deliberately displayed) facial expressions, a few efforts were recently reported on machine 
analysis of spontaneous facial expressions (section 7 of this chapter; Cohn et al., 2004; 
Valstar et al., 2006; Bartlett et al., 2006). In addition, exceptions from the overall state of the 
art in the field include a few works towards detection of attitudinal and non-basic affective 
states such as attentiveness, fatigue, and pain (section 7 of this chapter; El Kaliouby & 
Robinson, 2004; Gu & Ji, 2004), a few works on context-sensitive (e.g., user-profiled) 
interpretation of facial expressions (Fasel et al., 2004; Pantic & Rothkrantz, 2004b), and an 
attempt to explicitly discern in an automatic way spontaneous from volitionally displayed 
facial behavior (Valstar et al., 2006). However, many research questions raised in section 2 of 
this chapter remain unanswered and a lot of research has yet to be done.  
When it comes to automatic AU detection, existing methods do not yet recognize the full 
range of facial behavior (i.e. all 44 AUs defined in FACS). For machine learning approaches, 
increasing the number of detected AUs boils down to obtaining labeled training data. To 
date, Bartlett’s team has means to detect 30 AUs, and do not yet have sufficient labeled data 
for the other AUs. In general, examples from over 50 subjects are needed. Regarding feature 
tracking approaches, a way to deal with this problem is to look at diverse facial features. 
Although it has been reported that methods based on geometric features are usually 
outperformed by those based on appearance features, recent studies like that of Pantic & 
Patras (2006), Valstar and Pantic (2006a), and those presented in this chapter, show that this 
claim does not always hold. We believe, however, that further research efforts toward 
combining both approaches are necessary if the full range of human facial behavior is to be 
coded in an automatic way. 
Existing methods for machine analysis of facial expressions discussed throughout this 
chapter assume that the input data are near frontal- or profile-view face image sequences 
showing facial displays that always begin with a neutral state. In reality, such assumption 
cannot be made. The discussed facial expression analyzers were tested on spontaneously 
occurring facial behavior, and do indeed extract information about facial behavior in less 
constrained conditions such as an interview setting (e.g., Bartlett et al., 2006; Valstar et al, 
2006). However deployment of existing methods in fully unconstrained environments is still 
in the relatively distant future. Development of robust face detectors, head-, and facial 
feature trackers, which will be robust to variations in both face orientation relative to the 
camera, occlusions, and scene complexity like the presence of other people and dynamic 
background, forms the first step in the realization of facial expression analyzers capable of 
handling unconstrained environments. 
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Consequently, if we consider the state of the art in face detection and facial feature 
localization and tracking, noisy and partial data should be expected. As remarked by Pantic 
and Rothkrantz (2003), a facial expression analyzer should be able to deal with these 
imperfect data and to generate its conclusion so that the certainty associated with it varies 
with the certainty of face and facial point localization and tracking data. For example, the 
PFFL point tracker proposed by Patras and Pantic (2004, 2005) is very robust to noise, 
occlusion, clutter and changes in lighting conditions and it deals with inaccuracies in facial 
point tracking using a memory-based process that takes into account the dynamics of facial 
expressions. Nonetheless, this tracking scheme is not 100% accurate. Yet, the method 
proposed by Valstar and Pantic (2006a), which utilizes the PFFL point tracker, does not 
calculate the output data certainty by propagating the input data certainty (i.e., the certainty 
of facial point tracking). The only work in the field that addresses this issue is that of Pantic 
and Rothkrantz (2004a). It investigates AU recognition from static face images and explores 
the use of measures that can express the confidence in facial point localization and that can 
facilitate assessment of the certainty of the performed AU recognition. Another way of 
generating facial-expression-analysis output such that the certainty associated with it varies 
in accordance to the input data is to consider the time-instance versus time-scale dimension 
of facial behavior (Pantic & Rothkrantz, 2003). By considering previously observed data 
(time scale) with respect to the current data (time instance), a statistical prediction and its 
probability might be derived about both the information that may have been lost due to 
malfunctioning / inaccuracy of the camera (or a part of facial expression analyzer) and the 
currently displayed facial expression. Probabilistic graphical models, like Hidden Markov 
Models (HMM) and Dynamic Bayesian Networks (DBN) are well suited for accomplishing 
this (Pantic et al., 2005a). These models can handle noisy features, temporal information, and 
partial data by probabilistic inference.  
It remains unresolved, however, how the grammar of facial behavior can be learned (in a 
human-centered manner or in an activity-centered manner) and how this information can be 
properly represented and used to handle ambiguities in the observation data (Pantic et al., 
2005a). Another related issue that should be addressed is how to include information about 
the context (environment, user, user’s task) in which the observed expressive behavior was 
displayed so that a context-sensitive analysis of facial behavior can be achieved. These 
aspects of machine analysis of facial expressions form the main focus of the current and 
future research in the field. Yet, since the complexity of these issues concerned with the 
interpretation of human behavior at a deeper level is tremendous and spans several 
different disciplines in computer and social sciences, we believe that a large, focused, 
interdisciplinary, international program directed towards computer understanding of 
human behavioral patterns (as shown by means of facial expressions and other modes of 
social interaction) should be established if we are to experience true breakthroughs in this 
and the related research fields. 
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1. Introduction 

The survival of an individual in a socially complex world depends greatly on the ability to 
interpret visual information about the age, sex, race, identity and emotional state of another 
person based on that person’s face. Despite a variety of different adverse conditions 
(varying facial expressions and facial poses, differences in illumination and appearance), 
humans can perform face identification with remarkable robustness without conscious 
effort.
Face recognition research using automatic or semi-automatic techniques emerged in the 
1960s, and especially in the last two decades it has received significant attention. One reason 
for this growing interest is the wide range of possible applications for face recognition 
systems. Another reason is the emergence of affordable hardware, such as digital 
photography and video, which have made the acquisition of high-quality and high-
resolution images much more ubiquitous. Despite this growing attention, the current state-
of-the-art face recognition systems perform well when facial images are captured under 
uniform and controlled conditions. However, the development of face recognition systems 
that work robustly in uncontrolled situations is still an open research issue. 
Even though there are various alternative biometric techniques that perform very well 
today, e.g. fingerprint analysis and iris scans, these methods require the cooperation of the 
subjects and follow a relatively strict data acquisition protocol. Face recognition is much 
more flexible since subjects are not necessarily required to cooperate or even be aware of 
being scanned and identified. This makes face recognition a less intrusive and potentially 
more effective identification technique. Finally, the public’s perception of the face as a 
biometric modality is more positive compared to the other modalities (Hietmeyer, 2000). 

1.1 Challenges for face recognition 

The face is a three-dimensional (3D) object. Its appearance is determined by the shape as 
well as texture of the face. Broadly speaking, the obstacles that a face recognition 
systemmust overcome are differences in appearance due to variations in illumination, 
viewing angle, facial expressions, occlusion and changes over time. 
Using 2D images for face recognition, the intensities or colours of pixels represent all the 
information that is available and therefore, any algorithm needs to cope with variation due 
to illumination explicitly. The human brain seems also to be affected by illumination in 
performing face recognition tasks (Hill et al., 1997). This is underlined by the difficulty of 
identifying familiar faces when lit from above (Johnston et al., 1992) or from different 
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directions (Hill and Bruce, 1996). Similarly it has been shown that faces shown in 
photographic negatives had a detrimental effect on the identification of familiar faces (Bruce 
and Langton, 1994). Further studies have shown that the effect of lighting direction can be a 
determinant of the photographic negative effect (Liu et al., 1999). As a result, positive faces, 
which normally appear to be top-lit, may be difficult to recognize in negative partly because 
of the accompanying change in apparent lighting direction to bottom-lit. One explanation 
for these findings is that dramatic illumination or pigmentation changes interfere with the 
shape-from-shading processes involved in constructing representations of faces. If the brain 
reconstructs 3D shape from 2D images, it remains a question why face recognition by 
humans remains viewpointdependent to the extent it is. 
One of the key challenges for face recognition is the fact that the difference between two 
images of the same subject photographed from different angles is greater than the 
differences between two images of different subjects photographed from the same angle. It 
has been reported that recognition rates for unfamiliar faces drop significantly when there 
are different viewpoints for the training and test set (Bruce, 1982). More recently, however, 
there has been debate about whether object recognition is viewpoint-dependent or not (Tarr 
and Bulthoff, 1995). It seems that the brain is good at generalizing from one viewpoint to 
another as long as the change in angle is not extreme. For example, matching a profile 
viewpoint to a frontal image is difficult, although the matching of a three-quarter view to a 
frontal seems to be less difficult (Hill et al., 1997). There have been suggestions that the brain 
might be storing a view-specific prototype abstraction of a face in order to deal with varying 
views (Bruce, 1994). Interpolation-based models (Poggio and Edelman, 1991), for example, 
support the idea that the brain identifies faces across different views by interpolating to the 
closest previously seen view of the face. 
Another key challenge for face recognition is the effect of facial expressions on the 
appearance of the face. The face is a dynamic structure that changes its shape non-rigidly 
since muscles deform soft tissue and move bones. Neurophysiologic studies have suggested 
that facial expression recognition happens in parallel to face identification (Bruce, 1988). 
Some case studies in prosopagnostic patients show that they are able to recognize 
expressions even though identifying the actor remains a near-impossible task. Similarly, 
patients who suffer from organic brain syndrome perform very poorly in analyzing 
expressions but have no problems in performing face recognition. However, the appearance 
of the face also changes due to aging and people’s different lifestyles. For example, skin 
becomes less elastic and more loose with age, the lip and hair-line often recedes, the skin 
color changes, people gain or lose weight, grow a beard, change hairstyle etc. This can lead 
to dramatic changes in the appearance of faces in images. 
A final challenge for face recognition is related to the problem of occlusions. Such occlusions 
can happen for a number of reasons, e.g. part of the face maybe occluded and not 
visiblewhen images are taken from certain angles or because the subject grew a beard, is 
wearing glasses or a hat. 

2. From 2D to 3D face recognition 

2D face recognition is a much older research area than 3D face recognition research and 
broadly speaking, at the present, the former still outperforms the latter. However, the 
wealth of information available in 3D face data means that 3D face recognition techniques 
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might in the near future overtake 2D techniques. In the following we examine some of the 
inherent differences between 2D and 3D face recognition. 

2.1 Advantages and disadvantages of 3D face recognition 

As previously discussed, face recognition using 2D images is sensitive to illumination 
changes. The light collected froma face is a function of the geometry of the face, the albedo 
of the face, the properties of the light source and the properties of the camera. Given this 
complexity, it is difficult to develop models that take all these variations into account. 
Training using different illumination scenarios as well as illumination normalization of 2D 
images has been used, but with limited success. In 3D images, variations in illumination 
only affect the texture of the face, yet the captured facial shape remains intact (Hesher et al., 
2003).
Another differentiating factor between 2D and 3D face recognition is the effect of pose 
variation. In 2D images effort has been put into transforming an image into a canonical 
position (Kim and Kittler, 2005). However, this relies on accurate landmark placement and 
does not tackle the issue of occlusion. Moreover, in 2D this task is nearly impossible due to 
the projective nature of 2D images. To circumvent this problem it is possible to store 
different views of the face (Li et al., 2000). This, however, requires a large number of 2D 
images from many different views to be collected. An alternative approach to address the 
pose variation problem in 2D images is either based on statistical models for view 
interpolation (Lanitis et al., 1995; Cootes et al., 1998) or on the use of generative models 
(Prince and Elder, 2006). Other strategies including sampling the plenoptic function of a face 
using lightfield techniques (Gross et al., 2002). Using 3D images, this view interpolation can 
be simply solved by re-rendering the 3D face data with a new pose. This allows a 3D 
morphable model to estimate the 3D shape of unseen faces from non-frontal 2D input 
images and to generate 2D frontal views of the reconstructed faces by re-rendering (Blanz et 
al., 2005). Another pose-related problem is that the physical dimensions of the face in 2D 
images are unknown. The size of a face in 2D images is essentially a function of the distance 
of the subject from the sensor. However, in 3D images the physical dimensions of the face 
are known and are inherently encoded in the data. 
In contrast to 2D images, 3D images are better at capturing the surface geometry of the face. 
Traditional 2D image-based face recognition focuses on high-contrast areas of the face such 
as eyes, mouth, nose and face boundary because low contrast areas such as the jaw 
boundary and cheeks are difficult to describe from intensity images (Gordon, 1992). 3D 
images, on the other hand, make no distinction between high- and low-contrast areas. 3D 
face recognition, however, is not without its problems. Illumination, for example, may not 
be an issue during the processing of 3D data, but it is still a problem during capturing. 
Depending on the sensor technology used, oily parts of the face with high reflectance may 
introduce artifacts under certain lighting on the surface. The overall quality of 3D image 
data collected using a range camera is perhaps not as reliable as 2D image data, because 3D 
sensor technology is currently not as mature as 2D sensors. Another disadvantage of 3D face 
recognition techniques is the cost of the hardware. 3D capturing equipment is getting 
cheaper and more widely available but its price is significantly higher compared to a high-
resolution digital camera. Moreover, the current computational cost of processing 3D data is 
higher than for 2D data. 



Face Recognition 420

Finally, one of the most important disadvantages of 3D face recognition is the fact that 3D 
capturing technology requires cooperation from a subject. As mentioned above, lens or 
laserbased scanners require the subject to be at a certain distance from the sensor. 
Furthermore, a laser scanner requires a few seconds of complete immobility, while a 
traditional camera can capture images from far away with no cooperation from the subjects. 
In addition, there are currently very few high-quality 3D face databases available for testing 
and evaluation purposes. Those databases that are available are of very small size compared 
to 2D face databases used for benchmarking. 

3. An overview of 3D face recognition 

Despite some early work in 3D face recognition in the late 1980s (Cartoux et al., 1989) 
relatively few researchers have focused on this area during the 1990s. By the end of the last 
decade interest in 3D face recognition was revived and has increased rapidly since then. In 
the following we will review the current state-of-the-art in 3D face recognition. We have 
divided 3D face recognition techniques broadly into three categories: surface-based, 
statistical and model-based approaches. 

3.1 Surface-based approaches 

Surface-based approaches use directly the surface geometry that describes the face. These 
approaches can be classified into those that extract either local and global features of the 
surface (e.g. curvature), those that are based on profile lines, and those which use distance-
based metrics between surfaces for 3D face recognition. 

3.1.1 Local methods 

One approach for 3D face recognition uses a description of local facial characteristics based 
on Extended Gaussian Images (EGI) (Lee and Milios, 1990). Alternatively the surface curvature 
can be used to segment the facial surfaces into features that can be used for matching 
(Gordon, 1992). Another approach is based on 3D descriptors of the facial surface in terms of 
their mean and Gaussian curvatures (Moreno et al., 2003) or in terms of distances and the 
ratios between feature points and the angles between feature points (Lee et al., 2005). 
Another locally-oriented technique is based on using point signatures, an attempt to describe 
complex free-form surfaces, such as the face (Chua and Jarvis, 1997). The idea is to form a 
representation of the neighbourhood of a surface point. These point signatures can be used 
for surface comparisons by matching the signatures of data points of a “sensed” surface to 
the signatures of data points representing the model’s surface (Chua et al., 2000). To 
improve the robustness towards facial expressions, those parts of the face that deform non-
rigidly (mouth and chin) can be discarded and only other rigid regions (e.g. forehead, eyes, 
nose) are used for face recognition. In a similar approach this approach has been extended 
by fusing extracted 3D shape and 2D texture features (Wang et al., 2002). 
Finally, hybrid techniques that use both local and global geometric surface information can 
be employed. In one such approach local shape information, in the form of Gaussian-Hermite 
moments, is used to describe an individual face along with a 3D mesh representing the whole 
facial surface. Both global and local shape information are encoded as a combined vector in 
a low-dimensional PCA space, and matching is based on minimum distance in that space 
(Xu et al., 2004). 
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3.1.2 Global methods 

Global surface-based methods are methods that use the whole face as the input to a 
recognition system. One of the earliest systems is based on locating the face’s plane of 
bilateral symmetry and to use this for aligning faces (Cartoux et al., 1989). The facial profiles 
along this plane are then extracted and compared. Faces can also be represented based on 
the analysis of maximum and minimum principal curvatures and their directions (Tanaka et 
al., 1998). In these approaches the entire face is represented as an EGI. Another approach 
uses EGIs to summarize the surface normal orientation statistics across the facial surface 
(Wong et al., 2004). 
A different type of approach is based on distance-based techniques for face matching. For 
example, the Hausdorff distance has been used extensively for measuring the similarity 
between 3D faces (Ackermann, B. and Bunke, H., 2000; Pan et al., 2003). In addition, several 
modi- fied versions of the Hausdorff distance metric have been proposed (Lee and Shim, 
2004; Russ et al., 2005). Several other authors have proposed to perform face alignment 
using rigid registration algorithms such as iterative closest point algorithm (ICP) Besl and 
McKay (1992). After registration the residual distances between faces can be measured and 
used to define a similarity metric (Medioni and Waupotitsch, 2003). In addition, surface 
geometry and texture can be used jointly for registration and similarity measurement in the 
registration process, and measures not only distances between surfaces but also between 
texture (Papatheodorou and Rueckert, 2004). In this case each point on the facial surface is 
described by its position and texture. An alternative strategy is to use a fusion approach for 
shape and texture (Maurer et al., 2005). In addition to texture, other surface characteristics 
such as the shape index can be integrated into the similarity measure (Lu et al., 2004). An 
important limitation of these approaches is the assumption that the face does not deform 
and therefore a rigid registration is sufficient to align faces. This assumption can be relaxed 
by allowing some non-rigid registration, e.g. using thin-plate splines (TPS) (Lu and Jain, 
2005a).
Another common approach is based on the registration and analysis of 3D profiles and 
contours extracted from the face (Nagamine et al., 1992; Beumier and Acheroy, 2000; Wu et 
al., 2003). The techniques can also be used in combination with texture information (Beumier 
and Acheroy, 2001). 

3.2 Statistical approaches 

Statistical techniques such as Principal Component Analysis (PCA) are widely used for 2D 
facial images. More recently, PCA-based techniques have also been applied to 3D face data 
(Mavridis et al., 2001; Hesher et al., 2003; Chang et al., 2003; Papatheodorou and Rueckert, 
2005). This idea can be extended to include multiple features into the PCA such as colour, 
depth and a combination of colour and depth (Tsalakanidou et al., 2003). These PCA-based 
techniques can also be used in conjunction with other classification techniques, e.g. embed-
ded hidden Markov models (EHMM) (Tsalakanidou et al., 2004). An alternative approach is 
based on the use of Linear Discriminant Analysis (LDA) (G¨okberk et al., 2005) or 
Independent Component Analysis (ICA) (Srivastava et al., 2003) for the analysis of 3D face 
data.
All of the statistical approaches discussed so far do not deal with the effects of facial 
expressions. In order to minimize these effects, several face representations have been 
developed which are invariant to isometric deformations, i.e. deformations which do not 
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change the geodesic distance between points on the facial surface. One such approach is 
based on flattening the face onto a plane to form a canonical image which can be used for 
face recognition (Bronstein et al., 2003, 2005). These techniques rely on multi-dimensional 
scaling (MDS) to flatten complex surfaces onto a plane (Schwartz et al., 1989). Such an 
approach can be combined with techniques such as PCA for face recognition (Pan et al., 
2005).

3.3 Model-based approaches 

The key idea of model-based techniques for 3D face recognition is based on so-called 3D 
morphable models. In these approaches the appearance of the model is controlled by the 
model coefficients. These coefficients describe the 3D shape and surface colours (texture), 
based on the statistics observed in a training dataset. Since 3D shape and texture are 
independent of the viewing angle, the representation depends little on the specific imaging 
conditions (Blanz and Vetter, 1999). Such a model can then be fitted to 2D images and the 
model coefficients can be used to determine the identity of the person (Blanz et al., 2002). 
While this approach is fairly insensitive to the viewpoint, it relies on the correct matching of 
the 3D morphable model to a 2D image that is computationally expensive and sensitive to 
initialization. To tackle these diffi- culties, component-based morphable models have been 
proposed (Huang et al., 2003; Heisele et al., 2001). 
Instead of using statistical 3D face models it is also possible to use generic 3D face models. 
These generic 3D face models can then be made subject-specific by deforming the generic 
face model using feature points extracted from frontal or profile face images (Ansari and 
Abdel- Mottaleb, 2003a,b). The resulting subject-specific 3D face model is then used for 
comparison with other 3D face models. A related approach is based on the use of an 
annotated face model (AFM) (Passalis et al., 2005). This model is based on an average 3D 
face mesh that  is annotated using anatomical landmarks. This model is deformed non-
rigidly to a new face, and the required deformation parameters are used as features for face 
recognition. A similar model has been used in combination with other physiological 
measurements such as visible spectrum maps (Kakadiaris et al., 2005). 
A common problem of 3D face models is caused by the fact that 3D capture systems can 
only capture parts of the facial surface. This can be addressed by integrating multiple 3D 
surfaces or depth maps from different viewpoints into a more complete 3D face model 
which is less sensitive to changes in the viewpoint (Lu and Jain, 2005b). Instead of using 3D 
capture systems for the acquisition of 3D face data, it is also possible to construct 3D models 
from multiple frontal and profile views (Yin and Yourst, 2003). 



3D Face Recognition 423

Table 1. Overview Of Techniques 
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3.4 Summary 

The comparison of different 3D face recognition techniques is very challenging for a number 
of reasons: Firstly, there are very few standardized 3D face databases which are used for 
benchmarking purposes. Thus, the size and type of 3D face datasets varies significantly 
across different publications. Secondly, there are differences in the experimental setup and 
in the metrics which are used to evaluate the performance of face recognition techniques. 
Table 3.4 gives an overview of the different methods discussed in the previous section, in 
terms of the data and algorithms used and the reported recognition performance. 
Even though 3D face recognition is still a new and emerging area, there is a need to compare 
the strength of each technique in a controlled setting where they would be subjected to the 
same evaluation protocol on a large dataset. This need for objective evaluation prompted the 
design of the FRVT 2000 and FRVT 2002 evaluation studies aswell as the upcoming FRVT 
2006 (http://www.frvt.org/). Both studies follow the principles of biometric evaluation laid 
down in the FERET evaluation strategy (Phillips et al., 2000). So far, these evaluation studies 
are limited to 2D face recognition techniques but will hopefully include 3D face recognition 
techniques in the near future. 

4. 3D Face matching 

As discussed before, statistical models of 3D faces have shown promising results in face 
recognition (Mavridis et al., 2001; Hesher et al., 2003; Chang et al., 2003; Papatheodorou and 
Rueckert, 2005) and also outside face recognition (Blanz and Vetter, 1999; Hutton, 2004). The 
basic premise of statistical face models is that given the structural regularity of the faces, one 
can exploit the redundancy in order to describe a face with fewer parameters. To exploit this 
redundancy, dimensionality reduction techniques such as PCA can be used. For 2D face 
images the dimensionality of the face space depends on the number of pixels in the input 
images (Cootes et al., 1998; Turk and Pentland, 1991). For 3D face images it depends on the 
number of points on the surface or on the resolution of the range images. Let us assume a set 
of 3D faces 1, 2, 3,..., M can be described as surfaces with n surface points each. The 
average 3D face surface is then calculated by: 

(1)

and using the vector difference 

(2)

the covariance matrix C is computed by: 

(3)

An eigenanalysis of C yields the eigenvectors ui and their associated eigenvalues i sorted 
by decreasing eigenvalue. All surfaces are then projected on the facespace by: 

 (4) 
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where k = 1, ...,m. In analogy to active shape models in 2D (Cootes et al., 1995), every 3D 
surface can then be described by a vector of weights T = [ 1, 2, ..., m], which dictates how 
much each of the principal eigenfaces contributes to describing the input surface. The value 
of m is application and data-specific, but in general a value is used such that 98% of the 
population variation can be described. More formally (Cootes et al., 1995): 

(5)

The similarity between two faces A and B can be assessed by comparing the weights A and 
B which are required to parameterize the faces. We will use two measurements for 

measuring the distance between the shape parameters of the two faces. The first one is the 
Euclidean distance which is defined as: 

(6)

In addition it is also possible calculated the distance of a face fromthe feature-space (Turk 
and Pentland, 1991). This effectively calculates how “face”-like the face is. Based on this, 
there are four distinct possibilities: (1) the face is near the feature-space and near a face class 
(the face is known), (2) the face is near the feature-space but not near a face class (face is 
unknown), (3) the face is distant from the feature-space and face class (image not a face) and 
finally (4) the face distant is from feature-space and near a face class (image not a face). This 
way images that are not faces can be detected. Typically case (3) leads to false positives in 
most recognition systems. 
By computing the sample variance along each dimension one can use the Mahalanobis 
distance to calculate the similarity between faces (Yambor et al., 2000). In the Mahalanobis 
space, the variance along each dimension is normalized to one. In order to compare the 
shape parameters of two facial surfaces, the difference in shape parameters is divided by the 
corresponding standard deviation :

(7)

5. Construction of 3D statistical face models using registration 

A fundamental problem when building statistical models is the fact that they require the 
determination of point correspondences between the different shapes. The manual 
identification of such correspondences is a time consuming and tedious task. This is 
particularly true in 3D where the amount of landmarks required to describe the shape 
accurately increases dramatically compared to 2D applications. 

5.1 The correspondence problem 

The key challenge of the correspondence problem is to find points on the facial surface that 
correspond, anatomically speaking, to the same surface points on other faces (Beymer and 
Poggio, 1996). It is interesting to note that early statistical approaches for describing faces 
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did not address the correspondence problem explicitly (Turk and Pentland, 1991; Kirby and 
Sirovich, 1990). 

Anatomical points landmarked 
Points Landmark Description 

Glabella Area in the center of the forehead between the eyebrows, above the nose 
which is slightly protruding (1 landmark). 

Eyes Both the inner and outer corners of the eyelids are landmarked (4 
landmarks). 

Nasion
The intersection of the frontal and two nasal bones of the human skull 
where there is a clearly depressed area directly between the eyes above 
the bridge of the nose (1 landmark). 

Nose tip The most protruding part of the nose (1 landmark). 
Subnasal The middle point at the base of the nose (1 landmark). 

Lips Both left and right corners of the lips aswell as the top point of the upper 
lip and the lowest point of the lower lip (4 landmarks). 

Gnathion The lowest and most protruding point on the chin (1 landmark). 

Table 2. The 13 manually selected landmarks chosen because of their anatomical 
distinctiveness 

The gold standard to establish correspondence is by using manually placed landmarks to 
mark anatomically distinct points on a surface. As this can be a painstaking and error-prone 
process, several authors have proposed to automate this by using a template with annotated 
landmarks. This template can be then registered to other shapes and the landmarks can be 
propagated to these other shapes (Frangi et al., 2002; Rueckert et al., 2003). Similarly, 
techniques such as optical flow can be used for registration. For example, correspondences 
between 3D facial surfaces can be estimated by using optical flow on 2D textures to match 
anatomical features to each other Blanz and Vetter (1999). Some work has been done on 
combining registration techniqueswith a semi-automatic statistical technique, such as active 
shape models, in order to take advantage of the strengths of each (Hutton, 2004). 
Yet another approach defines an objective function based on minimum description length 
(MDL) and thus treats the problem of correspondence estimation as an optimization 
problem (Davies, 2002). Another way of establishing correspondence between points on two 
surfaces is by analyzing their shape. For example, curvature information can be used to find 
similar areas on a surface in order to construct 3D shape models (Wang et al., 2000). 
Alternatively, the surfaces can be decimated in such a way that eliminates points from areas 
of low curvature. High curvature areas can then assumed to correspond to each other and 
are thus aligned (Brett and Taylor, 1998; Brett et al., 2000). 

5.2 Landmark-based registration 

One way of achieving correspondences is by using landmarks that are manually placed on 
3D features of the face. The landmarks should be placed on anatomically distinct points of 
the face in order to ensure proper correspondence. However, parts of the face such as the 
cheeks are difficult to landmark because there are no uniquely distinguishable anatomical 
points across all faces. It is important to choose landmarks that contain both local feature 
information (eg. the size of the mouth and nose) as well as the overall size of the face (eg. the 
location of the eyebrows). Previous work on 3D face modelling for classification has shown 
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that there is not much difference between the use of 11 and 59 landmarks (Hutton, 2004). In 
our experience 13 landmarks are sufficient to capture the shape and size variations of the 
face appropriately. Table 2 shows the landmarks that are used in the remainder of the 
chapter and Figure 1 shows an example of a face that was manually landmarked. 

Figure 1. The 13 manually selected landmarks chosen because of their anatomical 
distinctiveness 

5.2.1 Rigid registration 

In order to perform rigid registration one face is chosen as a template face and all other faces 
are registered to this template face. Registration is achieved by minimizing the distance 
between corresponding landmarks in each face and the template face using the least square 
approach (Arun et al., 1987). Subsequently, a new landmark set is computed as the mean of 
all corresponding landmarks after rigid alignment. The registration process is then repeated 
using the mean landmark set as a template until the mean landmark set does not change 
anymore. 
Figure 2 (top row) shows two faces aligned to the mean landmarks while the bottom row 
shows a frontal 2D projection of the outer landmarks of the same faces before and after rigid 
landmark registration. After registration it is possible to compute for each point in the 
template surface the closest surface point in each of the faces. This closest point is then 
assumed to be the corresponding surface point. 

5.2.2 Non-rigid registration 

The above rigid registration process assumes that the closest point between two faces after 
rigid registration establishes the correct anatomical correspondence between two faces. 
However, due to differences in the facial anatomy and facial expression across subjects this 
assumption is not valid and can lead to sub-optimal correspondences. To achieve better 
correspondences a non-rigid registration is required. A popular technique for non-rigid 
registration of landmarks are the so-called thin plate splines (Bookstein, 1989). Thin-plate 
splines use radial basis functions which have infinite support and therefore each landmark 
has a global effect on the entire transformation. Thus, their calculation is computationally 
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inefficient. Nevertheless, thin-plate splines have been widely used in medical imaging as 
well as for the alignment of 3D faces using landmarks (Hutton, 2004). 

Figure 2. Rigid registration of faces using landmarks. The top rowshows the two faces 
aligned to the mean landmarks. The bottom row shows a frontal 2D projection of the outer 
landmarks of the same faces before and after registration 

An alternative approach for the non-rigid registration of 3D faces is to use a so-called free-
form deformation (FFD) (Sederberg and Parry, 1986) which can efficiently model local 
deformations.  B-spline transformations, contrary to thin-plate splines, have local support, 
which means that each control point influences a limited region. Furthermore, the 
computational complexity of calculating a B-spline is significantly lower than a thin-plate 
spline. In the following, a nonrigid registration algorithm for landmarks based on multi-
resolution B-splines is proposed. 
Lee et al. described a fast algorithm for interpolating and approximating scattered data 
using a coarse-to-fine hierarchy of control lattices in order to generate a sequence of bicubic 
B-spline function whose sum approximates the desired interpolation function (Lee et al., 
1997). We adopt this approach in order to calculate an optimal free-form deformation for 
two given sets of 3D landmarks. A rectangular grid of control points is initially defined 
(Figure 3) as a bounding box of all landmarks. The control points of the FFD are deformed in 
order to precisely align the facial landmarks. Between the facial landmarks the FFD provides 
a smooth interpolation of the deformation at the landmarks. 
The transformation is defined by a nx × ny × nz grid  of control point vectors  lmn with 
uniform spacing :

(8)
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where  and 
and where Bi, Bj , Bk represent the B-spline basis functions which define the contribution of 
each control point based on its distance from the landmark (Lee et al., 1996, 1997): 

Figure 3. A free-formdeformation and the corresponding mesh of control points 

Given a moving point set (source)  and a fixed point set 
, the algorithm estimates a set of displacement vectors d = p – q

associated with the latter. The output is an array of displacement vectors lmn for the control 
points which provides a least squares approximation of the displacement vectors. 
Since B-splines have local support, each source point pe is affected by the closest 64 control 
points. The displacement vectors of the control points associated with this source point can 
be denoted as ijk:

(9)

where wijk = Bi(r) Bj(s) Bk(t) and i, j, k = 0, 1, 2, 3. Because of the locality of B-splines, the 
spacing of control points has a significant impact on the quality of the least squares 
approximation and the smoothness of the deformation: Large control point spacings lead to 
poor approximations and high smoothness whereas small control point spacings lead to 
good approximations but less smoothness. To avoid these problems, a multilevel version of 
the B-spline approximation is used (Lee et al., 1997). In this approach an initial coarse grid is 
used initially and then iteratively subdivided to enable closer and closer approximation 
between
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two point sets. Before every subdivision of the grid the current transformation T is applied 
to points p and the displacement vectors d are recomputed. 

5.3 Surface-based registration 

A drawback of the registration techniques discussed in the previous section is the need for 
landmarks. The identification of landmarks is a tedious and time-consuming step which 
typically requires a human observer. This introduces inter- and intra-observer variability 
into the landmark identification process. In this section we will focus on surface-based 
registration techniques which do not require landmarks. 

5.3.1 Rigid registration 

The most popular approach for surface registration is based on the iterative closest point (ICP)
algorithm (Besl and McKay, 1992): Given two facial surfaces, i.e. a moving face A = {ai} and a 
fixed (template) face B = {bi}, the goal is to estimate the optimal rotation R and translation t
that best aligns the faces. The function to be minimized is the mean square difference 
function between the corresponding points on the two faces: 

(10)

where pointswith the same index correspond to each other. The correspondence is 
established by looping over each point a on face A and finding the closest point, in 
Euclidean space, on face B:

(11)

This process is repeated until the optimal transformation is found. As before it is possible 
after this registration to compute for each point in the template surface the closest surface 
point in each of the faces. This closest point is then assumed to be the corresponding surface 
point.

5.3.2 Non-rigid registration 

As before, rigid surface registration can only correct for difference in pose but not for 
differences across the facial anatomy and expression of different subjects. Thus, the 
correspondences obtained fromrigid surface registration are sub-optimal. This is especially 
pronounced in areas of high curvature where the faces might differ significantly, such as 
around the lips or nose. As a result the correspondence established between surface points 
tends to be incorrect. In this section we propose a technique for non-rigid surface 
registration which aims to improve correspondences between surfaces. 
Given surfaces A and B, made up of two point sets a and b, the similarity function that we 
want to minimize is: 

(12)

where T nonrigid is a non-rigid transformation. A convienient model for such a non-rigid 
transformation is the FFD model described in eq. (8). Once more one can assume that the 
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correspondence between surface points is unknown. In order to pair points on two surfaces 
to each other, just as with ICP, one can assume that corresponding points will be closer to 
each other than non-corresponding ones. A distance metric d is defined between an 
individual source point a and a target shape B:

(13)

Using this distance metric the closest point in B from all points in A is located. Let Y denote 
the resulting set of closest points and C the closest point operator: 

(14)

After closest-point correspondence is established, the point-based non-rigid registration 
algorithm can be used to calculate the optimal non-rigid transformation Tnonrigid. This is 
represented here by the operator . In order for the deformation of the surfaces to be 
smooth, a multi-resolution approach was adopted, where the control point grid of the 
transformation is subdivided iteratively to provide increasing levels of accuracy. The non-
rigid surface registration algorithm is displayed in Listing 1. 

Listing 1 The non-rigid surface registration algorithm. 
1: Start with surfaces A and a target point set B.
2: Set subdivision counter k = 0, A(0) = A and reset Tnonrigid.
3: repeat
4: Find the closest points between A and B by: Y (k) = C (A(k), B)
5: Compute the ideal non-rigid transformation to align Y (k) and A(0) by: 

 (see section 5.2.2). 

6: Apply the transformation: 
7: until k equals user-defined maximum subdivisions limit 

Figure 4 shows a colour map of the distance between two faces after rigid and non-rigid 
surface registration. It can be clearly seen that the non-rigid surface registration improves 
the alignment of the faces when compared to rigid surface registration. Similarly, non-rigid 
surface registration also better aligns the facial surfaces than non-rigid landmark 
registration:
Figure 5 (a) shows a color map of the distance between two paces after landmark-based 
registration. Notice that the areas near the landmarks (eyes, mouth, nose, chin) are much 
better aligned than other areas. Figure 5 (b) shows a colour map after surface-based 
registration. In this case the registration has reduced the distances between faces in all areas 
and provides a better alignment. 

6. Evaluation of 3D statistical face models 

To investigate the impact of different registration techniques for correspondence estimation 
on the quality of the 3D model for face recognition, we have constructed a 3D statistical face 
model using 150 datasets (University of Notre Dame, 2004). These datasets were acquired 
using a Minolta VIVID 910 camera which uses a structured light sensor to scan surfaces. A 
typical face consists of about 20,000 points. Figure 6 shows an example face. 
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 (a) (b) 
Figure 4. Two faces after (a) rigid and (b) non-rigid surface registration. The colour scale 
indicates the distance between the closest surface points 

 (a) (b) 
Figure 5. Two faces after (a) rigid landmark registration and (b) rigid landmark registration 
followed by non-rigid surface registration. The colour scale indicates the distance between 
the closest surface points 

Figure 6. Example of a Notre Dame dataset 



3D Face Recognition 433

Table 3. The first three principal modes variation of the landmark registration-based model 
(frontal view) 

6.1 Qualitative comparison 

A visual comparison of the models generated shows some differences between them. Figure 
7 shows two views of the landmark-based mean (left) and the surface-based mean (right). In 
both cases non-rigid registration has been used. The facial features on the model built using 
landmark-based registration are much sharper than the features of the model built using 
surface registration. Given that the features of the surfaces are aligned to each other using 
non-rigid registration, it is only natural that the resulting mean would be a surface with 
much more clearly defined features. For example, the lips of every face in the landmark-
based model are always aligned to lips and therefore the points representing them would 
approximately be the same with only their location in space changing. On the other hand 
the lips in the surface-based model are not always represented by the same points. The 
upper lip on one face might match with the lower lip on the template face, which results in 
an average face model with less pronounced features. This is expected, as the faces are 
aligned using a global transformation and there is no effort made to align individual 
features together. 
Another visual difference between the two models is the fact that facial size is encoded more 
explicitly in the landmark-based model. The first mode of variation in Table 3 clearly 
encodes the size of the face. On the other hand the surface-based model in Table 4 does not 
encode the size of the face explicitly. It is also interesting to observe that the first mode of the 
surfacebased model, at first sight, seems to encode the facial width. However, on closer 
inspection in can be seen that the geodesic distance from one side of the face to the other (i.e. 
left to right) changes very little. Figure 8 shows a schematic representation of a template 
mesh and a face as seen from the top. The geodesic distance between points x and y in the 
template mesh is the same as the geodesic distance between points p and q in the subject’s 
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face. In other words the “height” and the “width” of the template face that is used to 
resample a facial surface does not change significantly. What does change and is therefore 
encoded in the first principal component of the ICP-based model is the “depth” (protrusion) 
of the template face. 

Table 4. The first three principal modes variation of the surface-based registration model 
(frontal view) 

Figure 7. Comparison of the mean face from the landmark-based model mean (left) and a 
surface-based model mean (right) 
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Figure 8. Once the faces are registered using surface the closest points are selected. The 
geodesic distance between points x and y in the template mesh and p and q in the subject’s 
face remains relatively unchanged 

6.2 Quantitative comparison 

The differences of the visual aspects of the 3D statistical face models do not necessarily 
describe the quality of the face models. To assess the model quality more quantitatively, 
several generic objective measures such as generalisability, specificity and compactness can 
be used. 

6.2.1 Generalization ability 

The generalization ability of a face model is its ability to represent a face that is not part of 
the training set. This is of importance, as the model needs to be able to generalize to unseen 
examples. Otherwise the model is overfitting to the training set. Generalization ability can 
be measured using leave-one-out reconstruction (Davies, 2002; Hutton, 2004). First, a face 
model built using datasets { } and leaving one face i out. Then, the left-out face is projected 
into the facespace defined by u. This facespace is created using the remaining 149 faces: 

 (15) 

The face i  is then reconstructed using its face parameters s generating a surface i (s): 

  (16) 

where s is the number of shape parameters . The average square approximation error 
between the original face i and the reconstructed  i  can be measured as: 

 (17) 

This process is repeated for all faces. For a more robust assessment of the model, the 
generalization ability was measured as a function of the number s of shape parameters .
The mean square approximation error is the generalization ability score 
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(18)

where M is the total number of faces used. For two models X and Y,  if GX (s) GY (s) for all s
and GX(s)<GY(s) for some s, then the generalization ability of model X is better than that of 
model Y . In this case s is the number of shape parameters  that are used to build the left-
out face. In order to assess the differences between the models’ generalization scores, the 
standard error of each model has to be calculated (Spiegel and Stephens, 1998): 

(19)

where M is the total number of faces used to build the model and  is the sample standard 
deviation of G(s) defined as: 

(20)

Figure 9. The Generalization ability of the landmark-based and surface-based models. Note 
that in the graph the better a model generalizes to unseen examples the lower its 
generalization scores are. The error bars are computed as shown in eq. 19 and they show a 
relatively small standard error in G(s) which allows us to safely conclude that the differences 
in the generalization scores of the two models are significant 

As can be seen in Figure 9 the 3D statistical model built using surface registration has 
greater capacity to explain unseen examples than the model built using landmark 
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registration. In particular, this is most obvious when only a few parameters (between 1 to 
30) are used to encode each face. 

6.2.2 Specificity 

Specificity measures the ability of the face model to generate face instances that are similar 
to those in the training set. To test the specificity N randomfaces  were generated as a 
function of s, the number of face parameters . The generated faces are then compared to the 
closest faces    in the training set: 

(21)

For two models X and Y , if SX(s) SY (s) for all s and SX(s) < SY (s) for some s then method X
builds a more specific model than method Y . Once again the standard error of each model 
has to be calculated in order to be able to assess whether the differences between the two 
models are significant: 

(22)

To calculate the specificity 500 random faces were generated. Figure 10 shows that the 
model built using surface registration is also significantly more specific than the model built 
using landmark registration. 

6.2.3 Compactness 

Compactness measures the ability of the model to reconstruct an instance with as few 
parameters as possible. A compact model is also one that has as little variance as possible, 
and it is described as a plot of the cumulative covariance matrix: 

(23)

To assess the significance of the differences, the standard error in C(s) is calculated once 
again. The standard deviation in the ith mode is given by (Spiegel and Stephens, 1998): 

(24)

where i is the ith eigenvalue of the covariance matrix. The standard error is then given by: 

(25)

Figure 11 shows that the model built using surface registration is significantly more compact 
than the model built using landmark registration. 
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Figure 10. The specificity scores of the landmark-based and surface-based models. Small 
standard error in S(s) (as shown fromthe error bars) also allows for us to conclude safely 
that the difference in specificity scores is indeed significant 

Figure 11. The compactness scores of the landmark-based and surface-based models. The 
standard error bars indicate the likely error of C(s) allowing one once more to conclude that 
there is significant difference between the compactness scores of the two models 
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6.3 Application to face recognition 

The differences in the statistical models describe some visual aspects of the 3D face and do 
not necessarily describe their ability to performface recognition. In order to assess the 
quality of the model-building methods for face recognition, we measured performance in 
three tasks: verification, open-set identification and closed-set identification as proposed in 
the FERET evaluation protocol (Phillips et al., 2000). Because of the small number of datasets 
(150 subjects × 2 samples per subject) we decided not to split the data into three groups as in 
the FERET protocol in order to perform open-set identification subjects. Instead we divided 
the subjects into two pools, the gallery set  and the probe set . The first group comprises 
of faces that are known to the system and are referred to as the gallery . The other set is the 
probe set , containing different biometric samples of the same subjects contained in the 
gallery set. To perform open-set identification we need to calculate the False Acceptance 
(PFA) and Correct Detection and Identification (PDI) rate. The PFA is calculated by: 

(26)

This means that for every face in  we check if there is any face in  other than the face 
belonging to the same subject that would cause a false alarm, given a threshold . The PDI is 
defined as: 

(27)

The open set identification is plotted agains the PDI rate when PFA = 1 – PDI . The second 
measure reported is the rank 1 rate. The cumulative count in this case is given by: 

(28)

The closed-set identification for rank 1, PI (1), is the fraction of probes at rank 1 and is 
described by: 

(29)

For calculating the verification rate we use the round-robin method (Phillips et al., 2004), 
which is designed for two groups  and :

(30)

where  is set to a value so that PFA = 1%. 
In all experiments, all faces in the probe and gallery sets are projected into the facespace and 
their parameters are used for similarity comparisons as described in Section 4. Using the 
Euclidean metric to measure similarities between the faces, rank 1 identification as well as 
verification was performed to describe the task-specific effectiveness of the models. Figure 
12 shows the rank 1 rates of the various models. The difference between them is clear as the 
surface-based models perform significantly better than the landmark-based models, 
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achieving rank 1 rates of 100%. Figure 13 shows the verification rates of the various models. 
Again, the surface-based models outperform the landmark-based models. Finally, the open-
set identification rates for the different models are shown in Figure 14. 

Figure 12. Rank 1 (PI (1)) rates of the various 3D statistical face models 

Figure 13. Verification rates of the various 3D statistical face models 
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Figure 14. Open-set identification rates of the various 3D statistical face models 

7. Disscussion and Conclusions 

This chapter has provided an overview of 3D face recognition techniques. In particular we 
have shown that 3D statistical face models are well suited for 3D face recognition. A key 
challenge in the construction of these statistical models is the estimation of correspondences 
across the faces in the training set. The quality of these correspondences can be directly 
linked to the quality of the model for task-specific applications such as face recognition. Our 
results have shown that surface-based registration techniques produce much better models 
than landmark-based registration techniques in terms of their face recognition performance. 
The models built using surface-based registration are also more specific, compact and 
generalizes better to unseen examples. 
In principle it should also be possible to construct 3D face models which are optimal in some 
sense, e.g. with regard to a certain performance metric in face recognition. This would entail 
an optimization of the correspondences across all faces (e.g. by using a groupwise 
registration algorithm (Cootes et al., 2004)) in such a way that the resulting model produces 
the best possible face recognition performance. Finally, the 3D statistical face models 
discussed so far include only shape information. Of course texture is also a very important 
aspect of the face and should be included into the 3D statistical face model (similarily to the 
3D morphable face model (Blanz and Vetter, 1999)). 
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1. Introduction  

Human biometric characteristics are unique, so it can hardly be duplicated (Kong et al. 
2005). Such information includes; facial, speech, hands, body, fingerprints, and gesture to 
name a few. Face detection and recognition techniques are proven to be more popular than 
other biometric features based on efficiency and convenience (Kriegman et al. 2002; Liu et al. 
2002). It can also use a low-cost personal computer (PC) camera instead of expensive 
equipments, and require minimal user interface. Face authentication has become a potential 
a research field related to face recognition. Face recognition differs from face authentication 
because the former has to determine the identity of an object, while the latter needs to verify 
the claimed identity of a user. Speech (Gu and Thomas 1999) is one of the basic 
communications, which is better than other methods in the sense of efficiency and 
convenience. Each a single biometric information, however, has its own limitation. For this 
reason, we present a multimodal biometric verification method to reduce false acceptance 
rate (FAR) and false rejection rate (FRR) in real-time. 
There have been many approaches for extracting meaningful features. Those include 
principal component analysis (PCA) (Rowley et al. 1998), neural networks (NN) (Rowley et 
al. 1998), support vector machines (SVM) (Osuna  et al. 1997), hidden markov models 
(HMM) (Samaria and Young 1994), and linear discriminant analysis (LDA) (Belhumeur et al. 
1997). In this chapter, we use the PCA algorithm with unsupervised learning to extract the 
face feature. We also use the HMM algorithm for extracting speech feature with supervised 
learning. 
This chapter is organized as follows: Section 2 and 3 describe feature extraction of face and 
speech using the PCA and HMM algorithms, respectively. Section 4 presents the design and 
structure of the proposed system. Section 5 presents experimental, and Section 6 concludes 
the paper with future research topics. 

2. Face Extraction and Recognition 

In this section, the proposed face extraction and recognition method will be presented. The 
proposed method can deal with both gray and color images. Depending on the type of 
images, an additional preprocessing step may be included so that facial features can be 
detected more easily. 
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2.1 Face feature extraction and recognition 

The proposed face feature extraction and recognition method is shown in Figure 1. The 
proposed method makes a new edge image using a 13×9 template in the face image. It can 
also estimate the face poses and normalize the size of detected face to 60×60. The normalized 
image is stored in multimodal database, and it trains the PCA module. The face recognition 
module distinguishes an input image from trained images. 

Figure 1. Face feature extraction and recognition process 

2.2 Face detection and building database using multi-layered relative edge map 

In order to detect a face region and estimate face elements, we use the multi-layered relative 
edge map which can provide better result than just color-based methods (Kim et al. 2004). 
Such directional blob template can be determined according to the face size. More 
specifically, the template is defined so that the horizontal axis is longer than the vertical axis 
as shown in Figure 2(a). The central pixel of a template in a HW ×  image is defined as 

( )xcc yxP ,= , which is created by averaging a 3×3 region. By using a ffff hw ×  directional 

template for face components, the average intensity DirI  of 8-neighborhood pixels is 
calculated on the central pixel, cP . As a result, cI , the brightness value at cP , and the 
brightness difference value can be obtained. The principal direction, 

prd , and its magnitude, 

|| prd , are also determined along the direction including the biggest brightness difference as 

shown in Figure 2(b).  
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(a) (b) 
Figure 2. (a) Directional template   (b) New direction for edge map 
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Figure 3 shows the result of face separation by using the multi-layered relative edge map 
(MLREM) and with this result we make the face database.  

(a) (b) (c) 

Figure 3. (a) An input image, (b) the correspondingly created MLREM, and (c) the 
normalized database (60×60) 

2.3 Unsupervised PCA and singular value decomposition (SVD) 

In the process of PCA for pose estimation we compute covariance matrix C  and its 
eigenvectors from training sets. Let Nxxx ,,, 21

 be N  training face vectors. By definition, 
C can then be estimated as (Zhang et al. 1997), 
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The training data set are packed into the following matrix  

[ ]NxxxX ,,, 21= . (2) 

The estimate of C  can be approximately written as  

TXX
N

C 1= . (3) 

To estimate the eigenvectors of C , we only need to find the eigenvectors of TXX . Even for 
images of moderate size, however, this is computational by complex. From the fundamental 
linear algebra (Sirivich and Kirby 1987), the eigenvectors of TXX can be found from 
eigenvectors of XX T , which are much easier to obtain. Suppose the rank of X  is r , Nr ≤ .
X  has a SVD such as  

=
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where kλ , ku , and kv  respectively represent, singular values, left, and right singular 
vectors of X . ku and kv  have the following relationship.  

k
k

k Xvu
λ
1= . (5) 

Hence, we can easily find eigenface ku after finding kv . Recognized face classified using 

( )
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−=
m

i
ii trd

1

2 , where ir  and it  represent input pattern, pattern of train face, respectively. 
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3. Speech Analysis and Feature Extraction 

Speech recognition is classified into two categories in the sense of feature extraction method. 
One is to extract a linguistic information in speech signal, and the other is to extract an eigen 
specific of a speaker from speech signal (Rabiner and Juang 1998). The former performs 
extraction using the Mel-frequency cepstral coefficient (MFCC) based on the sense of 
hearing for human, and the latter extracts it with using the linear predictive coefficient 
(LPC) based on the sense of human speech. We adopt the latter because an individual has its 
own sense of speech. The LPC processing for speech recognition is shown as Figure 4. A 
simulation result of LPC in the proposed method is shown as Figure 5. 

Figure 4. LPC processing for speech recognition 

Figure 5. A simulation of LPC coefficient of 12th for Korean (open door) 

3.1 HMM for speech recognition and verification 

Speech verification calculates the cumulative distances with reference pattern when the test 
pattern is input. The reference patterns should be made in advance, and it can represent 
each speaker. This is classified in the pattern matching method that recognizes the pattern 
with calculated minimal cumulative distances and HMM. The HMM measures similarity 
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with input pattern after modeling the speech signal statistically by extracting the feature 
from various speech waveforms. Training and verification for speech are shown in Figure 6. 
And the proposed method can solve following three problems: 

(i) Evaluation problem: Given can observation sequence { }ToooO ,,, 21=  and 
the model ),,( πλ BA= , (where, A  represents transition probability, B
output probability, and π  initial probability), how to calculate ( )λ|OP  - (it 
can be solved by using forward and backward algorithm.) 

(ii) Learning problem: How to estimate the model parameter given 
{ }ToooO ,,, 21=  - (It can be solved by using Baum-Welch re-estimation.) 

(iii) Decoding (recognition) problem: Given a model, how to get the best state 
sequence { }tqqqq ,,, 21=  of { }ToooO ,,, 21= , where q  represents the state 
sequence of model, t  time. - (It can be solved by using the Viterbi 
algorithm.), where O  represents specific vector for each frame. 

Figure 6. Feature extraction and verification for speech 
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4. Proposed Multimodal Biometric System 

The proposed multimodal biometric recognition technique, can solve the fundamental 
limitations inherit to single biometric verification. The proposed verification system consists 
of the input, the learning, and the verification module. The input image of size 320×240 
comes into the system in real-time together with the speech. In the learning module, the face 
image is trained under the PCA framework, and the speech is trained with HMM. Feature 
extraction is also accomplished in the learning module. The verification module validates 
the recognized data from the image and speech by using fuzzy logic. Personal information 
made is saved in the form of a code book, and used for verification and rejection. 

4.1 Personal verification using multimodal biometric 

In this subsection, we present a personal verification method as shown in Figure 6. The 
proposed method first detects the face area in an input image. The face verification module 
compares the detected face with the pre-stored code book of personal information. The 
speech verification module extracts and recognizes the end-point of speech, and 
authenticates it after comparing with the code book. Decision processes of face and speech 
use the proposed fuzzy logic algorithm. If the face and speech verification results coincide, 
there in no further processing. Otherwise the fuzzy logic is used to solve the mismatch 
problem. Therefore, if the face and speech is same to the personal information of the code 
book verification is accepted. Otherwise, it is rejected. The entire verification process is 
shown in Figure 7.  

Figure 7. The entire verification process 

4.2 Code book of personal face and speech information 

In this subsection, the proposed personal information code book is described as shown in 
Figure 8. The face feature extraction block is trained by using the PCA algorithm with ten 
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different images per single person. Each an individual probability information projects the 
data to the original image. Figure 9 shows a set of registered face images. The speech feature 
extraction block is trained by using the HMM algorithm with ten iterations per single 
person.

Figure 8. Created personal code book 

Figure 9. Some images of registered person 

4.3 Proposed fuzzy logic for improved verification 

In this subsection, we present a decision method for the face and speech to be certificated 
using fuzzy logic. The proposed method extracts the candidate lists of recognized face 
images and speech as shown in Figure 10. In the face, F1 compares three images of the same 
person with an extracted face candidate. F2 and F3 respectively represent the cases with two 
and one images. For speech verification, S1 compares three speeches of the same person 
with an extracted candidate speaker. S2 and S3 respectively represent the cases with two 
and one speeches. Also, if the extracted candidate of face and speech is same, it is F0&S0 as 
shown in Figure 10. The verification of face and speech uses Mamdni's fuzzy inference 
(Manoj et al. 1998). 

Figure 10. Fuzzy inference engine 

The input fuzzy engine contains the recognized probability classified as shown in Figure 10, 
where ( )3,2,1,0&0,1,2,3 SSSSFFFFβ  represents the coefficient of recognized probability. 
The basis rule is given as 

0.0

5.0

0.1

)(

SPEECH
isOThenCOMPLETEisRPIf

FACE

θ
,       (6) 
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where { }3,2,1,0&0,1,2,3 SSSSFFFFR ∈ , and θO  represents a pre-specificed threshold. The 
input membership function of fuzzy inference engine is shown in Figure 11. Finally, the 
predicted human verification result can be stored by using the Singleton’s fuzzifier, the 
product inference engine, and the average defuzzifier as  

( ) ( ) ( )321max 131213 SFF OSOFOFP +++= .              (7) 

Figure 11. Input membership function of fuzzy engine 

5. Experimental results 

The proposed multimodal, biometric human recognition system is shown in Figure 12, 
which shows the result of face and speech extraction. Figure 13 shows the result of 
registered personal verification. Figure 14 shows the result of non registered person 
rejection.

(a) face detection and registration (b) speech detection and registration 

Figure 12. The process to recognize face and speech 

(a) person verification (b) person verification 
Figure 13. Accepted results 

0.5

1.0 FACE     COMPLETE   SPEECH

0 0.5xPmax Pmax



Multi-Modal Human Verification Using Face and Speech 455

Figure 14. Rejected result for face and speech 

The experimental result for the verification rate using the proposed method is summarized 
in Table 1. An experimental result of FAR given in Table 1 corresponds to 0.01%. In this 
case, the FAR can accept a person out of 100. Table 2 shows the result of the verification rate 
and FAR for the proposed method. As shown in Table 2, the proposed method can reduce 
FAR to 0.0001% and the impersonation to one person out of 10,000. Figure 15 shows that the 
proposed method can further reduce the equal error rate (EER). 

verification rates(%) FAR(%) Test
DB male female male female 

face 98.5 0.01 

speaker 97.37 0.01 

Table 1. Verification rates of male and female 

Test DB verification rate(%) FAR(%) 

face & speaker 99.99 0.0001 

Table 2. Verification rate of the proposed method 

Figure 15. Error rate of the proposed method 

6. Conclusions 

In this chapter, we present a human verification method using combined face and speech 
information in order to improve the problem of single biometric verification. Single 
biometric verification has the fundamental problems of high FAR and FRR. So we present a 



Face Recognition 456

multimodal, biometric human verification method to improve the verification rate and 
reliability in real-time. We use PCA for face recognition and HMM for speech recognition 
for real-time personal verification. As a result the proposed verification method can 
provides stable verification rate, and it overcomes the limitation of a single mode system. 
Based on the experimental results, we show that FRR can be reduced down to 0.0001% in 
the human multimodal interface method using both face and speech information. 
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1. Introduction  

Human biometric characteristics are unique, so it can not be easily duplicated [1]. Such 
information includes; facial, hands, torso, fingerprints, etc. Potential applications, 
economical efficiency, and user convenience make the face detection and recognition 
technique an important commodity compared to other biometric features [2], [3]. It can also 
use a low-cost personal computer (PC) camera instead of expensive equipments, and require 
minimal user interface. Recently, extensive research using 3D face data has been carried out 
in order to overcome the limits of 2D face detection and feature extraction [2], which 
includes PCA [3], neural networks (NN) [4], support vector machines (SVM) [5], hidden 
markov models (HMM) [6], and linear discriminant analysis (LDA) [7]. Among them, PCA 
and LDA methods with self-learning method are most widely used [3]. The frontal face 
image database provides fairly high recognition rate. However, if the view data of facial 
rotation, illumination and pose change is not acquired, the correct recognition rate 
remarkably drops because of the entire face modeling. Such performance degradation 
problem can be solved by using a new recognition method based on the optimized 3D 
information in the stereo face images. 
This chapter presents a new face detection and recognition method using optimized 3D 
information from stereo images. The proposed method can significantly improve the 
recognition rate and is robust against object’s size, distance, motion, and depth using the 
PCA algorithm. By using the optimized 3D information, we estimate the position of the eyes 
in the stereo face images. As a result, we can accurately detect the facial size, depth, and 
rotation in the stereo face images. For efficient detection of face area, we adopt YCbCr color 
format. The biggest object can be chosen as a face candidate among the candidate areas 
which are extracted by the morphological opening for the Cb and Cr components [8]. In 
order to detect the face characteristics such as eyes, nose, and mouth, a pre-processing is 
performed, which utilizes brightness information in the estimated face area. For fast 
processing, we train the partial face region segmented by estimating the position of eyes, 
instead of the entire face region. Figure 1. shows the block diagram of proposed algorithm. 
This chapter is organized as follows: Section 2 and 3 describe proposed stereo vision system 
and pos estimation for face recognition, respectively. Section 4 presents experimental, and 
section 5 concludes the chapter. 
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Figure 1. Block diagram of the proposed algorithm

2. Proposed stereo vision system 

In order to acquire the distance and depth information, we use a parallel stereo camera as 
shown in Figure 2. From the stereo camera, we obtain the disparity between left and right 
images and estimate the distance by a stereo triangulation.  

2.1 Disparity compensation of stereo images 

A block matching algorithm is used to extract the disparity in the stereo images, after 
applying 33×  Gaussian noise smoothing mask. 
In general, the block matching algorithm uses the mean absolute difference (MAD) or the 
mean square difference (MSD) as a criterion. However, the proposed method uses the sum 
of absolute difference (SAD) to reduce computational complexity as  

=

=

=

=

+−=
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Ny

j
RL jkiIjiISAD

0 0

),(),( , (1) 

where
LI represents the 

yx NN × block of left image, RI  represents the 
yx NN ×

corresponding block of right image, and k  represents the disparity between left and right 
images. In the stereo image matching, the disparity compensation between left and right 
images should be performed. When a point in the 3D space is projected on left and right 
images, the virtual line connecting two points is called an epipolar-line [9]. The 
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corresponding blocks of the stereo images are matched on the epipolar-line with the same x-
coordinate. The modified block matching algorithm based on 4×4 block is used for fast 
processing as shown in Figure 3.  

Figure 2. Structure of a parallel stereo camera 

Figure 3. Disparity compensation of stereo images 

The proposed block matching algorithm can remove unnecessary operations and the 
performance of the proposed block matching algorithm is as good as the one of the global 
searching algorithm. The process of the proposed algorithm is as following. First, SAD is 
calculated at each row and then the minimum value of SAD at the corresponding row is 
obtained as  
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Finally, the minimum SAD of entire image can be obtained as   

= R
MINMIN SADMINSAD . (3) 
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Also, the disparity value between left and right images can be calculated as [2]  

ktrightright −
∗ = , ktleftleft +

∗ = . (4) 

2.2 Scaling of the face images according to the distance 

320×240 RGB color images including face region are used as an input image. For fast 
processing and reducing the effect for illumination changes, the RGB input image is 
converted to YCbCr image. By defining the color range for Asian’s face skin as 

]127,77[=CbR  and ]173,133[=CrR , a color-based image segmentation [10] is performed as  

[ ] [ ]∈∩∈
=

,0

),(),(,1
),(

otherwise
RyxCrRyxCbif

yxS CrCb . (5) 

By using the camera characteristics as given in Table 1, the distance can be measured as 

][1080.86 3 m
xx

bfD
rl

××
−

= , (6) 

where b represents the width between cameras, f represents the focal length, and xl and xr

respectively represent the distances of left and right images. Also, the constant of 86.80×103 
represents the effective distance per pixel.  

Item Characteristic 
Camera setting method binocular 
Camera setting width 65( )

Camera focus length(f) 3.6( )

Size 1 pixel 7.2×5.6( )
Resolution width 512(dots) 

Table 1. Camera’s component elements

For the 320x240 input images, the maximum distance of the disparity, rl xx −  is equal to 320, 
and the minimum distance is equal to 1. The scaling according to the change of distance [11] 
is performed as  
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where 'x , 'y  represent the position after scaling processing, xs ,
ys  represent the scaling 

factor, and x , y  represent the current position. From the obtained distance in (6), the 
scaling factor of face image can be calculated as   

( ) distdistdistx AVBV /×= , (8) 

where distB , distV , and distA , and represent the basic distance, the established value by 
distance, and the obtained distance, respectively. 
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2.3 Range-based pose estimation using optimized 3D information  

In order to solve the problem of the low recognition rate due to the uncertainty of size, 
distance, motion, rotation, and depth, optimized 3D information from stereo images is used. 
By estimating the position of eyes, the proposed method can estimate the facial size, depth, 
and pose change, accurately. The result of estimation of facial pose change is shown in 
Figure 4.  

Figure 4. Estimation of face rotation 

In Figure 4, the upper and lower images respectively represent the right image and the left 
image of frontal face. In Figure 5, the range of 9 directions for face images is defined to 
estimate the accurate facial direction and position of stereo images. 

Figure 5. Range of face position according to direction 

3. Pose estimation and face recognition 

Face recognition rate is sensitive to illumination change, pose and expression change, and 
resolution of image. In order to increase the recognition rate under such conditions, we 
should consider the pose change as well as the frontal face image. The recognition rate can 
be increased by the 3D pose information as presented in Figure 5. In order to detect face 
region and estimate face elements, the multi-layered relative intensity map based on the face 
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characteristics is used, which can provide better result than the method using only color 
images. The proposed directional blob template can be determined according to the face 
size. In detail, to fit for the ratio of the horizontal and vertical length of eyes, the template 
should be defined so that the length of horizontal axis is longer than that of vertical one as 
shown in Figure 6 (a). The central pixel of a template in a HW ×  image is defined as 

),( ccc yxP = . By using ffff HW × directional template for face components, the average 

intensity DirI  of 8-neighborhood pixels is calculated in the central pixel, cP . As a result, the 

brightness value at cP , CI  and the brightness difference value can be obtained. The 

principal direction, prd , and its magnitude, 
prd , are determined as the direction including 

the biggest brightness difference as shown in Figure 6 (b). 

dpr

dnorm dDiag2dDiag1

(a) Directional template (b) New direction for map 

Figure 6. Directional template for estimation of position for eyes and mouth 

Figure 7 shows the result of the face region divided by the multi-layered relative intensity 
map. We can build the database including 92×112 face images at each direction. The 
directional range of face image can be classified into 9 groups as shown in Figure 6. 

Figure 7. Face area division of multi-layered relative intensity map 
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The classified images are trained by PCA algorithm using optimized 3D information 
component. The block diagram of the proposed optimized PCA algorithm is shown in 
Figure 8. 

Figure 8. The block diagram of PCA algorithm 

4. Experimental Results 

For the experiment, we extracted 50 to 400 stereo pairs of face images of size 320 240. 
Figure 9 shows the matching result of the left and the right images captured in the distance 
of 43cm. Composed image shows Figure 9(c) which initializes 20 10 block in Figure 9(a), 
and is searched in the limited region of Figure 9(b). The disparity can be found in the most 
left and the top regions as shown in Figure 9(c).  Facial pose estimation is performed with 9 
directional groups at 100cm by using the proposed system as shown in Figure 10. 

(a) left image (b) right image (c) matched image 

Figure 9. The matching result of a stereo image pair 

Figure 10. Detection results at stereo face images 

Figs. 12 show the 92×112 scaled versions of the images captured at different distances. The 
scaling ratio of the captured face images was determined with respect to the reference image 
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captured at the distance of 100cm. The scaling up ratios are respectively 1.2, 1.5, and 2.0 at 
the distances of 120cm, 150cm, and 200cm, while the scaling up ratios are 0.4 and 0.5 at the 
distances of 30cm and 50cm. The scaling factors were determined by experiment. Figs.13 
show the samples of stereo image pairs used as input images. Figs. 14 show the some result 
images recognized by the proposed algorithm. The proposed algorithm can recognize the 
face as well as the pose of the face under pose changes. 

(a) Left images 

(b) Right images 
Figure 11. The scaled version of the face images captured at the distance of 30, 50, 100, 120, 
150, and 200cm 

         
Figure 12. The samples of the input stereo image pairs 

Figure 13. Various pose of the result images recognized by the proposed algorithm 

In Table 2, the recognition rate is compared according to the distance. As shown in the Table 
2, the highest recognition rate can be obtained at the reference distance of 100cm. After 
training 200 stereo images, the recognition rates of the proposed methods were compared to 
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those of the existing methods with respect to 120 test images. The recognition rate of the 
proposed method based on optimized 3D information is provided in Figure 14. Experiment 
1 and 2 respectively used frontal face images and images with various pose change. Figure 
14 shows that the recognition rate using the conventional PCA or HMM drops in inverse 
proportion to the distance. From the experiments, the proposed method can increase the 
recognition rate. 

Recognition rate according to distance (%) No. of 
training
images (L/R) 

No. of 
test
images

30
(cm)

50
(cm)

100
(cm)

120
(cm)

150
(cm)

200
(cm)

200/200 120 90.00 93.33 95.83 91.67 90.00 87.50 

Table  2. The recognition rate according to the distance 
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Figure 14. Recognition rates versus distance comparison for the proposed and various 
existing methods 

5. Conclusions 

This paper proposed a new range-based face detection and recognition method using 
optimized 3D information from stereo images. The proposed method can significantly 
improve the recognition rate and is robust against object’s size, distance, motion, and depth 
using the PCA algorithm. The proposed method uses the YCbCr color format for fast, 
accurate detection of the face region. The proposed method can acquire more robust 
information against scale and rotation through scaling the detected face image according to 
the distance change. Experiments were performed in the range of 30~200cm and we could 
get the recognition rate up to 95.8% according to the scale change. Also, we could get the 
high recognition rate of 98.3% according to the pose change. Experimental results showed 
that the proposed method can increase the low recognition rate of the conventional 2D-
based algorithm. 
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1. Introduction  

Face recognition on still images has been extensively studied. Given sufficient training data 
(many gallery stills of each person) and/or high resolution images, the 90% recognition 
barrier can be exceeded, even for hundreds of different people to be recognized (Phillips et 
al., 2006). Face recognition on video streams has only recently begun to receive attention 
(Weng et al., 2000; Li et al., 2001; Gorodnichy, 2003; Lee et al., 2003; Liu and Chen, 2003; 
Raytchev and Murase, 2003; Aggarval et al., 2004; Xie et al., 2004; Stergiou et al., 2006). 
Video-to-video face recognition refers to the problem of training and testing face recognition 
systems using video streams. Usually these video streams are near-field, where the person 
to be recognized occupies most of the frame. They are also constrained in the sense that the 
person looks mainly at the camera. Typical such video streams originate from video-calls 
and news narration, where a person’s head and upper torso is visible. 
A much more interesting application domain is that of the far-field unconstrained video 
streams. In such streams the people are far from the camera, which is typically mounted on a 
room corner near the ceiling. VGA-resolution cameras in such a setup can easily lead to quite 
small faces – down to less than ten pixels between the eyes (Stiefelhagen et al., 2007), 
contrasted to over two hundred pixels in many of the latest face recognition evaluations 
(Phillips et al., 2006). Also, the people go about their business, almost never facing the camera 
directly. As a result, faces undergo large pose, expression and lighting variations. Part of the 
problem is alleviated by the use of multiple cameras; getting approximately frontal faces is 
more probable with four cameras at the corners of a room than with a single one. The problem 
is further alleviated by the fact that the goal is not to derive a person’s identity from a single 
frame, but rather from some video duration. Faces to be recognized are collected from a 
number of frames; the person identity is then established based on that collection of faces. 
Far-field unconstrained video-to-video face recognition needs to address the following 
challenges: 
• Detection, tracking and segmentation of the faces from the video streams, both for 

system training and recognition. 
• Selection of the most suitable faces to train the system and to base the recognition upon. 
• The face recognition algorithm needs to cope with very small faces, with unconstrained 

pose, expression and illumination, and also with inaccurate face framing. 
• Fusion of the individual decisions on faces, to provide the identity of the person given 

some time interval. 
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In section 2 of this chapter we will present the state-of-the-art in video-to-video face 
recognition, mostly near-field with people moving towards the camera. In section 3 we will 
address all the before-mentioned challenges of video-to-video face recognition, by analyzing 
the tradeoffs of different face segmentation approaches, face recognition methods and 
decision fusion strategies. We will base our analysis on a publicly available database of 
videos, built by the partners of the CHIL project (Waibel et al., 2004) and already used in the 
CLEAR 2006 evaluations (Stiefelhagen et al., 2007). This database offers recordings at five 
different sites, 26 individuals, two different gallery video lengths and four different probe 
video lengths. 

2. Algorithms and databases for video-to-video face recognition 

Video-to-video face recognition is split into two tasks. Firstly stills containing faces are 
extracted from the gallery and probe videos, generating the gallery and probe stills. Then, 
traditional still-to-still face recognition is applied, with one addition: the goal is the 
recognition of a person throughout the complete probe video, i.e. using all the probe stills 
coming from it. Hence, apart from recognition, the video-to-video face recognition task has 
some sort of face detection/tracking and utilization of temporal information embedded in it. 
Even though video-to-video face recognition is a relatively new field, many algorithms can 
be found in the literature. These algorithms differ on the face detection, the way the face 
recognizer utilizes temporal information, as well as on the video databases they are tested 
with.
These algorithms are categorized regarding the way temporal information is used, to report 
people identities per probe video and not per extracted probe still. There are algorithms 
based on post-decision fusion (Xie et al., 2004; Stergiou et al., 2006), while others embed the 
use of temporal information within the face recognizer (Weng et al., 2000; Li et al., 2001; Lee 
et al., 2003; Liu and Chen, 2003; Raytchev and Murase, 2003; Aggarval et al., 2004). An 
exception to this categorization can be found in (Gorodnichy, 2003), where temporal 
information is only utilized in face detection, to provide the best still to attempt recognition. 
The subjects are approaching the camera, allowing for a coarse-to-fine face detection 
scheme.
Xie et al. employ post-decision methods (Xie et al., 2004). Their classifier is a polynomial 
correlation filter bank with non-linear output combination. It operates on faces extracted 
using template matching in a head region found by motion. Since the videos they employ 
are near-field, such a detector suffices. 
Weng et al. are concerned with the computational burden of training in a batch mode from 
many and long gallery videos and propose an iterative tree building algorithm for on-line 
training (Weng et al., 2000). They do not address face detection at all. Their approach falls a 
bit short of the nearest neighbour classifier and is a good candidate when the amount of 
data prohibits batch training. Another graph-based approach is (Raytchev and Murase, 
2003), where face sequences act as nodes and node attraction and repulsion are defined in 
the sequence proximity matrix. Two clustering algorithms are introduced that can lead to 
unsupervised face recognition. 
Li et al. utilize a pose estimator to fit a multi-view dynamic face model on the video frames 
(Li et al., 2001). This gives pose invariant textures. Kernel discriminant analysis of those 
textures yields identity surfaces. Trajectories are defined on these surfaces using gallery 
videos, and are compared with those from probe videos for recognition. Lee et al. split the 
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gallery stills extracted from the videos of each person into pose manifolds (Lee et al., 2003). 
They then use the temporal information to learn the transition probabilities between those 
pose manifolds and to handle occlusions. Face detection is again not addressed. They show 
their approach to be superior to temporal voting across the 20 last extracted probe stills. 
Unlike other video-to-video face recognition methods, they report performance on a per 
still, not video probe basis, which does not reflect the goal of such algorithms. Liu and Chen 
use temporal information in gallery face sequences to train Hidden Markov Models 
(HMMs) (Liu and Chen, 2003). The probe face sequences are analyzed with each of the 
trained HMMs, to yield the person identity based on maximum likelihood scores. Face 
sequences are manually extracted from the videos. They show enhanced performance 
compared to post decision fusion using voting. Aggarval et al. use temporal information to 
learn ARMA pose variation models from gallery and probe face sequences (Aggarval et al., 
2004). They then employ model matching criteria to associate a gallery model to each probe 
one. Face detection is again not addressed. 
All the above algorithms perform face detection and recognition independently. Zhou et al. 
on the other hand perform face tracking and recognition jointly in a particle filtering 
framework by adding an identity variable in the state vector and demanding identity 
consistency across time. In (Zhou et al., 2003) they show good performance employing the 
extracted probe stills as appearance models for tracking, while in (Zhou et al., 2004) they 
improve tracking robustness for moderate pose changes and occlusions using adaptive 
appearance and state transition models. 
The various databases used for video-to-video face recognition are characterized by the 
number of individuals, the degree of pose and illumination variations, the recording 
conditions (far, medium or near field), the duration of the gallery and probe videos and the 
number of probe videos. Some things are common in these databases. The number of 
different people to be recognized is much smaller than the still-to-still face recognition 
databases. While in the latest Face Recognition Grand Challenge (Philips et al., 2006) there 
are thousands of different individuals, all video-to-video face recognition algorithms are 
tested on video databases of 10 to 33 individuals. The only exception is (Weng et al., 2000), 
which employs 143 individuals. There is no significant temporal separation between gallery 
and probe videos; the difficulty of the task stems from the fact that there is action depicted 
in the videos, that results to gross pose, expression and illumination changes and the lower 
quality images, as the resolution of the faces is typically much smaller than the one found in 
still-to-still face recognition databases. Most of the algorithms are tested with videos taken 
indoors. Exceptions can be found in some experiments of (Zhou et al., 2003) and in 
(Raytchev and Murase, 2003). In most cases the recording conditions are near-field: The 
faces occupy a significant part of the image, either during the whole of the video (Weng et 
al., 2000; Li at al., 2001; Liu and Chen, 2003) or towards the end of it as the people are 
walking towards the camera (Gorodnichy, 2003; Raytchev and Murase, 2003; Zhou et al., 
2003; Xie et al., 2004). The only truly far-field video recordings known to the authors are  
those collected by the partners of the CHIL project (Waibel et al., 2004) and already used in 
the Classification of Events, Activities and Relationships (CLEAR 2006) evaluations 
(Stiefelhagen et al., 2007). Unfortunately, many of the algorithms in the field are only tested 
on custom built video databases, which are not publicly available, or for which not all the 
necessary data are reported. Unlike still-to-still face recognition, there have been no 
evaluations for its video-to-video counterpart. The single exception are the CLEAR 2006 and 
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the upcoming CLEAR 2007 evaluations (Stiefelhagen et al., 2007), which include a video-to-
video face recognition task. Table 1 summarizes the most commonly used and publicly 
available video databases. 

Parameter MoBo CLEAR 2006 

No. of people 25 26 

Camera views Single, facing person 4, at room corners 

Gallery duration 10 sec 15 and 30 sec 

Probe duration 10 sec 1, 5, 10 and 20 sec 

No. of probe videos 74 613 (1 sec), 411 (5 sec), 289 (10 
sec) and 178 (20 sec), 

Scenario Walking on a treadmill Moving freely: meeting with 
presentation

Pose, expression Approximately frontal; always 
both eyes visible 

Any pose, natural talking 
expression

Illumination Constant Changes due to projector 
beam, overhead lights 

Recording
conditions

Medium field, 30 to 40 pixels 
wide faces 

Far field, median eye distance 
9 pixels 

Table 1. Summary of publicly available video databases used for video-to-video face 
recognition. The frame rate is 30 fps 

Note that the pose variations in the CLEAR 2006 database are extreme: some of the shorter 
videos do not contain any face with both eyes visible. This is alleviated by the use of 4 
different camera views: one of the views is bound to capture some frames with faces having 
both eyes visible. The durations reported in Table 1 for this database are per camera view; 
there are actually four times as much frames to extract faces from. 
While some of the algorithms that jointly utilize temporal information and perform 
recognition claim better results than post-decision fusion, the latter should not be 
discounted for two reasons. Firstly, only simple (not weighted) voting is used in these 
comparisons. Secondly, all these algorithms are based on learning the evolution of a face 
manifold, as pose, expression and illumination change with time. On the one hand, there 
can be valid changes in the probe videos not present in the gallery videos. On the other 
hand, the face manifold depends on the appearance of the face, which is not only dependant 
on pose, expression and illumination, but also on face detection accuracy. The randomness 
of face detection errors leads to greater face manifold spreading with random transitions. 
Attempting to learn such random transitions just overfits the classifier on the gallery data. 
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The effect of these errors is even more pronounced on far-field viewing conditions and 
unconstrained people movement, where face detection is much harder. All these algorithms 
have not been tested on such videos. For this reason, we have chosen the post-decision 
fusion scheme in (Stergiou et al., 2006) for the far-field, unconstrained video-to-video face 
recognition system detailed in the next section. 

3. Proposed face recognition system 

In this section we analyze the different options for video-to-video face recognition using the 
CLEAR 2006 database. We present different solutions for all the detection and recognition 
subtasks and we investigate their effect on recognition rate. For the reasons discussed in 
section 2 we choose a post-decision fusion scheme to utilize the temporal information in the 
video streams. 

3.1 Face detection for gallery and probe generation 

The CLEAR 2006 database comes with a set of annotations (Stiefelhagen et al., 2007). The 
face bounding box is marked every 1sec, while the centers of the eyes every 200ms. The 
lower frequency of the face annotations is due to the severe difficulty of this kind f 
annotation. Hence the first option for face detection is to simply use these labels to extract 
the faces. The labels are linearly interpolated to provide the eyes of the person in each frame. 
Should two eyes exist, the face is cropped, normalized and added to the probe or gallery. 
Normalization accounts for face geometry and illumination changes. First the marked eyes 
are positioned on specific coordinates on a 34 by 42 template that contains mostly the face 
for approximately frontal views of the people. This is a big template for most of the faces; it 
is selected to favor upsampling of the small faces to downsampling of the large ones. No 
deliberate perturbation of the eye positions is carried out to alleviate the effect of eye 
labeling errors (Lee et al., 2003; Ekenel and Pnevmatikakis, 2006). Such an approach is very 
important for small galleries, and has been applied in the past on still-to-video face 
recognition on data similar to those of the CLEAR2006 (Ekenel and Pnevmatikakis, 2006), 
but the rich gallery of this dataset is enough to randomize the errors and alleviate their 
effect. Then the intensity is made zero-mean, unit variance. Although more aggressive 
normalization techniques exist to account for illumination changes (Pnevmatikakis & 
Polymenakos, 2005), these also degrade performance under pose and expression changes 
(Pnevmatikakis & Polymenakos, 2005). Hence the mild normalization approach is taken 
here, to provide some immunity to illumination changes without degrading performance 
under pose changes too much. The normalized gallery images extracted for one person are 
shown in Figure 1. 
Evidently there are problems with the accuracy of the interpolated labels, or the 200 ms 
labels themselves, that lead to scaling errors, shifting and rotation of the faces. Such effects 
can be from minor up to major, leading to image segments that are definitely not faces (end 
of row four, beginning of row five). Also, there are pose variations, both left-right (even 
extreme profile with only one eye visible – row five) and up-down. Finally note the large 
resolution changes; there are faces where details are visible, and others that are a blur due to 
the upsampling to bring them to a standard size (contrast the level of detail in the two last 
rows). The gross resolution variation present in the probe videos is apparent in the 
histogram of eye distances shown in Figure 2. 
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Figure 1. Gallery faces cropped from the 15 sec gallery videos, using all four cameras, for 
one person 
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Figure 2. Histogram of the eye distances of the faces segmented from the probe videos using 
the manual annotations. The video-to-video face recognition system has to cope with eye 
distances of 4 to 28 pixels 
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When the view is not approximately frontal, then the template might include other parts of 
the head, or even background. Such views are not wanted, and some means for 
automatically discarding them is needed. Note at this point that automatic selection of faces 
is a prerequisite only for the probe videos. But it is not only cumbersome to manually filter 
the gallery stills; such a selection can cause mismatches between the automatically selected 
probe stills and the manually selected gallery stills. For both these reasons an automatic 
mechanism for the selection of faces is utilized. This mechanism employs a measure of 
frontality, based on the supplied face bounding boxes and eye positions. Frontal views 
should have both eyes symmetrically positioned around the vertical face axis. This 
symmetry is enumerated in the frontality measure. The measure can unfortunately be 
inaccurate for two reasons. The first has to do with the provided label files: eye positions are 
provided every 200 ms, while face bounding boxes every 1 sec, causing larger errors due to 
interpolation. The second reason has to do with the positioning of the head: when it is not 
upright, then the major axis of the face does not coincide with the central vertical axis of the 
face bounding box. Nevertheless, employing the proposed frontality measure rids the 
system from most of the non-frontal faces at the expense of missing some frontal but tilted 
ones. As for the threshold on frontality, this should not be too strict to diminish the training 
and testing data. It is set to 0.1 for all training durations and testing durations up to 10 sec. 
For testing durations of 20 sec, it is doubled, as the abundance of images in this case allows 
for a stricter threshold. A final problem with the application of the frontality threshold is 
that there are some testing segments for which both eyes are never visible. This leads to 
empty segments. These profile faces can in principle be classified by face recognizers trained 
on profile faces, but such classifiers have not been implemented in the scope of these 
experiments. The still gallery and probe sets generated using the face annotations are 
summarized in Table 2. 

Face cropping method Interpolated hand-
annotated eye centers Viola-Jones detector 

Face normalization 
De-rotation using the eye 
centers, scaling to 42 by 34 
pixels

No de-rotation, scaling to 
48 by 36 pixels 

Length (sec) 15 30 15 30 
Min 47 56 118 251 
Average 241 517 428 886 

Gallery 
stills per 
person

Max 613 1213 890 1696 
Length (sec) 1 5 10 20 1 5 10 20 
Min 0 0 0 0 1 2 19 81 
Average 16 78 148 301 25 127 226 515 
Max 60 282 479 930 90 348 793 1406 

Probe
stills per 
video

Empty videos 13% 3.4% 1.7% 1.1% 0 0 0 0 

Table 2. Summary of the gallery and probe still sets generated from the CLEAR 2006 videos 
using either the provided face annotations or the trained cascaded detector 

Basing the gallery and probe generation of video-to-video face recognition on annotations is 
not good practice. Annotations and expensive and inaccurate, both because it is difficult to 
label facial features on far-field recordings, and because interpolation is needed, as the 
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frames are annotated sparsely. Also, actual systems have to be fully automatic. Hence a face 
detector is needed. As multiple people are present in the frames, and the faces are tiny 
compared to the frame size, the natural choice for a detector is the boosted cascade of simple 
features (Viola and Jones, 2001). Although many improvements on the original algorithm 
have been proposed (Li and Zhang, 2004; Schneiderman, 2004), we opted to stick to the 
original version that uses AdaBoost and its implementation in OpenCV (Bradski, 2005), as 
this is publicly available. Although a trained cascade of simple classifiers is already 
provided with OpenCV, it is not suitable for our needs as the faces in our far-field 
recordings are too small. That detector has very high miss rate. A more suitable detector is 
thus trained. To do so we use 6,000 positive samples (images with marked faces), 20,000 
negative samples (images with no human or animal face present), an aspect ratio of 3/4, 
minimum feature size 0, 99.9% hit rate, 50% false alarm, tilted features, non-symmetric faces 
and gentle AdaBoost learning (Bradski, 2005). We run the cascaded classifier on all the 
frames of the gallery and probe videos, and we collect the faces. Note that due to the 
existence of many people in the frames, the labels are still needed to tell apart the person 
under consideration from the other meeting participants. If any detection exists close to the 
provided face bounding box, then it is selected as the face of interest. The temporally 
subsampled gallery images for the same person shown in Figure 1 are shown in Figure 3. 

Figure 3. Temporally subsampled gallery faces automatically cropped from the 15 sec 
gallery videos, using all four cameras, for one person 
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Comparing the faces in Figure 1 and 3, it is evident that using the automatic detection 
scheme we get more faces, but less accurately framed than with the face annotations. Also, 
there is no attempt to geometrically normalize the faces based on the eye positions, nor any 
filtering of profile faces. The statistics of the automatically extracted gallery and probe stills 
are also shown in Table 2. 

3.2 Classification 

For classification the gallery faces are vectorized by rearranging the intensities of their pixels 
into a vector, e.g. by reading the intensities in a column-wise fashion. The mean vector is 
subtracted, yielding zero-mean vectors, to be used for the training of the classifiers. 
The classifiers employed are of the linear subspace projection family. Both Principal 
Components Analysis (PCA) (Turk and Pentland, 1991) and Linear Discriminant Analysis 
(LDA) (Belhumeur et al., 1997) are employed to build unsupervised and supervised 
projection matrices respectively. PCA aims at transforming the training vectors so that their 
projections in lower-dimensional spaces has maximum scatter. This guarantees optimality in 
terms of minimum squared error of the representation of the original vectors in any lower-
dimensional space (Duda et al., 2000). The determination of the transformation matrix does 
not require any class information, hence it is unsupervised. Although the optimality in 
representation does not offer any guarantee for optimality in classification, the use of PCA 
has led to the successful Eigenface face recognition method (Turk and Pentland, 1991). The 
dimension D of the recognition subspace onto which the training vectors are projected is a 
parameter of the method, to be determined empirically. Suppressing some of the 
dimensions along which the scatter of the projected vectors is smallest not only increases the 
speed of the classification, but also seems to be suppressing variability that is irrelevant to 
the recognition, leading to increased performance. LDA on the other hand aims at 
maximizing the between-class scatter under the constraint of minimum within-class scatter 
of the training vectors, effectively minimizing the volume of each class in the recognition 
space, while maximizing the distance between the classes (Duda et al., 2000). The 
dimensions of the LDA subspace is − 1K , where K is the number of classes. The 
determination o the LDA projection matrix requires class information, hence it is 
supervised. LDA suffers from ill-training (Martinez and Kak, 2001), when the training 
vectors do not represent well the scatter of the various classes. Nevertheless, given sufficient 
training, its use in the Fisherfaces method (Belhumeur et al., 1997) has led to very good 
results. 
LDA is better for large faces with accurate eye labels (Rentzeperis et al., 2006), but PCA is 
more robust as face size and eye labeling accuracy drop. LDA is robust to illumination 
changes (Belhumeur et al., 1997). PCA can be made more robust to illumination changes if 
some of the eigenvectors corresponding to the largest eigenvalues are excluded from the 
projection matrix, but this reduces the robustness of PCA under eye misalignment errors. At 
far-field viewing conditions, resolution is low and the accurate determination of the eye 
position is very difficult, even for human annotators. To demonstrate the difficulties the far-
field viewing conditions impose on face recognition, a comparison of the error rate of PCA, 
PCA without the three eigenvectors correspond=ding to the three largest eigenvalues (PCA 
w/o 3) and LDA is carried out in Figure 4, for different face resolutions and eye alignment 
accuracies. Note that the database used for these experiments is not the video database of 
CLEAR 2006, but HumanScan (Jesorsky et al., 2001) that offers very large faces which can be 
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decimated to smaller dimensions and the evaluation methodology is the one presented in 
(Pnevmatikakis and Polymenakos 2005). The probability of misclassification (PMC) 
increases below 10 pixels of eye distance, even with perfect eye labelling, and LDA can 
become worse than PCA, even when as many as 10 gallery faces per person are used (Figure 
4.a). The PMC degrades even less gracefully when the faces are registered with incorrect eye 
positions. For 5 gallery faces per person and RMS eye alignment errors greater than 5% of 
the eye distance, PCA and LDA perform similarly. PCA w/o 3 becomes worse than PCA for 
eye misalignments larger than 2% of the eye distance 
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Figure 4. Effect of far-field viewing conditions on linear subspace projection face 
recognition. (a) Performance as a function of face resolution. (b) Performance as a function 
of eye misalignment 

It is evident from the above example that the performance of LDA and PCA at the face 
resolutions and eye misalignments of interest is expected to be very close, but each method 
performs better under different conditions. When there are many probe images per testing 
segments, LDA is expected to be a better choice to PCA. The latter is expected to surpass 
LDA when there are fewer gallery images or more probe images to fuse the individual 
decisions. Hence both methods are used, and their results are fused, as explained in the next 
section. A note is due at this point for the application of LDA. Contrary to the Fisherfaces 
algorithm (Belhumeur et al., 1997), in this case the small sample size problem (Yu and Yang, 
2001) does not apply. The number of pixels of the faces is smaller than the available gallery 
stills, no matter the gallery duration or the face cropping method employed. Hence no PCA 
step is used, without the need for a direct LDA algorithm (Yu and Yang, 2001). 
According to the Eigenfaces (Turk and Pentland, 1991) or Fisherfaces (Belhumeur et al., 
1997) methods, the gallery images are represented by their class means after projection to 
the recognition space. Recognition is based on the distance of a projected gallery face from 
those means. This is not effective in the case of unconstrained movement of the person, since 
then the intra-personal variations of the face manifold due to pose variations can be far more 
pronounced than the extra-personal variations (Li et al., 2001). In this case it is better to use a 
nearest neighbour classifier. The implication is that all the projected gallery faces have to be 
kept and compared against every probe projected face. 
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Different distance metrics can be used for classification. When the probe faces are compared 
to the gallery class centres, then the weighted Euclidian distance is used for PCA projection 
and the Cosine for LDA projection (Pnevmatikakis & Polymenakos, 2005). When the 
comparison is against any individual gallery face, then the Euclidian distance is used. 
Although the individual recognition rate for each probe face is not the goal of the video-to-
video system, it is instructive to report it for the different options of LDA and PCA 
classifiers. This is done in Figure 5 for the manually cropped faces using the annotations and 
the automatically cropped faces from the 15 sec long gallery and the 1 sec long probe videos. 
Obviously, for manual cropping, the best recognition results with PCA (46.5%) are obtained 
using the nearest neighbour classifier and retaining 35 dimensions in the recognition space. 
The best individual results with LDA (44.1%) are again obtained using the nearest 
neighbour classifier. For automatic cropping, the best recognition results with PCA (57.5%) 
are obtained using the nearest neighbour classifier and retaining 45 dimensions in the 
recognition space. The higher optimum recognition subspace dimension for this case is 
justified by the higher maximum recognition subspace dimension due to the increased 
normalized resolution of the automatically cropped faces. The best individual results with 
LDA (49.9%) are again obtained using the nearest neighbour classifier, but notice in this case 
how worse the LDA performance is compared to PCA. 
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Figure 5. Individual PMC for the manually cropped faces using the annotations (a) and the 
automatically cropped faces (b) from the 15 sec long gallery and the 1 sec long probe videos. 
The effect of projection type (PCA or LDA), classifier (class centre or NN) and recognition 
space dimension is shown 

Finally, the correlation of successful individual recognition to face resolution and frontality 
is investigated. The probability density functions (PDF) of eye distance and frontality 
conditioned on correct or wrong recognition results are shown in Figure 6, again for the 
manually cropped faces using the annotations in the 15 sec long gallery and the 1 sec long 
probe videos. It can be seen that compared to the PDFs given wrong results, the shift of the 
PDFs given correct results towards larger eye distances or frontality values is very small. 
This signifies that the performance of the system does not depend significantly on the pose 
or the size of the faces. 



Face Recognition 478

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

Eye distance (pixels)

C
o
n
d
it
io

n
a
l 
P

D
F

Correct

Wrong

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Frontality

C
o
n
d
it
io

n
a
l 
P

D
F

Correct

Wrong

(a) (b) 

Figure 6. Conditional PDFs of eye distance and frontality leading to correct or wrong 
recognition 

3.3 Post-decision fusion 

A two-stage fusion scheme is employed, based on the sum rule (Kittler et al., 1998). The first 
stage performs fusion jointly across time and camera views, while the second stage fuses the 
results of the two classifiers. The fusion scheme is illustrated in Figure 7. 

Figure 7. Two-stage fusion scheme. The PMC shown at the various stages of the scheme 
correspond to the 15 sec gallery videos, face extraction using the provided annotations and 
classifying the extracted probe stills according to the distance from the gallery class centres 

The individual decisions for the probe faces are fused using the sum rule (Kittler et al., 
1998). According to the sum rule, each of the decision iID  of the probe faces in a testing 
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segment casts a vote that carries a weight iw . The weights iw  of every decision such as 
=iID k  are summed to yield the weights kW  of each class: 

=

=
: i

k i
i ID k

W w  (1) 

where = 1, ,k K  and K is the number of classes. Then the fused decision based on the N
individual identities is: 

( ) ( )= arg maxN
k

k
ID W  (2) 

The weight iw  in the sum rule for the i-th decision is the sixth power of the ratio of the 
second-minimum distance (1)

id  over the minimum distance (1)
id :

=
6(2)

(1)
i

i
i

dw
d

 (3) 

This choice for weight reflects the classification confidence: If the two smallest distances 
from the class centers are approximately equal, then the selection of the identity leading to 
the smallest distance is unreliable. In this case the weight is close to unity, weighting down 
the particular decision. If on the other hand the minimum distance is much smaller than the 
second-minimum, the decision is heavily weighted as the selection of the identity is reliable. 
The sixth power allows for a few very confident decisions to be weighted more then many 
less confident ones. The suitability of the proposed weights is demonstrated in Figure 8, 
where the conditional cumulative density functions (CDF) of the weights, conditioned on 
correct or wrong recognition are shown for the manually cropped faces using the 
annotations and the automatic detection scheme, in the 15 sec long gallery and the 1 sec long 
probe videos. 
It is evident from Figure 8 that the probability of wrong recognition diminishes as the 
proposed weight increases, hence they can be used in a weighted voting scheme. The fused 
recognition rate of PCA increases from the 71.7% obtained by majority voting, to 72.8% 
obtained by using the proposed weighted voting scheme. Also, the weights for the faces 
cropped using the automatic detection scheme are more suitable than those of the manual: 
The CDFs given wrong decisions are practically the same, while the CDF given correct 
decisions for the automatic scheme is shifted to larger weights compared to that for manual 
cropping. Hence, not only the individual recognition rates for the automatic scheme are 
higher (see Figure 5), but in addition it is expected that the gain due to fusion will be higher. 
Indeed, fusing the individual PCA results on the manually cropped probes from the 1 sec 
long videos, we obtain a recognition rate of 53.8%, with a relative increase from the 
individual rate of 15.7%. On the other hand, fusing the individual PCA results on the 
automatically cropped probes, we obtain a recognition rate of 72.8%, with a relative increase 
from the individual rate of 26.5%. 
The decisions ( )PCAID  and ( )LDAID  of the PCA and the LDA classifiers are again fused using 
the sum rule to yield the reported identity. For this fusion, the class weights kW  of equation 
(1) are used instead of the distances in equation (3). Setting: 
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the weights of the PCA and LDA decisions become: 
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Figure 8. Conditional cumulative density functions of the weights, conditioned on correct or 
wrong recognition are shown for the manually cropped faces using the annotations and the 
automatic detection scheme, in the 15 sec long gallery and the 1 sec long probe videos. The 
weights from the PCA classifier are used 

3.4 Performance 

The performance of the video-to-video face recognition system described in this section is 
presented next. This system using the manual annotations for gallery and probe still 
generation and classification based on the distance from projected gallery class centres has 
been evaluated in CLEAR 2006. Performance can be significantly boosted using the nearest 
neighbour classifier, especially for the 30 sec long gallery videos. An even greater 
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performance boost is achieved by using the automatic face detection scheme. The somehow 
degraded framing of the faces in some still images thus generated is by far compensated by 
the larger number of gallery stills available for training and the larger number of probe stills 
per test, that allow for more efficient post-decision fusion. The recognition rate in the probe 
videos is presented in Table 3 and Figure 9. For comparison, also the best performance 
achieved in the CLEAR 2006 evaluations is also included. 

15 sec gallery duration 30 sec gallery duration 
Probe duration (sec) Method

1 5 10 20 1 5 10 20 
Annotations, distance from 
class centres (Man-centre) 49.4 70.3 75.8 79.8 52.7 68.9 73.4 75.3 

Annotations, nearest 
neighbour (Man-NN) 53.8 72.3 78.2 83.1 60.7 79.6 85.5 91.6 

Viola-Jones detector, nearest 
neighbour (VJ-NN) 72.8 86.6 87.9 93.3 79.5 93.47 93.8 97.8 

CLEAR-Best 62.3 73.2 79 80.7 71 81.5 83.9 85.2 

Table 3. Average recognition rates for the various probe video durations, given any of the 
two gallery video durations. The first three entries correspond to the different options for 
the system described in this section, while the last one refers to the best performance 
reported (across all systems) in the CLEAR 2006 evaluations 
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Figure 9. Average recognition rates for the various probe video durations, for (a) 15 sec 
gallery videos duration and (b) 30 sec gallery videos duration 

Next we investigate the effect of the amount of probe faces extracted from the videos and of 
the weights obtained when the probes are recognized individually on the correct recognition 
over the complete sequence. Figure 10 depicts the scatter plot of the maximum weight 
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versus the number of probe faces extracted, for each of the 1 sec long probe videos that lead 
to correct or wrong recognition. 
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Figure 10. Scatter plot of the maximum weight versus the number of probe faces extracted, 
for each of the 1 sec long probe videos that lead to correct (asterisks) or wrong (points) 
recognition 

The more probe faces the system extracts and the highest the maximum weight from the 
individual recognition is, the easiest is the person in the video correctly recognized. For all 
practical reasons, when there is a weight higher than 2.5 or there are more than 30 extracted 
probe faces, the person is identified correctly. Given longer probe video durations, these 
conditions are more likely to be met. Of course this depends on the situation depicted in the 
video, for example a person looking down all the time. 
Finally, it is interesting to investigate if some people are harder to recognize than others. The 
bar graph of Figure 11 depicts the recognition rates for the 26 different people, under the 
two training and four testing conditions. Some people that are hard to recognize remain so 
no matter the gallery or probe video lengths. This variation in the performance across 
different people can not be attributed to the properties of the extracted gallery or probe 
faces; like their number, eye distance of frontality metric. It is due to the difference in 
matching between training and testing conditions: Some people act similarly in the gallery 
and probe videos, hence appearing similar, while others do not. 
It is evident from Figure 11 that not always people that are very difficult to recognize in one 
of the eight training and testing conditions remain difficult in other conditions. This is 
because the actions of a person in the probe and gallery videos can be more or less matched 
as those videos change. For example, the most difficult person in the 15 sec gallery video 
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and 1 sec probe videos, is easier than people 2 and 7 in the 10 sec probe videos, and easier 
than people 2-6, 8, 10 and 14 in the 30 sec gallery video. 
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Figure 11. Per person recognition rates for the different durations of the probe videos 
(grouped) and for the 15 sec  (a) or 30 sec (b) long gallery videos. The people are sorted by 
ascending recognition rate for the 1 sec long probe and the 15 sec long gallery videos 

Finally, there is a large deviation in recognition performance in the 15 sec gallery video and 
1 sec probe videos. This drops somewhat for longer probe and gallery videos. This is 
demonstrated in Figure 12, where the standard deviation of the recognition rate across the 
26 different people is depicted for the four probe video durations and the two gallery video 
durations. Hence increasing the probe or gallery durations tend to make performance across 
different people both better and more uniform. 
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Figure 12. Standard deviation of the recognition rate across the 26 different people for the 
four probe video durations and the two gallery video durations. Performance across the 
different people is more uniform as the durations increase 

4. Conclusion and possible extensions 

In this chapter we have presented the tradeoffs in video-to-video face recognition, applied 
on far-field, unconstrained recordings. We have demonstrated that given long probe video 
durations the performance of a system based on a frontal Viola-Jones face detector, linear 
subspace projection and nearest neighbour classifier more or less solves the problem, with 
average recognition rates above 95%. In applications where long probe videos are 
impractical, performance is still low (recognition rates of 74% or 80% for 1 sec probe and 15 
sec or 30 sec gallery video durations), especially given that the number of people are limited 
to the modest number of 26. To further enhance performance, there are some possible 
system enhancements: 
• Multiple face detectors can be trained, including poses other than frontal. Also, face 

detection can be coupled with a probabilistic tracker based on particle filtering (Zhou et 
al., 2004) or a deterministic tracker based on colour histograms using CAMShift 
(Bradski, 1998). This will provide more stills, capturing more pose variations. 

• Other distance metrics (weighted Euclidian, cosine) can be used for nearest neighbour 
classification. 

• Modelling of face sequences, similar to the exemplar approach of (Zhou et al., 2003), to 
automatically detect outliers that are not smooth pose transitions, but rather face 
detector errors. The cleaner face sequences thus obtained can be used to model pose 
transitions, allowing more efficient utilization of temporal information than weighted 
voting (Weng et al., 2000; Li et al., 2001; Lee et al., 2003; Liu and Chen, 2003; Aggarval et 
al., 2004). 



Far-Field, Multi-Camera, Video-to-Video Face Recognition 485

5. Acknowledgements 

This work is sponsored by the European Union under the integrated project CHIL, contract 
number 506909. 

6. References 

Aggarwal, G.; Roy-Chowdhury, A.K. & Chellappa, R. (2004). A System Identification 
Approach for Video-based Face Recognition, Proceedings of International Conference 
on Pattern Recognition, Cambridge, UK, Aug. 2004 

Belhumeur, P.; Hespanha, J. & Kriegman, D. (1997). Eigenfaces vs. Fisherfaces: Recognition 
Using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 19, 7, 711-720 

Bradski, G. (1998). Computer Vision Face Tracking for Use in a Perceptual User Interface. 
Intel Technology Journal, 2 

Bradski, G.; Kaehler, A. & Pisarevsky, V. (2005). Learning-Based Computer Vision with 
Intel's Open Source Computer Vision Library. Intel Technology Journal, 9 

Duda, R.; Hart, P. & Stork, D. (2000). Pattern Classification. Wiley-Interscience, New York 
Ekenel, H. & Pnevmatikakis, A. (2006). Video-Based Face Recognition Evaluation in the 

CHIL Project – Run 1, Proceedings of IEEE Conference on Automatic Face and Gesture 
Recognition, pp. 85-90, Southampton, UK, Apr., 2006 

Gorodnichi, D. (2003). Facial Recognition in Video. In: AVBPA 2003, Lecture Notes in 
Computer Science 2688, Kittler, J. & Nixon, M.S. (Ed.), 505-514, Springer-Verlag, 
Berlin Heidelberg 

Jesorsky, O.; Kirchberg, K. & Frischholz, R. (2001). Robust Face Detection Using the 
Hausdorff Distance. In Bigun, J. & Smeraldi, F. (ed.), Audio and Video based Person 
Authentication, 90-95, Springer-Verlag, Berlin Heidelberg 

Kittler, J.; Hatef, M.; Duin, R.P.W. & Matas, J. (1998). On combining classifiers. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 20, 3, 226–239 

Lee, K.-C..; Ho, J.; Yang, M.-H. & Kriegman, D. (2003). Video-based face recognition using 
probabilistic appearance manifolds. Proceedings of IEEE Conference on Computer 
Vision and Pattern Recognition, 1, pp. 313-320, Madison, Wisconsin, USA, June 2003 

Li, Y.; Gong, S. & Liddell, H. (2001). Video-Based Online Face Recognition Using Identity 
Surfaces. Proceedings of IEEE ICCV Workshop on Recognition, Analysis, and Tracking of 
Faces and Gestures in Real-Time Systems, pp. 40-46, Vancouver, Canada,  July 2001 

Li, S.-Z. & Zhang, Z.Q. (2004). FloatBoost Learning and Statistical Face Detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26, 9, 1112-1123 

Liu, X.. & Chen, T. (2003). Video-based face recognition using adaptive hidden markov 
models. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1,
pp. 340-345, Madison, Wisconsin, USA, June 2003 

Martínez , A. & Kak, A. (2001). PCA versus LDA. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 23, 2, 228-233 

Phillips, J.; Flynn, P.; Scruggs, T.; Boyer, K. & Worek, W. (2006). Preliminary Face 
Recognition Grand Challenge Results. Proceedings of IEEE Conference on Automatic 
Face and Gesture Recognition, pp. 15-21, Southampton, UK, Apr., 2006 



Face Recognition 486

Pnevmatikakis, A. & Polymenakos, L. (2005). A testing methodology for face recognition 
algorithms. In: MLMI 2005, Lecture Notes in Computer Science 3869, Renals, S. & 
Bengio, S. (Ed.), 218-229, Springer-Verlag, Berlin Heidelberg 

Raytchev, B. & Murase, H. (2003). Unsupervised recognition of multi-view face sequences 
based on pairwise clustering with attraction and repulsion. Computer Vision and 
Image Understanding, 91, 22-52 

Rentzeperis, E.; Stergiou, A.; Pnevmatikakis, A. & Polymenakos, L. (2006). Impact of Face 
Registration Errors on Recognition. Artificial Intelligence Applications and Innovations,
Peania, Greece, June 2006 

Schneiderman, H. (2004). Feature-Centric Evaluation for Efficient Cascaded Object 
Detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
Washington, DC, USA, June 2004 

Stergiou, A.; Pnevmatikakis, A. & Polymenakos, L. (2007). A Decision Fusion System across 
Time and Classifiers for Audio-visual Person Identification. In: CLEAR 2006, Lecture 
Notes in Computer Science 4122, Stiefelhagen, R. & Garofolo, J. (Ed.), 218-229, 
Springer-Verlag, Berlin Heidelberg 

Stiefelhagen, R.; Bernardin, K., Bowers, R., Garofolo, J., Mostefa, D. & Soundararajan, P. 
(2007). The CLEAR 2006 Evaluation. In: CLEAR 2006, Lecture Notes in Computer 
Science 4122, Stiefelhagen, R. & Garofolo, J. (Ed.), 218-229, Springer-Verlag, Berlin 
Heidelberg 

Turk, M. & Pentland, A. (1991). Eigenfaces for Recognition. J. Cognitive Neuroscience, 3, 71-86 
Viola, P. & Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple 

Features. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
p. 511, Hawaii, Dec. 2001 

Waibel, A.; Steusloff, H. & Stiefelhagen, R. (2004). CHIL: Computers in the Human 
Interaction Loop, 5th International Workshop on Image Analysis for Multimedia 
Interactive Services, Lisboa, Portugal, April 21-23, 2004 

Weng, J.; Evans, C.H. & Hwang, W.-S. (2000). An Incremental Learning Method for Face 
Recognition under Continuous Video Stream. Proceedings of IEEE Conference on 
Automatic Face and Gesture Recognition, pp. 251-256, Grenoble, France, March 2000 

Xie, C.; Vijaya Kumar, B. V. K.; Palanivel, S. & B. Yegnanarayana (2004). A Still-to-Video 
Face Verification System Using Advanced Correlation Filters. In: ICBA 2004, Lecture 
Notes in Computer Science 3072, Zhang, D. & Jain, A.K. (Ed.), 102-108, Springer-
Verlag, Berlin Heidelberg 

Yu, H. & Yang, J. (2001). A direct LDA algorithm for high-dimensional data with application 
to face recognition. Pattern Recognition, 34, 2067–2070 

Zhou, S.; Krueger, V. & Chellappa, R. (2003). Probabilistic recognition of human faces from 
video. Computer Vision and Image Understanding, 91, 7, 214-245 

Zhou, S.; Chellappa, R. & Moghaddam, B. (2004). Visual tracking and recognition using 
appearance-adaptive models in particle filters. IEEE Transactions on Image 
Processing, 13, 11, 1491-1506 



25

Facing Visual Tasks Based on Different 
Cognitive Architectures 

Marcos Ruiz-Soler and Francesc S. Beltran 
 Universidad de Málaga and Universitat de Barcelona 

 Spain 

1. Introduction  

Today’s technology has produced machines that imitate and even exceed many human 
abilities. Nobody is surprised when a calculator does highly complex mathematical 
computations or an electronic chess program beats a renowned chess master. Any computer 
can store and retrieve detailed information about very different topics and establish a 
multitude of complex relations. However, in spite of recent spectacular advances, robotics 
has not yet been able to reproduce with the same efficiency some basic tasks every human 
being can do effortlessly, such as understanding contextual images and moving in complex 
physical spaces. 
The apparent simplicity of understanding images and walking may be an obstacle when it 
comes to judging the real complexity of these tasks. But even now, after many ingenious 
attempts to solve the problems inherent to these perceptual and motor processes, 
technology has still not been able to recreate levels similar to those of a human being. We 
therefore think it is of interest to review what we know about human beings and try to learn 
about this very efficient biological system. This chapter will examine the results of research 
on humans to come up with some valuable suggestions for designs of artificial systems for 
face recognition. 
We will begin with a quick review of the contributions made in two main areas of face-
recognition research in the last thirty years: image properties and perceptual tasks. The 
analysis of both will lead us to explore some internal characteristics of the system (cognitive 
architecture) that are not usually considered: the representational format of visual 
information and kinds of flow processing. Based on these factors, we will make some 
suggestions about the direction future research efforts should take in the field of face 
recognition. 

2. Looking outside: from image properties to visual tasks 

2.1 Image properties and spatial frequencies 

Given the fact that any image, whether of a human face or any other visual object, can be 
described in terms of spatial frequencies (SFs) (i.e. it can be described as the sum of a set of 
sinusoidal grids with different frequencies and orientations), psychophysical research into 
contrast detection and adaptation to specific SFs has proven that our perceptual system 
analyses visual input on multiple scales and frequencies (see De Valois & De Valois, 1988; 
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Graham, 1989). It is therefore generally agreed that spatial filtering is the basic mechanism 
for extracting visual information from luminance contrasts in early visual processes (see 
Legge & Gu, 1989; Marr & Hildreth, 1980; Marshall et al., 1996; and Morgan, 1992). In light 
of all this, one of the main approaches in face-perception research involves manipulating the 
SF bands in the luminance spectrum of images and observing how these changes affect the 
performance of visual tasks. 
Two main questions were asked when investigating the role of SFs in face perception: (1) 
What range of SFs is necessary to recognize a face? and (2) in what order are low spatial 
frequencies (LSFs) and high spatial frequencies (HSFs) integrated in face perception and 
how does this order affect recognition? Studies done to answer the first question mainly 
used a masking approach, while studies to answer the second question used a microgenetic
approach. Unfortunately, definitive results were not found because the results obtained to 
answer the first question showed that an extensive range of SFs seems to play a role in 
recognition; and the results obtained to answer the second question showed that the order 
of integration does not always point towards the same length of time or order of integration. 
The results of the studies designed to determine what range of SFs is necessary to recognize 
a face indicated that recognition decreases when images contain only SFs below about 8 
cycles/fw (between 6 and 9 cycles/fw), and that the elimination of the SF range between 8 
and 16 cycles/fw produces greater disruption than the elimination of SFs outside this range. 
Hence, the information contained in a small medium range of SFs contributes more to the 
face-recognition process than the information contained in all the other SFs (Costen et al., 
1994, 1996; Näsänen, 1999; Parker & Costen, 1999). However, though all these results 
indicated that privileged information can be found in medium-range SFs, the role of the SFs 
outside that range should not be overlooked. The same studies that identified the optimal 
medium range of SFs also showed acceptable performance by subjects when SFs above and 
below the medium range were used. Images of faces made with SFs centred at 50.15 
cycles/fw or 2.46 cycles/fw (which is extraordinarily far from the medium range) showed a 
recognition efficiency only 15% lower than the efficiency when recognizing images of faces 
made with medium-range SFs (Parker & Costen, 1999). Moreover, the tails obtained in the 
sensitivity function for images of faces indicated that an extensive range of SFs contributes 
to recognition (Näsänen, 1999). Given all these results, the conclusion was reached that the 
idea of a “critical range” of SFs for face recognition should be replaced with the notion of an 
“optimal range” of SFs for face recognition: a preferred, but not exclusive, tendency to use 
the information contained in a given range of SFs. 
The results of the studies designed to determine in what order low spatial frequencies 
(LSFs) and high spatial frequencies (HSFs) are integrated in face perception and how this 
order affects recognition appeared to contradict each other: some favoured the hypothesis of 
anisotropic integration, whereas others pointed to a third interaction factor that might 
explain why one order of integration is used instead of another. This factor could be the 
focus of attention and/or the complexity of the stimulus (Bachmann & Kahusk, 1997; 
Hoeger, 1997, respectively). In summary, all these results indicated that the critical question 
for predicting subjects’ performance, after the first integrative stage from LSFs to HSFs, is: 
which SFs provide the information required to solve the on-going task? 
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2.2 Visual tasks and face perception 

Research into face perception using spatial filtering has shown that one of the aspects most 
analysed are the physical properties of images. In the masking approach, the spatial effects of 
face representation were the main ones studied, whereas in the microgenetic approach, the 
focus was primarily on the temporal effects of face representation. But, as discussed above, 
no conclusive results were found. This may have been due to the different tasks used in 
face-perception research. It is therefore necessary to differentiate between them as a first 
step towards clarifying research results. All of them can easily be grouped into five 
categories: 
1. Detection. This consists of distinguishing between face visual stimuli and similar visual 
stimuli. A detection task asks the viewer of a visual stimulus: “Is x a face?” (e.g. Kuehn & 
Jolicoeur, 1994; Purcell et al., 1996). 
2. Discrimination. This consists of distinguishing perceptually between pairs of faces, either 
following a holistic or analytical strategy. A discrimination task asks the following question: 
“Is x the same face as y?” The level of complexity in this task depends on the level of 
similarity of the faces compared, one or more components of which are usually manipulated 
by computer software (such as the eyes, mouth, nose, hair, chin, etc.) or orientation (frontal, 
profile or ¾). Examples of this can be found in Bradshaw & Wallace (1971) or Sergent (1984). 
3. Categorization. This consists of answering the question: “Does this face belong to the 
category x?” It is a classification with two modalities: automatic and controlled. Automatic 
categorization involves classifying a face into a well-learned conceptual category, which 
demands very little effort. Categorization by sex or race belongs to this group. It has been 
employed in research about perceptual discrimination based on gender (Bruce et al., 1993; 
Burton et al., 1993; Brown & Perrett, 1993; Bruce & Langton, 1994; Chronicle et al., 1995;) and 
to study the so-called “race effect”. Controlled categorization involves classifying a face into a 
major category for the subject’s goals; it is conscientiously carried out and could admit very 
different levels of complexity. This category can include judgements about facial emotions, 
dispositional attributions (e.g. he/she looks intelligent) and situational attributions (e.g. 
she/he looks doubtful). This task has been used in research into social cognition. 
4. Recognition. This consists of deciding if a face has been seen before. It is assumed that any 
known or familiar face will be recognized, and that other faces shown during a controlled 
projection will also be recognized. Therefore, a task like this demands an answer to the 
question: “Have you seen face x before?”.  
5. Identification. This involves establishing a biunivocal assignation between one face and one 
specific person. An identification task asks the question: Who does face x belong to? (or 
simply: “Who is he/she?”). The identification task is usually carried out by naming, but an 
answer such as “It is the face of the president’s wife” is also a form of identification. This is 
the most specific form of face perception.  
From a general perspective, all these tasks can be considered specific cases of categorization, 
ranging from the broadest category (“It is a face”) to the most specific one (“It is Marc’s 
face”). Therefore, the cognitive resources required are very different, depending on the level 
required by the task. As a result, Morrison & Schyns (2001) pointed out that the mechanisms 
of categorization can modulate the use of different scales, depending on the presence of 
task-dependent, diagnostic information. 
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2.3 Interaction between images and tasks: the diagnosticity approach 

The varying importance of SFs depending on task demands was described by Schyns (1998). 
It is well known that one object can be put into different categories, depending on the 
categorization criteria used. For example, a car can be categorized by trademark, model, 
power, colour, etc.; and a human face can be categorized by sex, race, expression, attraction, 
etc. According to Schyns’ proposal, the information required to place the same object in one 
category or another will change depending on the categorization criterion chosen or, in 
other words, categorization/recognition processes can be characterized as an interaction of 
task constraints and object information. Task constraints are related to the information 
needed to place the perceptual object in the category required by the task. For example, 
given the question: “Is this object a car?”, it will be necessary to find certain visual 
information, such as wheels, rear-view mirrors, a steering wheel, etc., before providing an 
answer. Object information is related to the informative-perceptual structure available for 
placing the perceptual object in the category demanded by the task. If it is possible to 
observe wheels, rear-view mirrors, a steering wheel, etc. in the image of the object, the 
necessary information is available for categorization and to answer the question. Therefore, 
given a specific perceptual task, a group of visual characteristics of the object becomes 
particularly useful (diagnostic), since it provides the information required to place the object 
in the category that resolves the task. 
Information about objects is organized in categories, which are then organized in a 
hierarchy where it is possible to distinguish three levels (Rosch et al., 1976): the basic level
(e.g. a car or a face), the subordinate level (e.g. a BMW Z8 or Claudia Schiffer) and the
superordinate level (e.g. a vehicle or a head), where the basic level plays a role of primal access
(Biederman, 1987) or entry point (Jolicoeur et al., 1984) in the hierarchical system. The 
categorization process at the superordinate level requires more functional information than 
perceptual information, while at the subordinate level it requires supplementary perceptual 
information. Thus, the subordinate level represents maximum informativity and minimum 
distinctiveness, while the subordinate level represents maximum distinctiveness and 
minimum informativity. The basic level is on an intermediate level between informativity 
and distinctiveness, and this provides a compromise solution between accuracy in 
categorization at a more general level and predictive power at a more specific level (Murphy 
& Lassaline, 1998), which explains its critical role as primal access in the hierarchy. 
Nevertheless, requirements of informativity and distinctiveness are not uniform for every 
category, but depend on the subject’s level of expertise and history of learning. Therefore, in 
categorization processes where the subject’s expertise skills are at a maximum, as in the case 
of face recognition, perceptual cues must be diagnostic for the task (sufficient), they cannot 
overlap with other categories (unique) and they must have sufficient perceptual salience 
(significant). Therefore, the information I perceive when I see a face will be very different if I 
have to recognize the face of someone of a different race among people attending a 
conference, or if I have to recognize the face of a family member among a group of people, 
or if I have to recognize my partner’s face in a shopping centre. In the first case, the colour of 
the skin or the shape of the eyes can be maximally diagnostic, while in the second and third 
cases, the configurational properties will probably be maximally diagnostic for recognition. 
Oliva & Schyns (1997) found that when the already integrated early perceptual 
representation is formed, it may be used flexibly in a top-controlled manner permitting 
selective use of LSFs or HSFs depending on how “diagnostic” they are for the task. Taking 
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this into account, although the possible importance of task demands in face perception has 
been explicitly affirmed by several researchers (e.g., Costen et al., 1996; McSorley & Findlay, 
1999; and Sergent, 1986, 1994), we suggest that a key question for determining the role SFs 
play in face perception is not really which SFs are necessary or in which sequential order 
they are integrated, but rather how LSFs and HSFs are made use of in face perception 
depending on the demands of the task involved. Therefore, the role of different SFs is 
critically modulated by the subject’s visual task and it is only when there is no specific 
visual task that the mandatory aspects of SF processing work by default. When the results of 
the research in face perception carried out in the last thirty years are examined from the 
diagnosticity approach, it is possible to see that some contradictions disappear. And this is due 
to the fact that the questions “Which SFs are critical?” and “Which SFs are integrated?” lose 
their meaning in an isolated context and have to be considered within the frame of the 
demands of the task at hand. The questions must then be transformed into “which SFs are 
diagnostic for recognition/identification of an image?” (Ruiz-Soler & Beltran, 2006).

3. Looking inside: the importance of the functional cognitive architecture 

How can it be explained that the same visual task can be solved using different SFs? The 
observed fact that certain perceptual tasks can be solved using different SFs (Sergent, 1985) 
makes it necessary to include another factor to explain these data. We believe that, together 
with image properties and task demands, we must include another explanatory factor: the 
subject’s characteristics (observer), characteristics that affect individual differences in two 
areas: (1) the mental representation for faces (something conditioned by the familiarity level 
or expertise level in relation to them) and (2) the preferential strategy for visual processing 
(something conditioned by the subject’s hemispheric dominance or cognitive style).  
What is the empirical evidence for considering mental representation a new explanatory 
factor? With regard to mental representation, memory research using faces as stimuli has 
reported a different codification of them depending on the previous knowledge level (Liu et 
al., 2000; O’Toole et al., 1992). Moreover, research into experts and novices using stimuli 
with perceptual characteristics very similar to faces (complex, symmetrical, 3D, 
intersimilars, etc.) have proved the existence of different mental representations (Coin  et al., 
1992; Harvey & Sinclair, 1985; Millward & O’Toole, 1986).  
With regard to the processing strategy, research taking into account hemispheric cerebral 
dominance (Keenan et al., 1989, 1990 and, in particular, Ivry & Robertson, 1998) can be 
considered, as well as some other research designed to study the development of expert 
skills in perceptual discrimination (Gauthier & Tarr, 1997; Gauthier et al., 1998; Gauthier et 
al., 1999; Gauthier & Logothetis, 2000) and the reinterpretation of data from specific research 
in visual perception. Results point to processing linked to cognitive styles, where some 
subjects are basically analytical (field-independence subjects) and others are basically 
holistic (field-dependence subjects), a circumstance that we could re-conceptualize as 
subjects who preferentially process HSFs and subjects who preferentially process LSFs. 
Though some previous studies have not shown the relationships between these two aspects 
(Bruce, 1998), this is a field that we have begun to explore, after creating some procedure 
controls, by classifying field-dependence subjects, but not merely as those who are excluded 
from the group of field-independence subjects, as is usually done (Ruiz-Soler et al., 2000). 
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4. Looking everywhere: new directions in face-recognition research 

In this chapter, we have seen how a great deal of research has shown that image properties 
and task requirements are two interacting factors. We have also seen that the 
representational format of the information and the preferential processing mode are 
relevant factors in face perception. What does all this contribute to the design of artificial 
face-recognition systems? Looking outside shows that the most important information in an 
image is none other than the information that is most diagnostic (sufficient, unique and 
significant) for the task at hand. Looking inside shows that we should probably have several 
representational formats (based on LSFs and HSFs) and a number of different information 
systems (coarse-to-fine and fine-to-coarse) to come up with a very flexible, efficient system 
(at least as flexible and efficient as a human being). Designing systems that access 
representational formats with fine information or that merely use HSFs to process tasks that 
do not require such fine information (e.g. detection) means having a very inefficient system 
because it will use much more processing resources than are strictly necessary. But 
designing systems that have only one representational format or a single processing mode 
means losing the possibility of performing many of the tasks inherent to face recognition. 
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1. Introduction 

In the always expanding field of biometrics the choice of which biometric modality or 
modalities to use, is a difficult one. While a particular biometric modality might offer 
superior discriminative properties (or be more stable over a longer period of time) when 
compared to another modality, the ease of its acquisition might be quite difficult in 
comparison. As such, the use of the human face as a biometric modality presents the 
attractive qualities of significant discrimination with the least amount of intrusiveness. In 
this sense, the majority of biometric systems whose primary modality is the face, emphasize 
analysis of the spatial representation of the face i.e., the intensity image of the face. While 
there has been varying and significant levels of performance achieved through the use of 
spatial 2-D data, there is significant theoretical work and empirical results that support the 
use of a frequency domain representation, to achieve greater face recognition performance. 
The use of the Fourier transform allows us to quickly and easily obtain raw frequency data 
which is significantly more discriminative (after appropriate data manipulation) than the 
raw spatial data from which it was derived. We can further increase discrimination through 
additional signal transforms and specific feature extraction algorithms intended for use in 
the frequency domain, so we can achieve significant improved performance and distortion 
tolerance compared to that of their spatial domain counterparts. 
In this chapter we will review, outline, and present theory and results that elaborate on 
frequency domain processing and representations for enhanced face recognition. The second 
section is a brief literature review of various face recognition algorithms. The third section 
will focus on two points: a review of the commonly used algorithms such as Principal 
Component Analysis (PCA) (Turk and Pentland, 1991) and Fisher Linear Discriminant Analysis
(FLDA) (Belhumeur et al., 1997) and their novel use in conjunction with frequency domain 
processed data for enhancing face recognition ability of these algorithms. A comparison of 
performance with respect to the use of spatial versus processed and un-processed frequency 
domain data will be presented. The fourth section will be a thorough analysis and 
derivation of a family of advanced frequency domain matching algorithms collectively 
known as Advanced Correlation Filters (ACFs). It is in this section that the most significant 
discussion will occur as ACFs represent the latest advances in frequency domain facial 
recognition algorithms with specifically built-in distortion tolerance. In the fifth section we 
present results of more recent research done involving ACFs and face recognition. The final 
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section will be detail conclusions about the current state of face recognition including 
further future work to pursue for solving the remaining challenges that currently exist. 

2. Face Recognition 

The use of facial images as a biometric stems naturally from human perception where 
everyday interaction is often initiated by the visual recognition of a familiar face. The innate 
ability of humans to discriminate between faces to an amazing degree causes researchers to 
strive towards building computer automated facial recognition systems that hope to one day 
autonomously achieve equal recognition performance. The interest and innovation in this 
area of pattern recognition continues to yield much innovation and garner significant 
publicity. As a result, face recognition (Chellappa et al., 1995; Zhao et al., 2003) has become 
one of the most widely researched biometric applications for which numerous algorithms 
and research work exists to bring the work to a stage where it can be deployed. 
Much initial and current research in this field focuses on maximizing separability of facial 
data through dimensionality reduction. One of the most widely known of such algorithms is 
that of PCA also commonly referred to as Eigenfaces (Turk and Pentland, 1991). The basic 
algorithm was modified in numerous ways (Grudin, 2000; Chen et al., 2002, Savvides et al., 
2004a, 2004b; Bhagavatula & Savvides, 2005b) to further develop the field of face recognition 
using PCA variants for enhanced dimensionality reduction with greater discrimination. 
PCA serves as one of the universal benchmark baseline algorithms for face recognition. 
Another family of dimensionality reduction algorithms is based on LDA (Fisher, 1936). 
When applied to face recognition, due to the high-dimensionality nature of face data,  this 
approach is often referred to as Fisherfaces (Belhumeur et al., 1997). In contrast to Eigenfaces,
Fisherfaces seek to maximize the relative between-class scatter of data samples from different 
classes while minimizing within-class scatter of data samples from the same class. 
Numerous reports have exploited this optimization to advance the field of face recognition 
using LDA (Swets, D.L. & Weng, J., 1996; Etemad & Chellappa, 1996; Zhao et al. 1998, 1999). 
Another actively researched approach to face recognition is that of ACFs. Initially applied in 
the general field of Automatic Target Recognition (ATR), ACFs have also been effectively 
applied and modified for face recognition applications. Despite their capabilities, ACFs are 
still less well known than the above mentioned algorithms in the field of biometrics. Due to 
this fact most significant work concerning ACFs and face recognition comes from the 
contributions of a few groups. Nonetheless, these contributions are numerous and varied 
ranging from general face recognition (Savvides et al., 2003c, 2004d; Vijaya Kumar et al., 
2006) large scale face recognition (Heo et al., 2006; Savvides et al., 2006a, 2006b), illumination 
tolerant face recognition (Savvides et al., 2003a, 2003b, 2004a, 2004e, 2004f), multi-modal face 
recognition (Heo et al., 2005), to PDA/cell-phone based face recognition (Ng et al., 2005). 
However, regardless of the algorithm, face recognition is often undermined by the caveat of 
limited scope with regards to recognition accuracy. Although performance may be reported 
over what is considered a challenging set of data, it does not necessarily imply its 
applicability to real world situations. The aspect of real world situations that is most often 
singled out is that of scale and scope. To this end, large scale evaluations of face recognition 
algorithms are becoming more common as large scale databases are being created to fill this 
need. One of the first and most prominent of such evaluations is the Face Recognition 
Technology (FERET) database (Phillips et al., 2000) which ran from 1993 to 1997 in an effort to 
develop face recognition algorithms for use in security, intelligence, and law enforcement. 
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Following FERET, the Face Recognition Vendor Test (FRVT) (Phillips et al., 2003) was created 
to evaluate commercially available face recognition systems. Since its conception in 2000, 
FRVT has been repeated and expanded to include academic groups in 2002 and 2006 to 
continue evaluation of modern face recognition systems. Perhaps the most widely known 
and largest evaluation as of yet is the Face Recognition Grand Challenge (FRGC) (Phillips et al., 
2005) in which participants from both industry and academia were asked to develop face 
recognition algorithms to be evaluated against the largest publicly available database.  Such 
evaluations have served to better simulate the practical real-world operational scenarios of 
face recognition. 

3. Subspace Modelling Methods 

Image data, and particularly facial image data is typically represented in a very high 
dimensional space, thus a significant amount of data needs to be processed requiring 
significant computation and memory. In this case, we try to reduce the overall 
dimensionality of the data by projecting it onto a lower dimensional space that still captures 
most of the variability and discrimination. Several techniques have been proposed for the 
latter option such PCA, and Fisher Discriminant Analysis (FLDA) (Belhumeur et al., 1997). 

3.1 Principal Component Analysis 

PCA is among the most widely used dimensionality reduction technique. It enables us to 
extract a lower dimensional subspace that represents the principal directions of variations of 
the data with controlled loss of information. Also known as the Karhunen Loeve Transform
(KLT) or Hotelling Transform, its application in face recognition is most commonly known as 
Eigenfaces.
The aim of PCA is to find the principal directions of variation within a given set of data. Let 
X  denote a d × N matrix containing N data samples of dimension d vectorized along each 
column. PCA looks for <k d  principal components projections such that the projected data 

 has maximum variance. In other words, we look for the d unit norm 
direction vectors  that maximize the variance of the projected data or equivalently 
best describe the data. These projection vectors form an orthogonal basis that best represent 
the data in a least-squared error sense. The variance is defined as 
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where [ ]μ xE= . We can estimate the covariance matrix Σ̂  and the mean μ̂  from the N
available data samples as 
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where X  now denotes the zero-mean data matrix. To maximize this objective function 
under the constraint = 1 , we utilize the following Lagrangian optimization: 

( ) ( )= − −T T 1ˆ,L λ λΣ  (5) 

To find the extrema we take the derivative with respect to and set the result to zero. Doing 
so we find that: 

=ˆ
i i iλΣ  (6) 

Premultiplying Eq. (6) by T
i we get more insight 

= ⎯⎯→ = =T T Tˆ ˆ {y }i i i i i i i i iVarλ λΣ Σ  (7) 

This corresponds to a standard eigenvalue-eigenvector problem, hence the name Eigenfaces.

The directions of variation we are looking for are given by the eigenvectors i of ˆ , and 
the variances along each direction are given by the corresponding eigenvalues iλ as shown 
from the above equation. Thus we first choose the eigenvectors (or Eigenfaces) with the 
largest eigenvalues. Moreover, because the covariance matrix is symmetric and positive 
semi-definite, the eigenvectors produced from Eq. (6) will yield an orthogonal basis. In other 
words, PCA is essentially a transformation from one coordinate system to a new orthogonal 
coordinate system which allows us to perform dimensionality reduction and represent the 
data in the least squared error sense. We apply PCA to face images taken from the Carnegie 
Mellon University Pose-Illumination-Expression (CMU PIE) No-Light database (Sims et al., 
2003) to visualize the resulting Eigenfaces. Figure 1 shows the mean image followed by the 
first 6 dominant Eigenfaces computed from this dataset.

Figure 1. From left to right: PIE No-Light database mean face image followed by the first 6 
Eigenfaces
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3.2 Fisher Linear Discriminant Analysis 

Despite its apparent power, PCA has several shortcomings with regards to discriminating 
between different classes primarily because PCA is optimal for finding projections that are 
optimal for representation but not necessarily for discrimination. 
First developed for taxonomic classifications, LDA (Fisher, 1936) tries to find the optimal set 
of projection vectors i  that maximize the projected between-class scatter while 
simultaneously minimizing the projected within-class scatter. This is achieved by 
maximizing the criterion function equal to the ratio of the determinant of the projected 
scatter matrices as defined below: 
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where iN , μi , and μ  are the number of training images for ith class, the mean of the ith

class, and the global mean of all classes respectively. To maximize the Fisher criterion we 
follow a similar derivation to that of Eq. (5) yielding the following generalized eigenvalue-
eigenvector problem: 

B WS Si iλ=  (11) 

whose standard eigenvalue-eigenvector problem equivalent is 

=-1
W BS S i i iλ  (12) 

When applying FLDA to face recognition, the data dimensionality d is typically greater than 
the total number of data samples N . This situation creates rank deficiency problems in Sw.
More specifically, note that BS , being the sum of c outer product matrices has at most rank  

1c − . Similarly, WS is not full rank but of rank N c− at most (when <<N d ). To avoid this 
singularity condition, one can perform PCA on the data to reduce its dimensionality to 
N c−  and then perform FLDA as shown in Eq. (13). The final resulting basis is called 
Fisherfaces (Belhumeur et al., 1997)  as given by Eq. (14). 
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3.3 Frequency Domain Extensions 

It has been shown (Oppenheim et al., 1980) that phase information of an image holds the 
most salient information. In (Hayes et al., 1981), it is shown that one can reconstruct the 
original signal up to a scale factor given only phase information of the signal. This concept 
was exploited in face recognition to improve performance over standard algorithms 
(Savvides et al., 2004b). Figure 2 shows images of two different subjects; each image is split 
in Fourier domain between magnitude and phase. Figure 2 shows that when the first 
subject’s Fourier magnitude spectrum is coupled with the second subject’s Fourier phase 
spectrum, the resulting image in spatial domain shows significantly more similarity to the 
second subject compared to the first subject. 

 (a) (b) (c) (d) 
Figure 2. (a) Original image of first subject (b) Original image of second subject (c) Spatial 
domain image synthesized from combination of Fourier magnitude spectrum of first subject 
with Fourier phase spectrum of second subject (d) Spatial domain image synthesized from 
combination of Fourier magnitude spectrum  of second subject with Fourier phase spectrum 
of first subject 

However, performing PCA in the frequency domain alone does not constitute any 
breakthrough, this is because the eigenvectors obtained in the frequency domain are merely 
the Fourier transform of their spatial domain counterparts. We begin this derivation by 
defining the standard 2-D Discrete Fourier Transform (DFT) pair which is fundamental to the 
rest of our discussion. Given an 2-D discrete input signal [ ],x m n  of size M × N we denote 

its Fourier transform as [ ],X k l  whose Fourier transform pair is defined as follows: 
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where 1i = − , operator F  is defined as the forward DFT, and the operator 1F−  is the 
inverse DFT. 

The estimated covariance matrix of the data in Fourier domain ˆ
f  is given by Eq. (16) 

where F  is the d × d Fourier transform matrix containing the DFT basis vectors. The 
estimated covariance matrix of the data in Fourier domain is given as 



Frequency Domain Face Recognition 501

( ){ } ( ){ }
1

1

1

ˆ ˆ ˆF x μ F x μ

ˆF F

N

f i i
i

s

N
Σ

Σ

+

=
−

= − −

=

 (16) 

As was with standard PCA, the eigenvectors f  of ˆ
f  are given by  

1ˆF Fs f fλΣ − =  (17) 

Premultiplying each side by 1F−  we get 

1 1ˆ F Fs f fλΣ − −=   (18) 

Comparing Eq. (18) to Eq. (6) we conclude that 1Fs f
−= where s is an Eigenface in 

spatial domain. We have thus proved that modeling data in the frequency domain does not 
bring any advantages so far. This fact brings to doubt the usefulness of such a transform 
with respect to PCA and FLDA without any further processing. However, the ability to 
distinguish using the magnitude and phase spectrums is the key advantage of the Fourier 
domain. By modelling the subspace of the phase and magnitude spectrums separately, we 
can gain further insight and properties of the data otherwise unattainable in the space 
domain.   

3.3.1 Phase Spectrum 

It has been shown (Savvides et al., 2004b) that by performing PCA on the phase spectrum 
alone and disregarding the magnitude spectrum the resulting subspace is more robust with 
respect to illumination variation. The resulting principal components derived from this new 
subspace are termed Eigenphases in analogy to Eigenfaces. It was shown that Eigenphases
outperform Eigenfaces and Fisherfaces when trying to recognize not only full faces but also 
partial or occluded faces as depicted in Figure 4. 

Figure 3. All twenty-one images of a single subject of the PIE No-Light database 

 (a) (b) (c) 
Figure 4. Various occlusions on an example PIE No-Light subject (a) full face (b) right half-
face (c) eye section 
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  (a) (b) 
Figure 5. Rank-1 identification rates obtained by Eigenphases, Eigenfaces, and Fisherfaces for 
two different experiments each using different types of partial faces. (a) right half face (b) 
eye-section face 

In this work, comparisons between Rank-1 identification rates obtained from Eigenphases,
Eigenfaces, and Fisherfaces are made when using whole and partial faces. Training is done on 
multiple subsets of the PIE database while testing is performed over the whole database. 
Fifteen different training subsets each representing different types of illumination with the 
first seven having the most or harshest illumination variation with the remaining eight 
containing near frontal lighting which are considered the most neutral lighting conditions. 
Figure 5 depicts the recognition rates obtained with the three different methods using half-
faces and eye-sections. These results show that not only do Eigenphases outperform 
Eigenfaces and Fisherfaces for all experiments by a wide margin, but they also demonstrate 
minimal performance degradation for half-faces and eye-section faces. This added occlusion 
robustness is a very attractive property in real-world applications where missing data and 
poor data quality are common problems. 

3.3.2 Magnitude Spectrum 

In contrast, if PCA is performed on the magnitude spectrum only, it has been shown 
(Bhagavatula & Savvides, 2005a) that the resulting subspace holds many advantages over 
spatial subspaces. Using the Olivetti Research Laboratory (ORL) database, which is noted 
for significant pose variation, it was shown that the Fourier Magnitude Principal Component 
Analysis (FM-PCA) subspace yielded higher recognition rates across a range of experiments. 
These experiments included varying the number of training images whose comparison to 
spatial domain PCA or Eigenfaces is illustrated in Figure 6 (a).  It was also shown that FM-
PCA is more robust to noise as demonstrated in Figure 6 (b). This was verified by corrupting 
the testing images with varying levels of Additive White Gaussian Noise (AWGN). In similar 
fashion, it was demonstrated that Fourier Magnititude Fisher Linear Discriminant Analysis (FM-
FLDA) clusters data better than traditional Fisherfaces with decreased within-class scatter 
and increased between-class scatter. FM-FLDA yields higher recognition rates for varying 
image sizes and resolutions in comparison to spatial FLDA or Fisherfaces as tabulated in 
Table 1. 
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 (a) (b) 
Figure 6. Comparisons of identification rates of spatial domain PCA and FM-PCA under 
varying conditions (a) varying number of training images (b) varying degrees of AWGN 
noise corrupting the testing images 

In addition to increased performance, Fourier Magnitude feature subspaces hold another 
key advantage. They are shift invariant, as a direct result of the properties of Fourier 
transform. If the image is shifted in the spatial domain, that shift will translate into a linear-
phase change in frequency domain and not in its magnitude. This makes Fourier Magnitude 
subspaces robust to errors in registration, where the input images are not correctly centred 
which could cause significant recognition errors. To demonstrate this property, face 
recognition experiments have been done (Bhagavatula & Savvides, 2005a) by shifting 
images in both horizontal and vertical directions up to ±5 pixels. These results verify that 
FM-FLDA and FM-PCA recognition accuracies are not affected, while their spatial domain 
counterparts are severely affected. 

Image Size 32 × 32 64 × 64 112 × 92 128 × 128
FM-Fisher 80.8% 83.2% 84.6% 84.4% 

Traditional Fisher 77.7% 78.5% 77.3% 74.0% 

Table 1. Recognition accuracies with different image resolutions 

4. Advanced Correlation Filters (ACFs)

4.1 Advanced Correlation Filter Basics

The previous sections of this chapter have shown the power of frequency domain 
representations of data when used in conjunction with techniques and algorithms usually 
applied to spatial domain representations. However, none of the preceding concepts have 
been derived from a purely frequency domain approach. By developing algorithms whose 
focus is on the frequency domain representation of information we can achieve significant 
gains in performance. One such family of algorithms that have and are still being developed is 
that of Correlation Filters (CFs). CFs have a long and rich history in optics, automatic target 
recognition, and pattern recognition in general. More recently a new family of CF’s termed 
ACFs (Vijaya Kumar, 1992) have evolved to become the cutting edge of this general family of 
algorithms. The numerous and varied types of ACFs offer many attractive qualities such as 
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shift invariance, normalized outputs, and noise tolerance. Their derivations require some 
knowledge in such fields as linear algebra, signal processing, and detection and estimation 
theory. We will assume that readers will have sufficient background in these fields and only 
elucidate on background information when is necessary. We will also now limit our discussion 
to two-dimensional applications which include facial recognition using grayscale imagery. 
To begin the discussion we define a few fundamental terms and conventions that will be 
used repeatedly for the span of this section. The application of a CF or ACF to an input 
image will yield a correlation plane. The centre or origin of correlation plane will be 
considered to be the spatial position (0, 0). Analysis of the correlation plane to some metric 
of performance or confidence will usually involve calculation and identification of the 
largest value or peak in the correlation plane.. The simplest CF is the Matched Filter (MF), 
commonly used in applications such as communication channels and radar receivers where 
the goal is detecting a known signal in additive noise. The concept of noise is a very 
important aspect of pattern recognition problems. To characterize noise we define the 
quantitative measure of Power Spectral Density (PSD). Using this characterization of noise the 
MF is developed with the goal of maximizing the Signal-to-Noise-Ratio (SNR). 
Fundamentally this is equivalent to describing a filter whose application to an input signal 
will minimize the effect of specific type of noise while maximizing the output value when 
presented with the desired input signal. We will not develop the MF, however multiple 
other sources provide detailed derivations for varying applications and should be consulted 
for more information.  We will use this fundamental concept of maximizing the response of 
the desired signal or pattern and minimizing the effects of noise as a guideline in our 
derivation of ACFs. 
One of the fundamental differences between typical CFs and ACFs is the ability to 
synthesize ACFs from multiple instances of training data or in the case of face recognition, 
multiple facial images and by doing so, to be able to recognize all instances which are 
present in the training data. The desire or hope here is that the training data sufficiently 
represents or captures the potential distortion or variation that might be presented to the 
recognition system. With respect to face recognition systems this is an extremely desirable 
quality because the human face is subject to numerous variations both intrinsic and 
extrinsic. By allowing such variations to be at least partially represented through the use of 
representative training data we can increase both performance and robustness of face 
recognition systems. 

4.2 Correlation Basics

Before we can derive any ACF we must first lay the framework of correlation with respect to 
2D imagery. The standard definition of discrete 2-D correlation between an input 2-D signal 

( )x m, n  and a 2-D filter ( )h m, n  resulting in  2D correlation output plane ( )y m, n  is as 
follows: 

( ) ( ) ( )

( ) ( )

( ) ( )nm, lkhk, lx

k, lhlk, nmx

m, nhm, nxm, ny

k l

k l

−−=

++=

⊗=

∞
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∞

∞=

∞

∞=

∞
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- -

- -

 (19) 
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We will only consider the case of discrete correlation as this is the case of interest in face 
recognition systems although the analog domain provides some desirable qualities and 
generalizations. However, for our purposes the desired properties of both correlation and 
the Fourier transform are present in the discrete domain. Using the Fourier transform and 
its properties as discussed previously we can express Eq. (19) in the frequency domain as 

( ) ( ) ( )
( ) ( ){ }1 *             

y m, n x m, n h m, n

F X k, l H k, l−

= ⊗

= ⋅
 (20) 

where ( )X k, l and ( )H k, l are the 2-D Fourier transforms of ( )x m, n and ( )h m, n respectively. 

The symbols 1F− , ⋅ , and * represent the inverse Fourier transform, the element by element 
(point to point) multiplication of the two 2-D signals, and the element by element 
conjugation respectively. Correlation in the frequency domain is vastly preferred to 
correlation in the spatial domain with regards to the number computational floating point 
operations required. 

4.3 Synthetic Discriminant Functions 

One of the first ACFs to incorporate such a composite design is the Synthetic Discriminant 
Function filter (Hester & Casasent, 1980). The design of the Synthetic Discriminant Function
(SDF) filter is that the filter is created such that it yields a correlation plane whose output at 
the origin yields a pre-specified value. By introducing such a constraint on the output we 
not only allow for normalized comparisons but also a degree of discrimination into our 
filters. This framework refers to the ability to use a single filter to recognize different 
patterns or classes with sufficient discrimination as opposed to using a single filter for each 
class or image sample  (as with the case of MFs). For example, in a two class problem we 
would like to design a filter yields an output value of 1 for class 1 while yielding an output 
value of 0 for class 2. We can achieve this by constraining the correlation plane outputs (at 
the origin) to be 1 for all training data from class 1 and 0 for all training data from class 2.  
Our derivation of the SDF filter begins with an outline of the basic variables and problem 
definition. Let us assume that we have N facial training images ( )ix m, n of size d1 × d2. Define 

ui to be the output value of the correlation plane ( )iy m, n ; that is the result of applying the 

filter ( )h m, n to the training image ( )ix m, n . Please note that the output value of the 
correlation plane is considered to be the value of the correlation plane at the origin or 
equivalently ( )0, 0iy . Thus we can define the following equation, 

( ) ( ) ( ) Nim, nhm, nxyu
d

m

d

n
iii ≤≤==

= =

100,
1 2

1 1

,  (21) 

The above equation explicitly demonstrates the correlation operation and the constraint on 
the correlation plane output value at the origin. However, for convenience we can rewrite 
the above equation into a more compact vector format. Suppose we take a training 
image ( )ix m, n  (of dimensions d1 x d2) and place its entries (vectorize) from left to right and 

top to bottom into a column vector xi of length d = d1 x d2 and similarly for ( )h m, n into
column vector h whose length is also d. We can now express Eq. (21) in the following form, 
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Niu ii ≤≤= 1T ,hx  (22) 

where T is the transpose operation. We now have a system of N linear equations which 
encourages us to express them as the product of a matrix and a vector in order to take 
advantage of matrix algebra. Let [ ]1 2X x ,x , , xN=  be matrix of size d × N whose columns 

are the training image vectors. Likewise, let [ ]T
1 2u u ,u , ,uN=  be a column vector of 

length N whose entries are the desired output values. Now we can express this system of 
linear equations as the following matrix vector product: 

hXu T=  (23) 

A unique solution for h can be found by assuming that h is a linear combination of the 
training images, i.e. the columns of X. In matrix vector form this can be represented as 

Xah =  (24) 

where a is a column vector of length N whose entries are weightings for the linear 
combination of the columns of X. Substituting Eq. (24) into Eq. (23) we form the following 
equation:

Tu X Xa=  (25) 

From the above equation we can uniquely determine a to equal 

( ) 1Ta X X u
-

=  (26) 

where -1 is the standard matrix inverse. Subsequent substitution of the above equation into 
Eq. (24) yields a solution for the SDF filter h which is as follows: 

( ) 1Th X X X u
-

=  (27) 

Eq. (27) expresses the SDF filter h as a column vector of length d in the space domain as 
opposed to the frequency domain. 
We use the SDF filter to demonstrate some key characteristics of correlation in general and 
also some specific qualities of composite correlation. The images shown in Figure 7 are those 
of a set of training images taken from the ORL face database. We have used these training 
images to design an SDF filter whose correlation with any of the training images will yield a 
correlation plane whose output value, i.e. peak will equal 1. Figure 8 (a) shows the resulting 
SDF filter point spread function (2D-impulse response) , while Figure 8 (b) demonstrates the 
result of correlating the filter to one of the training images. 

Figure 7. Facial training images taken from single subject in the ORL database 
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 .(a) (b) 
Figure 8. (a) SDF filter derived from training images in Figure 7 (b) Mesh plot of correlation 
plane produced from application of SDF filter to one of the training images 

 As can be seen in these figures, the design of the filter guarantees a correlation plane whose 
peak equals 1 when applied to one of the training images. We make special note of the fact 
that we no longer specify the value of 1 to be at the origin but merely be the value of the 
peak (maximum value in the correlation plane) which corresponds to the location of the 
detected pattern. This consideration reflects the fact that correlation is a shift-invariant 
operation assuming the pattern of interest is still completely contained within the input 
image. 

4.4 Minimum Average Correlation Energy Filter 

Our discussion and development of the SDF filter has motivated us to address the issue of 
sidelobes whose presence is significant detriment to performance of any ACF. As such we 
will now derive the Minimum Average Correlation Energy (MACE) filter (Mahalanobis et al., 
1987) whose design will not only allow us to achieve constrained peaks as in the SDF filter 
but also suppress sidelobes in order to yield sharp distinct peaks. This is fundamentally a 
minimization of the sidelobe heights. One approach is to minimize the correlation plane 
energy which will subsequently suppress sidelobes. We define the term Average Correlation 
Energy (ACE) for the same N training images in the previous section as 

( )
1 2 2

1 1 1

1ACE
d dN

i
i m n

y m, n
N = = =

=  (28) 

where the variables d1, d2, and ( )iy m, n  retain their definitions from our development of the 
SDF filter. Eq. (28) can be represented in the frequency domain by applying Parseval’s 
Theorem. Letting ( )iY k, l  be the 2-D Fourier transform of ( )iy m, n  we express Eq. (28) as 

( )
1 2 2

1 1 1

1ACE
d dN

i
i k l

Y k, l
N d = = =

=
⋅

 (29) 

where d again is the total dimensionality of a training image. Since ( )iy m, n  is the result of 

the correlation between an input image ( )ix m, n  and our MACE filter ( )h m, n  we can use 
Eq. (20) to rewrite the above equation into the following form: 
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( ) ( )
1 2 2 2

1 1 1

1ACE
d dN

i
i k l

X k, l H k, l
N d = = =

=
⋅

 (30) 

It should be noted that it is at this point in the derivation where the role of the frequency 
domain representations of both the data and the filter are fundamental to the filter design. 
Later ACF designs will also utilize the quantitative measure of ACE along with other such 
measures. For now let us to proceed to again represent Eq. (30) in matrix vector form. Let h
be a column vector of length d whose elements are taken from ( )H k, l  and Xi be a diagonal 

matrix of size d × d whose non-zero elements are taken from ( )iX k, l . Using these frequency 
domain terms we can express Eq. (30) as 

( )( )
1

1ACE h X X h
N

i i
iN d

+ ∗

=

=
⋅

 (31) 

where the symbol + indicates the conjugate transpose. We can compress this expression 
further by defining a new diagonal matrix D of size d × d as follows: 

1

1D X X
N

i i
iN d

∗

=

=
⋅

 (32) 

This allows us to express the quantity of ACE in very concise manner as 

Dhh+=ACE  (33) 

Our goal in the design of the MACE filter is the minimization of the ACE of the training 
images while still satisfying the peak constraints we have specified. To accomplish this we 
must express these constraints in the frequency domain as well. Due to the fact that inner 
products in the frequency domain (at the origin only) are equivalent to inner products in the 
spatial domain, we can rewrite the peak constraints expressed in Eq. (23) as 

uhX ⋅=+ d  (34) 

where X is a matrix of size d × N whose columns are the vector representations of the FTs of 
the training images. Thus, the filter h which minimizes Eq. (33) while satisfying the 
constraints expressed in Eq. (34) is our MACE filter. This constrained optimization can be 
solved using Lagrange multipliers, which can be found in the original paper (Mahalanobis 
et al., 1987), which yield the final solution to the frequency domain filter h:

( ) 11 1h D X X D X u
−− + −=  (35) 

The notation and form of the solution allows for simple and efficient calculation of the filter 
in column vector form from which a simple reshaping operation can be done to recover the 
2-D frequency domain filter of size d1 × d2. Correlation of the filter with an input image now 
requires one less Fourier transform as the filter is already represented and stored in the 
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frequency domain. Using the same training images from our derivation of the SDF filter we 
can create a MACE filter whose output correlation planes will not contain the problematic 
sidelobes. 
Visualizing the point spread function of the MACE filter itself does not reveal much insight 
without more significant analysis, but the goals of ACE minimization and constrained peaks 
are achieved as shown in Figure 9. Not only is the peak equal to 1 as specified, but the 
sidelobes are drastically suppressed when compared to those in the SDF filter’s correlation 
plane in Figure 8 (b).  Noise tolerance can be built in as discussed in the next section. 

Figure 9. Mesh plot of correlation plane produced from application of MACE filter to one of 
the training images 

4.5 Minimum Variance Synthetic Discriminant Function 

Through our derivations of the SDF and MACE filters we have shown that in order to 
achieve high discriminative ability in our filters we must be able to control the correlation 
plane through constraints and sidelobe energy minimizations. However, in any practical 
application we must always take into consideration the factor of noise introduced from 
varying sources. Whether it is sensor noise or noise caused by background clutter, the 
presence of noise can have significant impact on any face recognition system. As such we 
would like to introduce into our ACF designs some degree of noise tolerance. Let us 
formalize the problem with the following equation: 

( )T T Tx v h x h v h
u

+ = +
= + δ

 (36) 

where x is an image vector and v is the additive noise vector whose responses to the filter 
vector h are u and δ  respectively. The variations in the outputs of our filter are due to δ
and therefore δ  is the quantity we wish to suppress. For the rest of the derivation we will 
assume that our noise processes are stationary. We will also assume that our noise is zero 
mean without any loss of generality. To suppress the effect of variation in our filter outputs 
due to noise we aim to minimize the variance of the output noise term δ . Denote this 
variance as the Output Noise Variance (ONV) whose definition is 
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where C is the covariance matrix of the input noise. We take note of the independence of 
ONV from the image vector x which implies that its definition is identical for all images of 
interest. 
Let us now consider the training images we used in developing the SDF filter whose 
derivation focused on achieving certain constraints placed on output peak values. We 
would now like to not only achieve those same constraints expressed in Eq. (23) but also 
minimize the ONV amongst our training images. This formulation lends itself to the use of 
Lagrange minimization almost identical to that used in the formulation of the MACE filter 
to yield the following filter solution: 

( ) 11 1h C X X C X u
−− + −=  (38) 

The above filter is referred to as the Minimum Variance Synthetic Discriminant Function
(MVSDF) filter (Vijaya Kumar, 1986). While the MVSDF filter does achieve minimum ONV 
amongst its training images, it does not suppress ACE and as such suffers from 
unsuppressed sidelobes. In later ACF designs we will show how to achieve an optimal 
tradeoff between ONV and ACE minimization in order to provide varying degrees of 
simultaneous noise tolerance and sidelobe suppression. 

4.6 Maximum Average Correlation Height Filter

All of the ACFs we have described to this point have been designed with some constraint or 
optimization in mind that is meant to introduce distortion tolerance into our filters. 
However, this is but one way and perhaps not the best way to create distortion tolerance. 
There is no formalized relationship between the constraints we have described so far and 
the degree of distortion tolerance incorporated into the filter. A more intuitive approach is to 
remove these constraints to allow for more solutions. In essence this is akin to generalizing 
the solution space which will hopefully contain solutions to non-training images. This 
would result in a greater degree of distortion tolerance when compared to ACFs derived 
using hard constraints. 
To address the issue of distortion tolerance it is necessary to first quantize the amount of 
distortion present in a set of filtered images. To this end we define the Average Similarity 
Measure (ASM) over a set of N filtered images ( )iy m, n  as 

( ) ( )( )
N

2

1

1ASM i
i m n

y m, n y m, n
N =

= −  (39) 
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where we define ( )y m, n  as the average image whose exact definition is 

( ) ( )
1

1 N

j
j

y m, n y m, n
N =

=  (40) 

ASM is a measure of the average variation amongst a set of correlation surfaces. As was 
with previous ACFs we recognize the fact that the above spatial domain equation is 
equivalently expressed in the frequency domain by applying Parseval’s theorem. Let 

( )iY k, l  be the 2D-Fourier transform of ( )iy m, n  and ( )Y k, l  be the 2D-Fourier transform 

of ( )y m, n . Also, because we are primarily concerned with the frequency domain let us 

express ( )iY k, l  and ( )Y k, l  as the column vectors yi  and y  respectively. Eq. (39) is 
equivalently represented in the frequency domain as 
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1 2N 2
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⋅
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We must now introduce the filter itself into this metric to allow for optimization with 
respect to the filter coefficients. Let us consider the ASM over a set of correlation surfaces 
which are the result of filtering a set N training images ( )ix m, n  with the filter ( )h m, n . As 
such let us express the Fourier transforms of the ith training image and the filter as 

( )iX k, l and ( )H k, l  respectively. Also, define ( )X k, l , the average Fourier transform of the 
N training images, as 

( ) ( )
1

N

i
i

X k, l X k, l
=

=  (42) 

We proceed by representing ( )iX k, l , ( )X k, l , ( )H k, l  as column vectors xi , x , and h

respectively. Let us now define the diagonal matrices Xi  and X  whose non-zero elements 
are taken respectively from xi  and x . Using these matrices we can express yi  and y  as 

y X hi i
∗=  (43) 

y X h∗=  (44) 

Substituting the above equations in to Eq. (41) we have the following equivalent expression: 
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where the diagonal matrix S is defined as 

( )( )
N

1

1S X X X Xi i
iN d

∗

=

= − −
⋅

 (46) 

We have now expressed the distortion metric of ASM as a function of the filter and the 
training images. However, while minimizing distortion we also wish to maximize the filter’s 
response to authentic patterns/faces. Unlike the MACE filter we have no constraint on the 
peak value and thus our desire is to maximize the correlation peak value over the entire set 
of training images i.e., maximize the average peak value. We denote this quantity by the 
measure of Average Correlation Height (ACH) whose definition is 
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whose matrix vector formulation utilizing previously defined vectors xi , x , and h  is 
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=

=

 (48) 

While our immediate goal is to suppress ASM while maximizing ACH it is of course also 
desirable to suppress ONV as defined earlier. This simultaneous minimization 
maximization problem lends itself to a Rayleigh quotient representation as follows: 
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The filter h that maximizes this ratio is the dominant eigenvector of ( )-1S C mm++  which is 

( )-1h S C m= +α  (50) 

where α  is a normalizing coefficient. The above filter solution is termed the Maximum 
Average Correlation Height (MACH) filter (Mahalanobis et al., 1994). The MACH filter is often 
used in ATR applications where its tolerance for noise and distortion addresses the issue of 
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sensor noise and background clutter while maintaining the ability to resolve sharp and 
distinct correlation peaks necessary for accurate target detection and recognition. These 
same issues are paralleled in many face recognition applications and as such the same 
characteristics of the MACH filter are desired. 

4.7 Optimal Tradeoff Filters

We have thus far developed ACFs whose derivation incorporate different desirable qualities 
such as the MACE filter’s ability to resolve sharp correlation peaks, or the MVSDF filter’s 
tolerance for noise. However, while these filter solutions provide these attractive properties 
they inherently create deficiencies in other aspects. For example, the MACE filter while 
being able to resolve sharp peaks, has little tolerance for noise while the MVSDF filter’s 
tolerance for noise is offset by its relative inability to generate sharp correlation peaks. The 
fundamental issue concerning these particular ACFs is their singular focus on optimality 
with respect to one aspect of distortion. Depending on the application, a more preferred 
approach might be to design a filter whose optimality in these varying aspects is variable. In 
other words, we desire a filter which maintains a tradeoff between peak sharpness and noise 
tolerance. Termed Optimal Tradeoff (OT) filters, we will not go through the complete 
derivation in the interest of conciseness and its similarity to previous derivations. 
The OT filter counterpart for the MACE and MVSDF filter is referred to as the Optimal 
Tradeoff Synthetic Discriminant Function (OTSDF) filter (Vijaya Kumar, 1994). It is obtained by 
minimizing a weighted sum of ACE and ONV which are the metrics for the MACE and 
MVSDF filters respectively. The resulting filter solution is 

( ) ( )
11 1h D C X X D C X u

−− −+= + +α β α β  (51) 

where α  and β  are non-negative constants that can be varied to achieve a desired amount 
of performance with respect to noise and peak sharpness while all other variables retain 
their definitions from previous sections. In order better constrain the relationship between 
the tradeoff between noise tolerance and peak sharpness we constrain the relationship 
between α  and β  with the following: 

2 2 1+ =α β  (52) 

This constraint is a result of the quadratic nature of the filter solution (Vijaya Kumar, 1994) 
Allowing us to rewrite Eq. (51) as function of α  alone in the following manner: 

( ) ( )
11 1

1 1h D C X X D C X u
−− −

+= + − + −2 2α α α α  (53) 

Since α  is non-negative, we can vary the amount of noise tolerance and peak sharpness in 
the filter by varying α  between 0 and 1. If we were to set α  to 0, then Eq. (53) reduces to 
the MVSDF filter solution in Eq. (38) while and α  of 1 yields the MACE filter solution of Eq. 
(35). By choosing values of α  in this range we are essentially creating a filter which is a 
weighted combination of the MACE and MVSDF filters. Typically α  is set close to 1 in 
order to maintain sharp peaks while incorporating a small degree of noise tolerance. Most 
experiments concerning the effect of α  on filter performance have supported this notion.  
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 (a) (b) 

 (c) (d) 
Figure 10. Mesh plots of correlation planes produced from application of OTSDF filter 
expecting AWGN of SNR 20 dB to a training image with varying values of α  (a) 0=α  (b) 

0.33=α  (c) 0.67=α  (d) 1.00=α

However, one must take into account the type and degree of noise the filter is being 
designed to accommodate for. In many applications Additive White Gaussian Noise (AWGN) 
is the standard form of noise for which depending on its magnitude or equivalently its SNR 
can be negligible. However, when the magnitude of the noise is non-negligible we can 
observe the effect of α paremeter upon the filter design and any subsequent correlation 
planes. Figure 10 demonstrates this aspect of the OTSDF filter by presenting the correlations 
of one of the training images with four OTSDF filters each designed with different values of 
α  and expecting AWGN of SNR 20 dB. The most noticeable change between the correlation 
planes is the relative strength of the sidelobes throughout the correlation plane. 
Since the MACH filter is often thought of as the unconstrained version of the MACE filter, 
we call the MACH filter’s OT filter the Unconstrained Optimal Tradeoff Synthetic Discriminant 
Function (UOTSDF) filter (Vijaya Kumar, 1994). The solution to the UOTSDF filter is 
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( ) 1h D C S m−= + +α β γ  (54) 

where α , β , and γ  are tradeoff parameters for ACE, ONV, and ASM respectively while all 
other variables retain their previous definitions. Though there exists a quadratic relationship 
between these parameters we often choose to fix at least one parameter while optimizing the 
others with respect to performance. 

4.8 Performance Measures

When considering the use of correlation in pattern recognition and in particular face 
recognition applications it becomes necessary to define a metric by which to quantify the 
“goodness” or “correctness” of a correlation. A simple and sometimes effective way to 
quantize a match is to take the largest value in a correlation plane and threshold it to yield a 
match or no-match decision. This approach works well when there is relatively small 
variation in the data such that the variance in the value of the correlation peak is small. This 
assumption is of course is an idealization and, with particular focus on face recognition, a 
poor one. The value of the correlation peak will vary in the presence of intensity changes 
and noise in non-negligible amounts and as such a strict threshold cannot be expected to be 
a reliable performance measure. 
When considering such ACFs as the MACE and OTSDF filters a more appropriate measure 
is that of peak sharpness since these filters are designed to suppress the sidelobes adjacent to 
peaks. This relationship can be quantized by the Peak-to-Sidelobe Ratio (PSR) which for a 
particular peak is defined as 

( ) area

area

peak value
PSR

−
=

μ
σ

 (55) 

where areaμ  and areaσ  are the mean and standard deviation respectively of some small area 
or neighborhood around but not including the peak. 
Similarly the MACH and UOTSDF filters are designed to maximize the value of the peak 
relative to the rest of correlation plane also. Thus a similar but alternate performance 
measure would be one that measured the magnitude of difference between the peak and the 
rest of the correlation plane. Using the metric of Peak-to-Correlation Energy (PCE) we can 
quantify this difference as 

( ) plane
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peak value
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−
=

μ
σ

 (56) 

where planeμ  and planeσ  are the mean and standard deviation respectively of the entire 
correlation plane excluding the peak. 
Both PSR and PCE can be used with any ACF but the optimal measure often depends on the 
application. In most situations where the resolution or size of the target is relatively constant 
as is the case with many face recognition applications, PSR is a sufficient measure. On the 
other hand, algorithms that use multi-resolution techniques might benefit more from PCE. 
Regardless, both measures still require a threshold to determine a match or no-match 
decision although in contrast with a strict threshold on the peak value alone, a threshold on 
PSR or PCE values is far more normalized and predictable.  
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5. Face Recognition Using Advanced Correlation Filters

5.1 Face to Sketch Correlation 

One of the primary issues in many face recognition systems is that of illumination variation. 
An innumerable number of changing factors determine the exact nature of the illumination a 
face may be subject to at any given time. As such, the span of illumination variation is vast and 
often of non-negligible magnitude. In order for a face recognition system to objectively make 
the claim that it is capable of unrestricted field deployment it must be able to compensate for 
any type of illumination variation. One approach to this issue is to re-train the recognition 
system each time it is presented with a new environment or situation where the illumination 
has varied from previously known conditions. This can be costly both in terms of time and 
money and most of the time, this is not feasible or possible to capture all possible lighting 
conditions (especially when outdoors) so as a result this is not done in practice. Another 
approach is to incorporate some sort of illumination-preprocessing algorithm in order to 
compensate for varying illuminations. This method is much preferred to the former due to its 
hopefully broader and more effective application. Nonetheless, deriving such a preprocessing 
stage is in itself challenging given the degree of illumination compensation one is attempting 
to achieve. One of the more novel approaches to this problem involves using eigenanalysis 
and ACFs to reconstruct and recognize images respectively using a different representation of 
the face (Li et al., 2006). The relative uniqueness of this approach can be traced to the fact that it 
utilizes both traditional facial images coupled with corresponding facial sketches thsat are 
similar to those found in law enforcement. 
Consider the field of law enforcement applications where one of the most commonly used 
tools is that of a police sketch which is used to to help identify suspect criminals. Although 
visual surveillance equipment is present in many everyday environments, they are often of 
low quality and are not optimal for enrolling police sketches. To this end, the role of the 
witness becomes exceptionally important as a source of more reliable evidence. The police 
sketch allows the witness’ recollection of a suspect to manifest itself as a piece of visual 
evidence. Nonetheless the usefulness of the previously mentioned surveillance equipment 
should not be discounted. In many high security locations, continuous video surveillance is 
present and provides us with some record of people who have passed through those 
monitored locations. However, due to factors such as time of day and physical setup of the 
surveillance equipment, the exact lighting conditions which illuminate the faces of the 
passing people can vary. The issue now becomes one of recognizing the suspect in the 
surveillance data using the witness’ police sketch as the template. 
This kind of question can be categorized as robust face recognition for illumination 
variation. However this application is different from the normal face recognition scenario; 
where the enrollment gallery image is a real face image,  as in this case the enrollment 
gallery image for finding the suspect from surveillance video is a police sketch of the 
suspect’s face. Of course there are strong similarities and high correlations between the real 
face images and the corresponding police sketch image. If one can capture the correlation 
between these two representations of same person, and describe those correlations in a 
useful mathematical form, then it will be very useful for finding a solution to this problem. 
In literature, there are two main types of approaches proposed for this kind of face-sketch 
dual space modeling problem. Both methodologies utilize eigenanalysis to form a  basis for 
representing the face-sketch dual space, similar to how eigenanalysis is used in PCA and 
Eigenface applications. However, these two methodologies differ in the way of how they 
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form the eigen-subspace and how they capture the correlation between the two subspaces 
(i.e., face and sketch subspace). 
The first approach tries to construct the PCA subspace for both the face and sketch images 
separately, by transforming all the training data (which are real face images) into 
corresponding sketch images, and then perform classification in sketch space (Tang et al., 
2002), this approach may face issues in practice as images with illumination variation will 
generate sketches with artifacts.  The second approach to this problem tries to reconstruct 
the original face image from the given sketch image using a hybrid-eigenspace 
representation, and then perform classification using ACFs (Li et al., 2006). In the next few 
paragraphs, we will look at more details of this algorithm. The key idea us that a face 
recognition system, which takes surveillance footage, typically is subject to variable and 
unknown illumination artifacts and will not be able to synthesize good sketch images 
(corresponding to the illumination distorted face image) on the fly due illumination 
variation artifacts. These artifacts will be enhanced and significantly affect the resulting 
automatically generated sketch image. which will in turn ultimately affect recognition 
performance. In our proposed approach we reconstruct what the person ‘looks-like’ from 
the sketch image and then use this reconstructed image as the gallery enrollment image in 
the face recognition system which can recognize the person under the presence of 
illumination variations (as demonstrated with example experiments on the PIE database). 
We can use three stages to describe this algorithm: the training stage, the synthesis stage, 
and the recognition stage. Assume the training data has N face images and their 
corresponding N sketch images. We denote the ith face image as fi , and the ith sketch image 
as si  where = …1  2    , , ,i N . By appending each face image with its corresponding sketch 
counterpart, we can form a new subspace, which is called “hybrid-subspace” in (Li et al., 
2006). Then we can describe all of the training data in the following matrix form: 
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where each fi  and si are column vectors, and fD consists of the face data matrix, and sD
as the corresponding sketch data matrix. Our next step is to derive an orthonormal basis that 
represents our combined face data. Therefore, standard PCA is performed on the hybrid 
data matrix hD . We first remove the mean of the data by computing μf and μs:
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Then the covariance matrix  is defined as: 
1 T= XX
N

 (61) 
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Once we have , we perform eigenanalysis to derive its eigenvectors and eigenvalues: 

h h h=  (62) 

where 1h m= …  such that i  is the ith eigenvector of , and ( )1h mdiagΛ = …

such that i  represents the ith eigenvalue. 
Because every single column in hD  contains a face image and its corresponding sketch 
images, each i  can be interpreted as consisting of two components as follows: 

sf,

ss,
= i

i
i

 (63) 

We can call sf,i  as “pseudo-eigenface” and ss,i  as “pseudo-eigensketch”, because they 
represent the variations in face and sketch subspace, respectively. The reason we add 
“pseudo” in front of “eigenface” and “eigensketch” is because the orthogonality is no longer 
preserved when the i  vector is partitioned into two parts. The set of i  vectors form an 
orthogonal basis, however neither sf  or ss  do. Therefore, one should not use the 
standard projection method to compute the projection coefficients, as one would do in 
standard PCA case. Instead, one should use “pseudo-inverse” method to derive projection 
coefficients, and this is exactly what is proposed in hybrid-subspace method. 
Given a probe sketch image ps , the pseudo-inverse procedure is performed to find the 
optimal projection coefficient: 

T -1
ss ss ss pP = ( ) s  (64) 

By using this projection coefficient in the subspace spanned by sf , one can reconstruct the 
face image in pseudo-eigenface subspace, as described in following equation: 

T
reconstructed sfI = P  (65) 

Hence, a new face image is hallucinated from the given sketch image. A few examples of the 
face images and their corresponding sketch images, probe sketch images and the 
reconstructed (hallucinated) face images are shown in Figure 11. We can see that the 
reconstructed face images preserved most of the characteristics from the original face 
images, which exhibit the effectiveness of the hybrid-subspace method. However, there are 
also some discrepancies between the original face images and the reconstructed ones. The 
differences are mostly the level of intensity around the forehead and cheek. This is because 
from a sketch it is not possible to extract the color of the face, that is meta-data which is 
given by the victim and can easily be added to this model.  
We have shown in previous sections that ACFs have significant illumination tolerance 
which shows that when test images have different level of illumination than training 
images, ACFs can successfully achieve high recognition rate without the need to re-train the 
classifiers. Therefore, ACFs are one of the best candidates of the possible pattern recognition 
classifiers used in this application. The performance of ACF is reported to be significantly 
much higher, when compared to traditional approach of nearest-neighbor method (1-NNM), 
with exactly the same reconstruction steps used in face reconstruction (hallucination) stage, 
as shown in Figure 12. 
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Figure 11. Examples from CMU PIE database (first row) example face images in training 
database (second row) corresponding sketch images with respect to the first row (third row) 
given probe sketch images (fourth row) reconstructed (hallucinated) face images based on 
the hybrid-subspace approach 

 (a) (b) 
Figure 12. Experimental rank-1 identification rate results of hybrid-subspace method (a) 
Results from CMU PIE Light database: OTSDF and 1-NNM, using 8th and 11th image of all 
the subjects to train hybrid-subspace while using sketch of 20th image, and testing against all 
images (b) Results from CMU PIE No-Light database: OTSDF and 1-NNM, using 7th and 10th

image of all the subjects to train hybrid-subspace while using sketch of 19th image, and 
testing against all images 
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In summary, for face recognition problems in face-sketch dual subspace, hybrid-subspace 
method combined with ACF has been proved as a good direction. It captures the correlation 
between face and sketch subspaces by form a hybrid subspace and train pseudo-eigen basis 
from it. It can successfully reconstruct the original face image and by then performing 
classification using ACF, one can overcome difficulties resulted from the illumination 
variation and still achieve high recognition results. 

5.2 Empirical Mode Decomposition Preprocessing and ACFs 

Amongst our latest research that utilizes ACFs makes use of the powerful signal processing 
tool of Empirical Mode Decomposition (EMD) (Huang et al., 1998). Relatively new to the field 
of face recognition, EMD is traditionally applied to 1-D signal processing problems where 
the goal is to isolate underlying trends and details in data. Fundamentally this is the goal of 
illumination preprocessing where the underlying trend is the neutral illumination. 
Pioneered as a signal processing technique for adaptive representation of non-stationary 
signals as sums of zero-mean AM and FM components, EMD has been successfully 
employed in multiple applications not directly related to facial recognition. EMD’s ability 
for adaptive representation of signals allows for controlled reconstruction of signals. 
Though it is considered a very powerful tool, it is fundamentally an empirical algorithm as 
opposed to theory wherein lays the potential for multiple and varying interpretations. 
However, we present here only the most basic flavor of EMD from which all other 
variations of EMD are derived from. A more thorough development and description of 
EMD is presented in other works (Flandrin et al., 2003) as compared to the one detailed in 
Table 2.  

Table 2. Basic EMD algorithm 

Although the described algorithm implies the use of 1-D data, there are variants of EMD 
specifically created for use with 2-D data (Damerval et al., 2005) such as facial images. In the 
interest of conciseness, we will not thoroughly develop the EMD algorithm but instead 
emphasize the end result of applying EMD to a signal. Essentially EMD decomposes an 
input signal into a set of Intrinsic Mode Functions (IMFs) from which the original input signal 
can be recovered via the simple summation of said IMFs. In this sense, the IMFs that are the 

1.) Identify all local minima and maxima of ( )x t

2.) Interpolate between all minima to yield an envelope ( )mine t . Similarly, 

 interpolate between all maxima to yield an envelope ( )maxe t

3.) Compute the mean envelope ( ) ( ) ( )( )min max 2m t e t e t= +

4.) Compute the detail ( ) ( ) ( )d t x t m t= −

5.) If ( )m t < . If not repeat steps 1-4 with ( )d t  as the input signal ( )x t . If so, 

( )d t  is an Intrinsic Mode Function (IMF) 

6.) Calculate residual ( ) ( ) ( )r t x t d t= −

7.) Go back to step 1 with ( )r t  as the input signal ( )x t
8.) Repeat until input signal no longer has any extrema
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result of application of EMD to a signal can be thought of as a series of basis signals for the 
input signal. Using EMD as a preprocessing tool, we can decompose facial images into their 
IMFs or basis images of which a few will contain the majority of illumination effects. 
Reconstruction of the original facial image sans these illumination-variant IMFs will yield a 
more illumination-neutral image from which more accurate recognition can be performed 
(Bhagavatula & Savvides, 2007). 

   
 (a) (b) 
Figure 13. Result of EMD preprocessing on an image taken from the PIE No-Lights face 
database (a) Prior to EMD preprocessing (b) After EMD preprocessing 

Figure 14. IMFs created from applying EMD to the face image in Figure 13 (a) 

As Figure 13 demonstrates, EMD preprocessing is capable of removing cast shadow effects 
while retaining the majority of useful information. Although the image in Figure 13 (b) 
appears discolored, it is a far better image to perform face recognition on than the original 
image presented in Figure 13 (a). To further illustrate this point we present in Figure 14 the 
IMFs decomposed from the image in Figure 13 (a). Taking note of the last IMF, we can 
clearly see the overall effect of the cast shadow in this IMF and can intuitively appreciate the 
effect of reconstructing the facial image minus this particular IMF. We show in Figure 15 the 
average performance of ACFs prior to and after EMD preprocessing on the Carnegie Mellon 
University Pose-Illumination-Expression (CMU PIE) No-Lights face database (Sims et al, 
2003). Our results indicate that although ACFs perform exceedingly well even under 
illumination-variant conditions, their performance does benefit from some illumination 
normalization as is provided by EMD preprocessing. These results not only underscore the 
power of ACFs but also that of EMD which as signal decomposition tool which effectively 
yields AM and FM components of a signal is also a frequency domain processing technique. 
With both these algorithms available to us, we are capable of achieving significantly 
accurate face recognition in illumination-variant conditions. 
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Figure 15. Average EERs comparing performance of ACFs prior to and after EMD 
preprocessing 

6. Conclusions and Future Work 

We have shown through the course of this chapter that the Fourier or frequency domain of 
facial data contains significantly more useful information when processed than its spatial 
counterpart. The simple coupling of standard algorithms such as Eigenfaces and Fisherfaces
with frequency domain representation of phase and magnitude spectrums, can result in 
noticeable improvements in performance as we have shown for pose and illumination 
tolerance. Evolving our intuition about the frequency domain leads us to the group of 
algorithms collectively referred as ACFs. Primarily originating from frequency domain 
interpretations of data, ACFs allow for significant discriminative ability while providing 
other attractive qualities such as shift invariance, noise tolerance, and graceful degredation. 
As the presented results indicate, ACFs are capable of performing highly accurate face 
recognition in varying and challenging circumstances. In particular, the presented work also 
demonstrates the compatibility of ACFs with other algorithms allowing them to be easily 
integrated into most face recognition systems.  
Frequency domain related algorithms, particularly ACFs, still hold much potential in 
advancing the area of face recognition and biometrics in general. Our proposed future work 
spans the broad horizon of face recognition including but not limited to improved general 
face recognition, large scale applications, improved illumination tolerance, hardware 
implementations, and privacy issues. The last area mentioned holds great significance in 
today’s digital world. Although biometrics are gaining popularity as a reliable and secure 
method of authentication and identification, they are as susceptible to loss as typical ciphers 
or passwords. Represented as digital data, a biometric template can be stolen and as an 
almost unique identifier of a person cannot be replaced. To this end, cancellable biometrics 
are being developed to allow re-usability and re-issuement of biometrics using encryption 
type methods and performing the recognition in the encrypted domain. ACFs easily 
integrate into the scheme of cancellable biometrics (Jain & Uludag, 2003; Savvides et al., 
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2004c, 2004e; Ratha et al., 2006). This research is amongst the most pressing as widespread 
acceptance of face recognition is contingent on allaying these privacy concerns. 
Face recognition research and technology has made significant progress over the last 
decade. Advances in recognition algorithms have enabled some headway into commercially 
viable systems. However, performance is still considered lacking with respect to the need 
for reliable and accurate identification. Our research into frequency domain algorithms is 
but one of many approaches to this problem. However, unlike other approaches, ours’ is 
relatively unique and offers a great potential for improvement with the designed distortion 
tolerance and shift-invariance. We intend to continue with our research in frequency 
domain face recognition exploiting and analyzing all aspects of the frequency content of 
useful for identifying human faces. 
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1. Introduction  

The need to further develop robust face recognition techniques to meet real world 
requirements is still an open research challenge. It is widely understood that the two main 
contributions of poor recognition performances are that caused by variations in face pose 
and lighting. We will deal with the problem of illumination in this chapter. Approaches 
addressing the illumination-related problems can be broadly classified into two categories; 
feature-based approach and exemplar- or appearance- based approach. Feature-based 
approaches aim to define a feature space that exhibits some broad invariance over the 
lighting variations. Examples of these are (Adini & Ullman, 1997), (Belhumeur et al., 1997) 
and (Yang et al., 2004) which uses different image representations like 2D Gabor-like filters, 
first and second derivatives of the image, and the logarithmic transformation. Although 
these features may exhibit intensity immunity, none of these are found to be reliable to cope 
with significantly large variations in illumination changes (Manjunath et al.1992) (Yang et 
al., 2004). 
Exemplar- or appearance- based approaches use a set of sample images taken of a class 
object (in this case a face) as a basis to compute an intermediary image. The intermediate 
image can then be used either directly as the probe image or be used to synthesize novel 
views of the face under different lighting conditions (Mariani, 2002). For example, (Riklin-
Raviv &  Shashua, 2001) reported a method to compute the Quotient Image from a small 
sample of bootstrap images representing a minimum of two class objects. The illumination 
invariant signature of the Quotient Image enables an analytic generation of the novel image 
space with varying illumination. However, this technique is highly dependent on the types 
of bootstrap images used which has the undesirable effect of generating diversely looking 
Quotient Images even from the same person. (Sim & Kanade, 2001) used a statistical shape-
from-shading model to estimate the 3D face shape from a single image. The 3D recovery 
model is based on the symmetric shape-from-shading algorithm proposed by (Zhao & 
Chellappa, 1999). They used the 3D face model to synthesize novel faces under new 
illumination conditions using computer graphics algorithms. The approach produce high 
recognition rate on the illumination subset of the CMU PIE database (Sim et al., 2003). 
However, it was not evident how their synthesis technique can cope with extreme 
illumination conditions (Sim & Kanade, 2001). (Debevec et al., 2000) presented a method to 
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acquire the reflectance field of a human face and use these measurements to render the face 
under arbitrary changes in lighting and viewpoint. However, the need to generate a large 
sample of images using the light stage is unfeasible for face recognition purposes. A 
parameter-free method of estimating the bi-directional reflectance distribution of a subject’s 
skin was proposed by (Smith et al., 2004). They estimated the radiance function by 
exploiting differential geometry and making use of the Gauss map from the surface onto a 
unit sphere. They demonstrated the approach by applying it to the re-rendering of faces 
with different skin reflectance models. 
As in  (Riklin-Raviv & Shashua, 2001) and (Mariani, 2002), we address the problem of class-
based image synthesis and recognition with varying illumination conditions. We define an 
ideal class as a collection of 3D objects that have approximately the same shape but different 
albedo functions. For recognition purposes, we can broadly assume all human faces to 
belong to a certain class structure. This assumption was similarly adopted by (Riklin-Raviv 
& Shashua, 2001) and (Mariani, 2002). Our approach is based on the dual recovery of the 
canonical face model and lighting models given a set of images taken with varying lighting 
conditions and from a minimum of two distinct subjects within the class. The canonical 
image is equivalent to the reflectance field of the face that is invariant to illumination. The 
lighting model is the image representation of the ambient lighting independent of the face 
input. We will first formulate the problem with an over-determined set of equations and 
propose a method in solving them over every pixel location in the image. We will 
demonstrate the quality of the recovered canonical face for generating novel appearances 
using both subjective and objective measures. 

2. The Illumination Model 

The intensity of reflected light at a point on a surface is the integral over the hemisphere 
above the surface of a light function L times a reflectance function R. The pixel equation at 
point (x,y,z) can be expressed as  
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where
x,y,z = the co-ordinate of the point on the surface 
φ and θ = azimuth and yaw angle from the z axis respectively 
t and λ = time and wavelength of the light source 

This equation is computationally too complex to solve in many real-time applications. We 
need to make further simplification of the equation without significantly affecting the goal 
of our work. Firstly, z, t and λ can be eliminated because we are dealing with the projected 
intensity value of a 3D point onto a single frame grey scale digital image. Additionally, if 
one considers fixing the relative location of the camera and the light source, θ and φ both 
become constants and the reflectance function collapses to point (x, y) in the image plane.  
This is a valid condition since we assume the camera to be positioned directly in front of the 
human subject at all times. Therefore, the first-order approximation of equation (1) for a 
digital image I(x,y) can be further written as: 

I(x,y) R(x,y) L(x,y) (2) 
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where R(x,y) is the reflectance and L(x,y) is the illumination at each image sample point (x,y).
Our approach is to use exemplar images taken over different fixed lighting directions to 
recover both the reflectance model and illumination source at the same time. It is not the 
scope of this work to accurately model the skin reflectance property according to specificity 
like the melanin content of the skin, skin haemoglobin concentration and level of 
perspirations. These are important for visually accurate skin rendering application but less 
so for face recognition purposes. 

3. Computing the Canonical Face and the Illumination Models 

In our case, only the measured intensity images are available. Therefore, there are twice as 
many unknown data (RHS) as there are known data (LHS) making equation (2) ill-posed. 
The reflectance surface essentially comprises the combination of the reflectance property 
associated with the pigmentation of the skin, mouth, eyes and artifacts like facial hair. We 
define the reflectance model as the canonical face and represent it as a grey level intensity 
image. We will formulate the dual recovery technique for the canonical faces and 
illumination models given a set of intensity images Iij(x,y) Rj(x,y) Li(x,y), where i and j are 
indices to the collection of bootstrap1 faces taken from M distinct persons (j = 1, ..., M) and 
N different lighting directions (i = 1, ..., N). 

3.1 Defining and Solving the Systems of Equations 

As explained in the previous section, equation (2) has more unknown terms than known. In 
order to make the equation solvable in a least square sense, we need to introduce additional 
measurements thus making the system of equations over determined. We further note that 
the bootstrap image, Iij(x,y) has two variable components. They are the reflectance 
component which is unique to the individual person and the illumination model which is 
dependent on the lighting source and direction. Suppose we have M distinct persons which 
we use in the bootstrap collection (i.e. Rj, j = 1, …, M) and N spatially distributed 
illumination sources whose direction with respect to the person is fixed at all instances (i.e. 
Li, i = 1, …, N), we will have therefore a total of MxN known terms and M+N unknown 
terms. These over-determined systems of equations can be solved by selecting any values of M 
and N that are greater than 1. For example, if we use M persons from the bootstrap 
collection, and collect N images for each person by varying the illumination, we get the 
following system of equations; 

Ii1(x,y) R1(x,y) Li(x,y)
 (3) 

IiM(x,y) RM(x,y) Li(x,y)

where i = 1,…,N. The terms on the left hand side of these equations are the bootstrap images 
from the M number of persons. If the illuminations used to generate these bootstrap images 
are the same, the illumination models, Li will be common for every person as is reflected in 
equation (3).

                                                                
1 The bootstrap collection comprises of face sample images taken of various person over multiple 

illumination directions, the relative location of which are fixed.
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Numerous non-linear minimization algorithms exist and are usually problem dependent 
(Yeredor, 2000). We chose to use the Levenberg-Marquardt non-linear least square fitting 
algorithm (More, 1978) as it is fast and suited to problems of high dimensionality. The solver 
takes as input the set of equations shown in (3) to minimize, a Jacobian matrix of 
derivatives, a set of known data (i.e. Iij) and seed values for the unknowns. We chose to set 
the seed value to 128 since there are 256 possible grey values for both the reflectance and 
illumination models. The internal functions of the solver are iterated until the change in 
computed values falls below a threshold. At this point the algorithm is said to have 
converged, and the current computed values for the unknown data are taken as the solution. 
The algorithm is extremely fast and can recover the unknown values (for most practical 
values of M and N) in near real-time. 
Figure 1 shows the schematic block diagram of the canonical face and illumination model 
recovery process. The input of the system are the M (M > 1) distinct individuals with each of 
them taken under N (N > 1) illumination conditions. The outputs are the canonical faces of 
the M individuals and N illumination models. 

Figure 1. The schematic block diagram showing the canonical face and illumination model 
recovery process. M is the number of distinct persons and N is the total number of lightings 

3.2 Appearance Synthesis 

The recovery of the canonical and illumination models is the important first step to enable 
the following appearance synthesis functions to be performed: 
1. New illumination models can be generated by combining the subset of the recovered 

illumination models. This is possible since mixing lights is an additive function and 
therefore the new illumination model is simply an addition of the component lights. We 
can therefore potentially generate significantly greater than N possible variations of the 
illumination conditions to reflect more accurately the actual real-world lighting 
conditions.

2. Novel appearance views for each person can be generated by combining the expanded 
set of illumination models mentioned in point (1) to closely match the actual 
illumination conditions. (Mariani, 2002) synthesizes the appearance of the face from a 
single source image by varying both the pose and illumination conditions and reported 
good recognition rate by matching a probe face with these appearances. 
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It is not economical and computationally feasible to store specific illumination models for 
specific faces. To make this approach viable, we need to define a set of generic illumination 
models that is applicable to people of different skin types and bone structures. We compute 
each generic illumination model as such; 
1. Select a well represented genre of people and recover the canonical face representation 

for these people using the approach explained in the previous section. 
2. Recover the corresponding illumination model for each canonical face. The illumination 

model should be different for different individual. 
3. Estimate the covariance matrix of the intensity measurement between the sample 

individuals. 
4. Diagonalise the covariance matrix using the Singular Value Decomposition (SVD) 

algorithm to recover the Eigen values and vectors. 
5. Use the coefficient of the normalized Eigen vector associated with the highest Eigen 

value as weights to sum the illumination contribution for each sample individuals. We 
call this final model the generic illumination model, Lg.     

We will subsequently use Lgi to represent the illumination models in this work. The process 
of creating the synthesize face images is shown in Figure 2. 

Figure 2. The face synthesis process where Si  (i = 1, ..., N) are the synthesized images 

4. Experiments 

4.1 The Database 

In our experiments, we make use of the illumination subset of the CMU PIE database (Sim et 
al., 2003). The original database comprises 41,368 images taken from 68 people taken under 
13 different face poses and 43 different lighting conditions. Each subject were taken with 4 
different facial expressions. The images are taken under two ambient conditions; one with 
the ambient lightings turned on, and the other with the ambient  lightings turned off. All the 
color images are first transformed to grey-level, pre-processed and the faces cropped. The 
final size for all images is 110 x 90 pixels. Data sets that were used in this experiment are 
divided into 11 sets of different number of lighting conditions. Lights are selected so that 
they are as evenly distributed as possible. Table 1 and Table 2 show the individual ID and 
lighting groupings used in the experiments. 

04000 04007 04017 04026 04042 04048
04001 04008 04018 04034 04043 04050
04002 04012 04019 04035 04045 04053
04004 04014 04020 04041 04047  

Table 1. Individual ID (as in PIE Database) use in the experiment 
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4.2 Canonical Face Recovery 

We use equation (3) to recover the canonical faces with different values of M and N and a 
subset of them are shown in Figure 3. In order to measure the quality of the recovered 
canonical face, we first define a set of measures that describes the properties of an acceptable 
canonical face. These measures are; (1) Elimination of lighting effects like specular 
reflections and casted shadows. (2) Preservation of the visual distinctiveness of the 
underlying face. (3) Well-balanced intensity distribution. Based on these measures, we can 
see that in general the recovery of the canonical faces for different values of M and N are 
very good. In fact the quality is largely independent on the number of bootstrap images (i.e. 
N) used in the estimation. This is a significant improvement over the Quotient Image 
reported  in  (Riklin-Raviv and Shashua,  2001).  To  illustrate  the ability of the  technique  to 
extract the canonical image, Figure 4 shows the 5 bootstrap images used to generate the 
canonical face of subject 04002 as highlighted in red in Fig 3. It is interesting to note that the 
shadow and highlight regions as seen in these bootstrap images have been significantly 
reduced, if not eliminated in the canonical face image. The slight reflection on the nose 
region of subject 04002 may be attributed to oily skin deposits.  

Set # Lights Flash Positions 
1 2 f04, f15 
2 3 f01, f11, f16 
3 5 f05, f06, f11, f12, f14 
4 7 f04, f05, f06, f11, f12, f14, f15 
5 9 f04, f05, f06, f11, f12, f14, f15, f19, f21 
6 11 f04, f05, f06, f08, f11, f12, f14, f15, f19, f20, f21 
7 13 f04, f05, f06, f07, f08, f09, f11, f12, f14, f15, f19, f20, f21 
8 15 All except f11, f18, f19, f20, f21, f22 
9 17 All except f18, f19, f21, f22 
10 19 All except f18 and f22 
11 21 All 

Table 2. Groupings of 11 lighting sets and their associated flash positions as determined in 
the CMU PIE database 

Figure 3. Canonical faces generated for candidate samples 04001, 04002, 04000 and 04008 
using (i) N=3 (Set 2), (ii) N=5 (Set 3), (iii) N=13 (Set 7) and (iv) N=21 (Set 11) 
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Figure 4. The bootstrap images used to generate the canonical face for candidate 04002 for 
N=5

To further support the significance of the recovered canonical face, we will next describe a 
face recognition experiment that will quantitatively show the ability of our approach to deal 
with illumination variation problem. 

4.3 Face Appearance Synthesis  

For each recovered canonical face, the corresponding set of 21 illumination models can then be 
computed. We further estimated the generic illumination models as defined in Section 3.2 by 
using 10 candidate samples from the CMU PIE database. We then use these generic 
illumination  models and the canonical faces from the  remaining samples to generate  novel 
appearance faces. Figure 5a shows the synthesized views of a subject generated using 7 
different illumination models. The corresponding images captured by the actual illuminations 
are shown in Figure 5b. As can be seen, the appearances of the synthetic images broadly 
resemble the actual images in relation to the location of the shadow and highlight  structures. 
However, this alone cannot be used as justification for the synthesis approach. One way to 
measure the significance of the appearance synthesis is by using quantitative face recognition 
performance measures. This will be elaborated in the next section. 

Figure 5.  Novel appearance synthesis results using a subset of the generic illumination 
models and its comparison with the actual appearance. The canonical faces used to generate 
these images are shown at the top of (a) and (c). The corresponding images of (b) and (d) 
show the actual illuminations taken from the CMU PIE database. 
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4.4 Face Recognition  

To demonstrate the feasibility of the face appearance synthesis for recognition, we 
implement a simple classifier based on template matching. This is equivalent to the nearest 
neighbor classifier reported by (Sim & Kanade, 2001). We use only frontal pose faces 
throughout the experiment. The generic illumination models used here is the same as in 
Section 4.3. To maintain unbiased recognition outcome, the test samples used for recognition 
does not come from any of the samples used to produce the generic illumination models. 
There are 21 persons in the test samples. From each person we compute the canonical 
representation and use it to synthesize 21 appearances of the person under different lighting 
conditions. These images collectively form the registry representation of the person in the 
database. We use actual illumination samples of the PIE database as the test images. There 
are a total of 441 (i.e. 21x21) test sample images. We construct different registry databases 
for different combination of M (number of person) and N (number of lighting) values. We 
then perform the face recognition experiments on the test samples over the different 
registries. Figure 6 shows the summary of recognition rate for different values of M and N. 
We observe several important behaviors. They are: 
1. For a fixed value of M, the recognition rate increases monotonically when N increases. 
2. However when M increases, N has to consequentially increase for the canonical face to 

be recovered with reasonable quality. The minimum (M,N) pair needed to establish 
good recognition rates are (2,3), (4,5), (6,7), (8,9) and (10,11).  

3. The recognition rate for N=2 is very poor for all values of M. 
4. The range of recognition rates for different values of M and N (ex N=2) are between 

85.5% and 88.8%. 
As can be seen, the results obtained here is significantly better than (Sim & Kanade, 2001)  
which reported an accuracy of 39% with the nearest neighbor classifier on a similar dataset. 
The general trend of the recognition rates which flatten off as N increases for all values of M 
suggest a wide perimeter for the choices of these values. However, from the computation, 
data acquisition and hardware standpoint, it would be effective to keep the M and N values 
small, without negatively impacting the recognition rate. 
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5. Discussion 

The results obtained using the canonical face recovery algorithm is very encouraging. We 
have shown that the minimum number of illumination specified bootstrap images (i.e. N) 
needed to generate a stable canonical face ranges between 3 and 5. This makes good 
hardware design sense as an elaborate light stage setup (Sim et al., 2003) (Debevec et al., 
2000) becomes unnecessary. Currently we are fabricating a low-cost portable light array 
module used to implement the canonical face recovery. Depending on the role, this lighting 
module can be embedded into the different stages of the face recognition system. For 
example, the module can be introduced during the registration stage where the objective is 
to capture a good quality neutral image of the subject (i.e. its canonical representation) to be 
registered into the system irregardless of the ambient lighting condition. Another possible 
use is to incorporate it into the image capture system at the front end of the recognition 
system. This will ensure that the picture taken and used for matching will not be affected 
again by external light sources. Besides using the images captured by the lighting module as 
described here, we can explore using shape-from-shading techniques to recover the 3D 
shape of the face (Zhao and Chellappa, 1999). The range information will be an added boost 
to improve on the illumination rendering quality as well as for recognition.  
Although the illumination models recovered using the CMU PIE database generates 21 
different variations they are inadequate as some important lighting directions (i.e. especially 
those coming from the top) are glaringly missing. We will next consider using computer 
graphics tools to develop a virtual light stage that has the ability to render any arbitrary 
lighting conditions on a 3D face. These new variations can then be used to extract finer 
quality illumination models which in turn can be use to synthesis more realistic novel 
appearance views. Finally, we will explore how the systems of canonical face recovery and 
appearance synthesis can play a further role in enhancing the performances of illumination 
challenged real world analysis systems. One possible use of this would be in the area of 
improving data acquisition for dermatology-based analysis where maintaining colour 
integrity of the image taken is extremely important.  

6. Conclusion 

We have developed an exemplar-based approach aim at recovering the canonical face of a 
person as well as the lighting models responsble for the input image. The recovery is not 
dependent on the number of person (i.e. M) and number of lighting positions (i.e. N). In fact, 
we have demonstrated that a low value of M=2 and N=2 are in fact adequate for most cases 
to achieve a good recovery outcome. The canonical face can either be use as a probe face for 
recognition or use as a base image to generate novel appearance models under new 
illumination conditions. We have shown subjectively that the canonical faces recovered with 
this approach are very stable and not heavily dependent on the types and numbers of the 
bootstrap images. The strength of the view synthesis algorithm based on the canonical face 
was further demonstrated by a series of face recognition tests using the CMU PIE images 
which yielded a 2.3 times recognition  improvement over the existing technique. 
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1. Introduction  

Face recognition using 2D intensity/colour images have been extensively researched over 
the past two decades (Zhao et al., 2003).   More recently, some in-roads into 3D recognition 
have been investigated by others (Bowyer et al., 2006). However, both the 2D and 3D face 
recognition paradigm have their respective strengths and weaknesses.  2D face recognition 
methods suffer from variability in pose and illumination.    Intuitively, a 3-D representation 
provides an added dimension to the useful information for the description of the face. This 
is because 3D information is relatively insensitive to illumination, skin-color, pose and 
makeup, and this can be used to compensate the intrinsic weakness of 2D information. 
However, 3D face lacks texture information. On the other hand, 2D image complements well 
3D information. They are localized in hair, eyebrows, eyes, nose, mouth, facial hairs and 
skin color precisely where 3D capture is difficult and not accurate. A robust identification 
system may require fusion of 2D and 3D. Ambiguities in one modality like lighting problem 
may be compensated by another modality like depth features. Multi-modal identification 
system hence usually performs better than any one of its individual components 
(Choudhury et al., 1999).   
There is a rich literature on fusing multiple modalities for identity verification, e.g. 
combining face and fingerprint (Hong and Jain, 1998), voice and face biometrics (Bruneli, 
1995; Choudhury et al. 1999) and visible and thermal imagery (Socolinsky et al., 2003). The 
fusion can be done at feature level, matching score level or decision level with different 
fusion models. The fusion algorithm is critical part to obtain a high recognition rate. (Kittler 
et al., 1998) considered the task of combining classifiers in a probabilistic Bayesian 
framework. Several ways (sum, product, max, min, major voting) to combine the individual 
scores (normalized to range [0, l]) were investigated, based on the Bayesian theorem and 
certain hypothesis, from which the Sum Rule (adding the individual scores) is shown to be 
the best in the experimental comparison in a multilevel biometric fusion problem. 
Appearance and depth were fused at matching score level for face recognition by min, sum 
and product in (Chang et al., 2004; Tsalakanidou et al., 2003), by weighted sum in (Beumier 
& Acheroy, 2001; Wang et al., 2004a, 2005, 2006). There are some limitations in the existing 
decision fusion models. Statistical models (e.g. kNN, Bayesian) rely heavily on prior 
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statistical assumptions which can depart from reality; Linear models (e.g. weighted sum, 
LDA) are limited to linear decision hyper-surfaces; Nonlinear models (e.g. Neural 
Networks, RBF, SVM) involves nonlinear optimization. Moreover, the learning process 
could be very tedious and time consuming.   
Multivariate Polynomial (MP) provides an effective way to describe complex nonlinear 
input-output relationship since it is tractable for optimization, sensitivity analysis, and 
predication of confidence intervals. With appropriate incorporation of certain decision 
criteria into the model output, MP can be used for pattern analysis and could be a fusion 
model to overcome the limitations of the existing decision fusion models. However, the full 
MP has dimension explosion problem for large dimension and high order system. The MP 
model can be considered a special example of kernel ridge regression (KRR) (Taylor & 
Cristianini, 2004). Instead of using the kernel trick to handle the computational difficulty of 
MP, we consider the use of a reduced multivariate polynomial model.  
In this chapter, we proposed to use an extended Reduced Multivariate Polynomial Model 
(RMPM) (Toh et al., 2004; Tran et al., 2004) to fuse appearance and depth information for 
face recognition where simplicity and ease of use are our major concerns. RMPM is found to 
be particullary suitable for problems with small number of features and large number of 
examples. In order to apply RMPM to face recognition problem, principle component 
analysis (PCA) is used for dimension reduction and feature extraction and a two-stage 
PCA+RMPM is proposed for face recognition. Furthermore, the RMPM was extended in 
order to cater for the new-user registration problem. We report a stage of development on 
fusing the 2D and 3D information, catering for on-line new user registration. This issue of 
new user registration is non-trivial since current available techniques require large 
computing effort on static database. Based on a recent work by (Toh et al., 2004), a recursive 
formulation for on-line learning of new-user parameters is presented in this chapter (Tran et 
al., 2004). The performance of the face recognition system where appearance and depth 
images are fused will be reported.  
There are three main techniques for 3D facial surface capture. The first is by passive stereo 
using at least two cameras to capture a facial image and using a computational matching 
method. The second is based on structured lighting, in which a pattern is projected on a face 
and the 3D facial surface is calculated. Finally, the third is based on the use of laser range-
finding systems to capture the 3D facial surface. The third technique has the best reliability 
and resolution while the first has relatively poor robustness and accuracy. Existing 3D or 3D 
plus 2D  (Lu & Jain, 2005; Chang et al., 2003, 2005; Tsalakanidou et al., 2003; Wang et al. 
2004a) face recognition techniques assume the use of active 3D measurement for 3D face 
image capture. However, the active methods employ structured illumination (structure 
projection, phase shift, gray-code demodulation, etc) or laser scanning, which are not 
desirable in many applications. The attractiveness of passive stereoscopy is its non-intrusive 
nature which is important in many real-life applications. Moreover, it is low cost. This 
serves as our motivation to use passive stereovision as one of the modalities of fusion and to 
ascertain if it can be sufficiently useful in face recognition (Wang et al., 2005, 2006). Our 
experiments to be described later will justify its use. 
(Gordon, 1996) presented a template-based recognition method involving curvature 
calculation from range data. (Beumier C. & Acheroy M., 1998, 2001) proposed two 3D 
difference methods based on surface matching and profile matching. (Beumier & Acheroy, 
1998) extended the method proposed in (Gordon, 1996) by performing face recognition 
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using the similarity of the central and lateral profiles from the 3D facial surface. The system 
is designed for security applications in which the individuals are cooperative.  Structured 
light was used to obtain the facial surface.  However, the drawback of a structured light 
system is its bulkiness and its limited field of depth constrained by the capabilities of the 
camera and projector lens. Both (Gordon, 1996) and (Beumier & Acheroy, 2001) realized that 
the performance of the 3D facial features based face recognition depends on the 3D 
resolution. (Lee & Milios, 1990) proposed a method based on extend Gaussian image for 
matching graph of range images. A method to label different components of human faces 
for recognition was proposed by (Yacoob & Davis, 1994). (Chua et al., 2000) described a 
technique based on point signature, a representation for free form surfaces. (Blanz & Vetter, 
2003, 1999) used a 3D morphable model to tackle variation of pose and illumination in face 
recognition, in which the input was a 2D face image.  
3D face recognition is one of the three main contenders for improving face recognition 
algorithms in ″The Face Recognition Grand Challenge (FRGC)″ (WWWc). While 3D face 
recognition research dates back to before 1990, algorithms that combine results from 3D and 
2D data did not appear until about 2000. (Beumier & Acheroy, 2001) also investigated the 
improvement of the recognition rate by fusing 3D and 2D information. The error rate was 
2.5% by fusing 3D and gray level using a database of 26 subjects. Recently (Pan et. al., 2003) 
used the Hausdorff distance for feature alignment and matching for 3D recognition. More 
recently, (Chang et. al.,  2003, 2004, 2005) applied PCA with 3D range data along with 2D 
image for face recognition. A Minolta Vivid 900 range scanner, which employs laser-beam 
light sectioning technology to scan workpieces using a slit beam, was used for obtaining 2D 
and 3D images. (Chang et. al. 2004) investigated the comparison and combination of 2D, 3D 
and IR data for face recognition. Based on PCA representations of face images, they reported 
100% recognition rate when the three modalities are combined on a database of 191 subjects. 
(Tsalakanidou et al., 2003) developed a system to verify the improvement of the face 
recognition rate by fusing depth and colour eigenfaces on XM2VTS database, PCA is 
adopted to extract features. The 3D models in XM2VTS database are built using an active 
stereo system provided by Turing Institute (WWWa). By fusing the appearance and depth 
Fisherfaces, (Wang et al., 2004a) showed the gain in the recognition rate when the depth 
information is used. Recently, (Wang et al., 2006) developed a face recognition system by 
fusing 2D and passive 3D information based on a novel Bilateral Two-dimensional Linear 
Discriminant Analysis (B2DLDA). A good survey on 3D, 3D plus 2D face recognition can be 
found in (Bowyer et al., 2006). 
Thanks to the technical progress in 3D capture/computing, an affordable real-time passive 
stereo system has become available. In this paper, we set out to find if present-day passive 
stereovision in combination with 2D appearance images can match up to other methods that 
rely on active depth data. Our main objective is to investigate into combining appearance 
and depth face images to improve the recognition rate. We show that present-day passive 
stereoscopy, though less robust and accurate, is a viable alternative to 3D face recognition. 
The SRI Stereo engine (WWWb) that outputs a high range resolution (≤ 0.33 mm) was used 
in our applications. The entire face detection, tracking, pose estimation and face recognition 
steps are described and investigated. A hybrid face and facial feature detection/tracking 
approach is proposed that collects near-frontal views for face recognition. Our face 
detection/tracking approach automatically initializes without user intervention and can be 
re-initialized automatically if tracking of the 3D face pose is lost.  Comparisons with the 
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existing methods (SVM, KNN) are also provided in this chapter. The proposed RMPM 
method can yield compariable results with SVM. It is clear that computation load of the 
RMPM is much lower than SVM.  
The rest of the chapter is organized as follows. Fusion of appearance and depth information 
is discussed in Section 2. Section 3 presents some issues related to stereo face recognition 
system. Section 4 discusses the experiment on XM2VTs and the implementation of the 
algorithm on a stereo vision system. Section 5 concludes the work with recommendation for 
future enhancements to the system. 

2. Fusing Appearance and Depth Information 

As discussed in section 1, we aim to improve the recognition rate by combining appearance 
and depth information. The manner of the combination is crucial to the performance of the 
system.  The criteria for this kind of combination is to fully make use of the advantages of 
the two sources of information to optimize the discriminant power of the entire system. The 
degree to which the results improve performance is dependent on the degree of correlation 
among individual decisions. Fusion of decisions with low correlation can dramatically 
improve the performance.   
In this chapter, a novel method using the RMPM has been developed for face recognition. A 
new feature is formed by concatenting the feature of an appearance image and the feature of 
a depth/disparity image. A RMPM is trained by using the combined 2D and 3D features. 
We will show that The RMPM can be easily formulated into recursive learning fashion for 
online applications. 
In Section 2.1 and 2.2, we briefly discuss the RMPM and the auto-update algorithm of the 
RMPM for new user registration in face recognition. The face recognition based on the 
RMPM will be discussed in section 2.3. The new-user registration is discussed in Section 2.4. 

2.1 Multivariate polynomial regression 

The general multivariate polynomial model can be expressed as 
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the parameter vector to be estimated and x denotes the regressor vector 
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Without loss of generality, consider a second-order bivariate polynomial model (r = 2 and l
= 2) given by 

 g(α,x)=αTp(x)  (2) 
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the parameter vector α can be estimated from 
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and [ ]Tmyyy ,,, 21=y  is the known interface vector from training data. In (5), the first 
and second subscripts of the matrix elements, xj, k (j = 1,2, k = 1,…m) indicate the number of 
the inputs and the number of instances, respectively. 
It is noted here that (4) involves computation of the inverse of a matrix, the problem of 
multicollinearity may arise if some linear dependence among the elements of x are present. 
A simple way to improve numerical stability is to perform a weight decay regularization 
using the following error objective: 
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where
2⋅ denotes the l2-norm and b is a regularization constant.  

Minimizing the new objective function (6) results in 
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TT b 1)( −+=   (7) 

where Km×ℜ∈P , 1×ℜ∈ my and I is a (K×K) identity matrix. This addition of a bias term 
into the least-squares regression model is also termed as ridge regression (Neter et al., 1996). 

2.2 Reduced Multivariate Polynomial Model 

To significantly reduce the huge number of terms in the above multivariate polynomials, a 
reduced model (Toh et al., 2004) was proposed as: 
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where xj ,  j = 1, 2,…l, are the polynomial inputs,  {α} are the weighting coefficients to be 
estimated, and l, r correspond to input-dimension and order of system respectively. The 
number of terms in this model is: k = 1+r+l(2r-1).
Comparing with existing classifiers, RMPM has some advantages as follows: (1) Number of 
parameters (polynomial coefficients) increases linearly with model-order and input-
dimension, i.e. no dimension explosion as in the case of full multivariate polynomials; (2) 
Nonlinear decision hyper-surface mapping; (3) Fast single-step least-squares optimal 
computation which is linear in parameter space, tractable for optimization, sensitivity 
analysis, and prediction of confidence intervals; (4) Good classification accuracy: 
comparable to SVM, Neural Networks, RBF, Nearest-Neighbor, Decision Trees (Toh et al. 
2004).

2.3 Face recognition 

RMPM is found to be particullary suitable for problems with small number of features and 
large number of examples (Toh et al., 2004). It is known that the face space is very large. In 
order to apply RMPM to face recognition problem, dimension reduction is necessary. In this 
paper, principle component analysis (PCA) is used for dimension reduction and feature 
extraction and a two-stage PCA+RMPM is proposed for face recognition.  
Learning. PCA is applied to appearance and depth images, respectively. In this chapter, the 
fusion of the appearance and depth information is completed at feature level, this can be 
done by concatenating the eigenface features of the appearance and depth images. The 
learning algorithm of a RMPM can be expressed as 

])[,( __ depthEigenappearanceEigen WWrRM=P   (9) 

where r is the order of the RMPM, WEigen_appearance and WEigen_depth are eigenface features of 
the appearance and depth/disparity images respectively. The parameters of the RMPM can 
then be learned from the training samples using (7).  
Testing. A probe face, FT, is identified as a face of the gallery if the output element of the 
reduced model classifier (appearance and depth), PTα, is the maximum (and ≥0.5) among 
the all faces in the training gallery.  

2.4 New user registration 

New user registion is an important problem for an online biometric authentication system. 
Although it can be done offline where the system are re-trained on the new training set, an 
automatic online user registration is an interesting research topic. The efficiency is the major 
concern of online registration. In this chapter, we extend the RMPM by adding an efficient 
user registration capability. We will discuss this extension as follows. 
We set the learning matrix, PT, as follows: the initial value of an element in learning matrix is 
set to be 1 if the sample corresponds to the indicated subject, else it is set to be 0. According 
to the definition of RMPM classifier, a face FT is determined to be a new user (not a 
previously registered user) if  

 Maximum(PT(FT)α) <0.5.  (10) 

Assume we have n face images in the original training set. A new training set is formed by 
adding a new user, fnew which is detected based on the above rule, to the original database. 
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Assum Snew and Sold are the sum of the faces of the training samples in the new traing set 
and the original training set respectively, we have  

 Snew =Sold+fnew (11)

and the (small sample) mean of the new training set will be 

 mnew = Snew/(n+1)  (12) 

The new eigenfaces can be computed using mnew.
Let fi be the vector of all polynomial terms in (8) which is applied to the i-th samples. 
Assuming the parameters of RM are represented as t when a new user is registered and are 
represented as t-1 when the new user is not  resigtred. [ ]Tt21 f,f,fFT = . Let 
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 Next we have (Tran et al., 2004) : 
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Finally, the new estimate αt can be calculated using the previous estimate αt-1 the inversion 
of Mt-1 and the new training data {ft, yt},  we have  
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Based on (14) to (16), the parameters of RMPM can be computed automatically when a new 
user arrives.

3. Stereo Face Recognition System 

The proposed algorithm is evaluated using XM2VTS database and an inhouse database which 
was collected by a stereo vision system. In this section, we discuss the stereo vision system.  
We proposed a hybrid approach to detect and track head/face in real-time. The signal flow 
diagram is shown in Fig. 1. The output of a stereo vision system (WWWb) is a set containing 
three images: left image, right image and disparity image. It should be noted that the left 
image and the disparity image are fully registered. This means that we can detect facial 
features from either left image or disparity image depending upon which is more easy. For 
instance, we can detect nose tip from the disparity image and eye corners from the left 
image. In our approach, by combining disparity and intensity images, either the head or the 
face/3D pose is tracked automatically. The head is tracked if face features are not available, 
e.g. when the person is far away from the stereo head or when the face is in the profile view.  
The face are tracked once the facial features, such as the nostrils, eyebrows, eyes and mouth 
are found. Disparity maps of the face are obtained at frame rate using commercially 
available stereo software, e.g. SRI International Small Vision System (SVS) (WWWb). The 
range data of a person is extracted from the disparity map by assuming the person of interest 
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is the nearest object to the camera. A novel method is proposed where the head is separated 
from the connected head-and-shoulder component using morphological watersheds. The head 
contour is modeled as an ellipse, which can be least-squares fitted to points obtained in the 
watershed segmentation. The eye corners, mouth corners are extracted using SUSAN corner 
detector;  the nose tip is detected in the disparity image by a template metching. Using the 
calibrated parameters of the vision system, the head pose can be estimated using a EM 
enhanced vanishing point, formed by the eye lines and mouth line, based method (Wang & 
Sung, 2007).  

3.1 Face detection 

Proper face detection is important for accurate face recognition. The task includes locating 
the face, extracting facial features and consistent image normalization. Although the face 
detection and tracking with a single camera is a well explored topic, the use of the stereo 
technology for this purpose has now become an important interest (Morency et al. 2002; 
Daniel 2002; Rafael et al., 2005). The availability of commercial hardware to resolve low-
level problems with stereoscopic cameras, as well as lower prices for these types of systems, 
turns them into an appealing sensor with which intelligent systems could be developed. The 
use of stereo vision provides a higher grade of information that bring several advantages 
when developing face recognition system. On one hand, the information regarding 
disparities becomes more invariable to illumination changes than the images provided by a 
single camera, this being a very advantageous factor for the background segmentation. 
Furthermore, the possibility to know the distance to the person could be of great assistance 
for the tracking as well as for a better analysis of their gestures.  

Figure 1. Flowchart of the head/face tracking algorithm 
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In our system, face detection becomes much easier with available 3D information. An object-
oriented segmentation is applied to obtain the person-of-interest, who in our case is the one 
closest to the camera.  The nearer the object to the camera, the brighter the pixel in the 
disparity image. Hence histogram-based segmentation can be applied effectively.  
Subject-of-interest can be segmented out by thresholding their distances from the stereo 
head. The thresholds are selected based on the peak analysis of the disparity histogram. This 
will help in tracking the objects efficiently. Two persons at different distances in front of the 
camera are separated using the disparity map as shown in Fig. 2.  

(a) (b) (c) (d) (e) 
Figure 2. Extraction of a person-of-interest in a disparity image. (a) left image (b) right image 
(c) disparity image (d) person-of-interest (near face) (e) far face and background 

3.2 Head location using morphological watersheds  

We have discussed the segmentation of a disparity image. By observing the shape of the 
segmented image, we can see that the head can be located by blob analysis. Here, a novel 
method, which employs morphological watersheds transform in conjunction with the 
distance transform to separate head from shoulder, is proposed. Watershed is an efficient 
tool to detect touching objects. To minimize the number of valleys found by the watershed 
transform, one need to maximize the contrast of our objects of interest. Distance transform 
determines the shortest distance between each blob pixel and the blob’s background, and 
assigns this distance value to the pixel. Here, we apply a distance transform to the head-
and-shoulder image to produce a  distance image. In the distance image, there is a 
maximum in the head and shoulder blobs, respectively. In addition, the head and the 
shoulder have touching zones of influence. Applying watershed operation to the distance 
image, the head can be separated from the head-and-shoulder component by the watershed 
line. Then the segmented head contour is least-squares fitted to an ellipse. We have tested 
this method on a face database built in our laboratory. There are 3000 face images of 100 
student volunteers with 10 different head poses where the subjects turn their head from left 
to right. At each pose, the database includes two intensity face images (stereo) and one 
disparity image computed using SVS. The experimental results are satisfactory, the heads 
can be located with a successful rate 99% (Wang et al., 2004b). An example is shown in Fig. 
3. Some of the resulting frames of the sequences of a person are shown in Fig. 4. Frame 2, 20, 
40, 60 and 80 are shown respectively from left to right. 

(a) disparity 
segmentation

(b) distance 
transform of (a) 

(c) watershed line of (b) (d) overlay (c) to (a) 

Figure 3. Separate the head from the head-and-shoulder component using distance 
transform and morphological watershed 
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Figure 4. Head contours of a sequence face images; first row: disparity images; second row: 
the heads are located by the distance transform and watershed operation; third row: the 
elliptical head contours. From left to right: frame 2, 20, 40, 60, 80 respectively. 

Although the algorithm works well, the watershed line may not incidentally correspond to 
the neck. Fortunately, this can be detected by checking the eccentricity of the elliptical head. 
The eccentricity is assumed 1.2 in our experiment. If the watershed is found not to 
correspond to the neck, i.e. the difference between the ratio of the elliptical head and the 
assumed one is significant, a candidate head will be placed below the vertically maxima of 
the silhouette, in a manner similar to (Darrell et al., 2000), and will be refined in the feature 
tracking stage. (Daniel 2002) proposed a alternative stereo head detection approah. A simple 
human-torso model is used besides the depth. 

3.3 Feature extraction  

Many of the existing feature extraction methods are based on artificial template matching. 
An artificial template is a small rectangular intensity image that contains, for example, an 
eye corner, where the corner is located in the centre of the template. The image region, 
which best matches the artificial template is extracted from current image. The problem with 
artificial template matching is that it fails when it is applied to images that are different from 
those that were used to generate the artificial image.  
Recently, the SUSAN (Smallest Univalue Segment Assimilating Nucleus) operator (Smith & 
Brady, 1997) was found to be an efficient facial feature extraction tool (Hess & Martinez, 
2004; Wu et al., 2001; Gu et al., 2001). We adopt the method in our approach where the eye 
and mouth corners can be located using the SUSAN corner detector.  In order to apply the 
corner detector, we need to establish a rectangular search region for the mouth and two 
rectangular regions for the left and right eyes respectively. These initial search regions for 
eye and mouth are found by our method in (Wang & Sung, 1999, 2000).  The mouth corners 
and eye corners were extracted with a reliability of 90% and an average position error of 2.25 
pixels. The size of the head is about 50×60 in a 154×114 image. The ground truth of the 
positions of the eye and mouth corners are found by manually measuring them.
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3.4 Head/Face tracking 

(Birchfield, 1998) presented an algorithm for tracking a person’s head.  The head’s projection 
onto the image plane is modeled as an ellipse whose position and size are continually 
updated by a local search combining the output of a module concentrating on the intensity 
gradient around the ellipse’s perimeter with that of another module focusing on the color 
histogram of the ellipse’s interior. Since these two modules have roughly orthogonal failure 
modes, they serve to complement one another. Extensive experimentation shows the 
algorithm’s robustness with respect to full 360-degree out-of-plane rotation, up to 90-degree 
tilting, severe but brief occlusion, arbitrary camera movement, and multiple moving people 
in the background. We adopted Birchfield’s method to track head/face.  

3.5 Pose estimation 

As we are using stereo camera, we can compute the pose from the 3D coordinates of the 
feature points directly, like that by (Matsumoto & Zelinsky, 2000). However, it is found that 
the pose is quite sensitive to the coordinates’ errors. The head pose can be computed using 
three feature points, e.g. two eye corners and one mouth corners. Hence, we can get 
different pose estimations based on different three-point feature groups. We found the 
result is not stable even if the mean pose of some different poses (e.g. 5 poses can be 
computed from two eye corners and two mouth corners) is computed. Instead of computing 
the pose directly based on the 3D coordinates of the feature points, we adopted a robust EM 
enhanced vanishing point based pose estimetion method (Wang & Sung, 2007) in this 
chapter. The novel approach assumes the full perspective projection camera model. Our 
approach employs general prior knowledge of face structure and the corresponding 
geometrical constraints provided by the location of a certain vanishing point to determine 
the pose of human faces.  To achieve this, eye-lines, formed from the far and near eye 
corners, and mouth-line of the mouth corners are assumed parallel in 3D space. Then the 
vanishing point of these parallel lines found by the intersection of the eye-line and mouth-
line in the image can be used to infer the 3D orientation and location of the human face. In 
order to deal with the variance of the facial model parameters, e.g. the ratio between the 
eye-line and the mouth-line, an EM framework is applied to update the parameters. We first 
compute the 3D pose using some initially learnt parameters (such as ratio and length) and 
then adapt the parameters statistically for individual persons and their facial expressions by 
minimising the residual errors between the projection of the model features points and the 
actual features on the image.  In doing so, we assume every facial feature point can be 
associated to each of features points in 3D model with some a posteriori probability. The 
expectation step of the EM algorithm provides an iterative framework for computing the a
posterori probabilities using Gaussian mixtures defined over the parameters.  

3.6 Normalizations of appearance and disparity images 

A face is detected and tracked using stereo vision as the person moves in front of the stereo 
camera. The frontal face pose is automatically searched and detected from the captured 
appearance and depth images. These images are subsequently used for face recognition.  
Using the image coordinates of the two eye centers the image is rotated and scaled to 
occupy a fixed size array of pixels (88 × 64). In the stereo vision system, the coordinates of 
pixel are consistent with the coordinates in the left image.  The feature points, two eye 
centers can hence be located in the disparity image. The tip of the nose can be detected in the 
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disparity image using template matching of (Gordon, 1996). From coplanar stereo vision 
principle, we have,  

 d′ = Bf /d  (17) 

where d′ represents the depth, d is the disparity, B is the baseline and f is the focal length of 
the calibrated stereo camera. Hence we can compute the depth image from a disparity 
image with (17). The depth image can be normalized using the depth of the nose tip, i.e. the 
nose tip of every subject is translated to the same point in 3D relative to the sensor. After 
that, the depth image is further normalized by the two eye centers.  
Problems with the 3D data are alleviated to some degree by preprocessing to fill in holes (a 
region where there is missing 3D data during sensing) and spikes. We adopt the method in 
(Chang et al., 2004) to detect the spike, and then remove the holes by linear interpolation of 
missing values from good values around the edges of the hole.  

4. Experiments

We evaluate our algorithm on XM2VTS database (Masser et al., 1999) and a large face 
detabase collected using stereo vision system described in section 3. The purpose is to show 
the gain in the recognition rate when the depth information is used.  

4.1 Experiment on XM2VTS database 

The XM2VTS database consists of color frontal, color profile and 3D VRML models of 295 
subjects (Masser et al., 1999). The following tests were conducted for performance 
evaluation. The main reason for adopting this database is that 3D VRML model of those 
subjects are provided on top of the 2D face images, and this 3D model can be used to 
generate the depth map for our algorithm. 

Figure 5. 3D VRML face models consisting of triangles 

Generation of depth images. Depth image is an image where the intensity of a pixel 
represents the depth of the correspondent point with respect to the 3D VRML model 
coordinate system. 3D VRML model of a face in XM2VTS database is displayed in Fig 5. 
There are about 4000 points in a 3D face model to represent the face. The face surface is 
triangulated with these points. In order to generate a depth image, a virtual camera is placed 
in front of the 3D VRML model, see Fig. 6. The coordinate system of the camera is defined as 
follows: the image plane is defined as the X-Y plane and the Z-axis is along the optical axis 
of the camera and pointing toward the frontal object. The initial plane of Yc-Zc is positioned 
parallel to Ym-Xm plane of the 3D VRML model. The projective image can be obtained using 
the perspective transform matrix of the camera.  Zc coincides with Zm; however in reverse 
directions. Xc is parallel to Xm and Yc parallel is to Ym; however they are with reverse 
directions.  
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The intrinsic parameters of the camera must be properly defined in order to generate depth 
image from the 3D VRML model. The parameters include (u0, v0), the coordinates of the 
image-center point (principle point), and fu and fv, scale factors of the camera along the u- 
and v-axis respectively. The position of the origin of the camera system, (x0, y0, z0), under the 
3D VRML model coordinate system is also set. 
Perspective projection is assumed, i.e. for a point P(xm, ym, zm) in a 3D VRML model of a 
subject, the 2D coordinates of P in its depth image is computed as follows: 

 u = u0 + fu (xm/(z0-zm))  (18) 
 v =  v0 − fv (ym/(z0-zm))  (19) 

 In our approach, z-buffer algorithm is applied to handle the face-self occlusion for 
generating the depth images. 
We used the frontal views in XM2VTS database (CDS001, CDS006 and CDS008 darkened 
frontal view). CDS001 dataset contains 1 frontal view for each of the 295 subjects and each of 
four sessions. This image was taken at the beginning of the head rotation shot. So there are a 
total of 1,180 colour images, each with a resolution of 720 × 576 pixels. CDS006 dataset 
contains 1 frontal view for each of the 295 subjects and each of the four sessions. This image 
was taken from the middle of the head rotation shot when the subject had returned his/her 
head to the middle. They are different from those contained in CDS001. There are a total of 
1,180 colour images. The images are at resolution 720 × 576 pixels. CDS008 contains 4 frontal 
views for each of the 295 subjects taken from the final session. In two of the images, the 
studio light illuminating the left side of the face was turned off. In the other two images, the 
light illuminating the right side of the face was turned off. There are a total of 1,180 colour 
images. The images are at resolution 720 × 576 pixels. We used the 3D VRML-Model 
(CDS005) of the XM2VTSDB to generate 3D depth images corresponding to the appearance 
images mentioned above. The models were obtained with a high-precision 3D stereo camera 
developed by Turing Institute (WWWa).  The models were then converted from their 
proprietary format into VRML. 
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Figure 6. The relationship between the virtual camera and the 3D VRML face model 

Therefore, a total of 3540 pairs of frontal views (appearance and depth pair) of 295 subjects 
in X2MVTS database are used. There are 12 pairs of images for each subject. We pick 
randomly any two of them for the learning gallery, while the remainder ten pairs per subject 
are used as probes. The average recognition rate was obtained over 66 runs. In the XM2VTS 
database, there is only one 3D model for each subject.  In order to generate more than one 
view for learning and testing, some new views are obtained by rotating the 3D coordinates 
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of VRML model away the frontal (about the Ym axes) by some degrees. In our experiments, 
the new views obtained at ±1°, ±3°, ±5°, ±7°,±9°,±11°.
Some of the normalized face image samples in XM2VTS database are shown in Fig. 7, where 
appearance face images are shown in Fig. 7(a) and the correspondent depth images are 
shown in Fig. 7(b). The resolution of the images is 88 × 64. We can see significant changes in 
illumination, expressions, hair, and eye glasses/no eyeglasses due to longer time lapse (four 
months) in photograph taking. The first 40 Eigenfaces of 2D and 3D training samples are 
shown in Fig. 8. 

(a) Normalized appearance face images, the column 1-4: images in CDS001; column 5-8: 
images in CDS006; column 9-12: images in CDS008 

(b) Normalized depth images corresponding to (a) 
Figure 7. Some normalized samples (appearance and corresponding depth images) from 
XM2VTS database  
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Recognition. Using the gallery and probe described above, the evaluation of the recognition 
algorithm has been done, including the recognition when the number of the eigenfaces 
varies from 20 to 80 with a step increment of 10. The order r of the RMPM is set to be 2 while 
b is set to be (10-4). The experimental results support our hypothesis that the combined 
modality outperforms the individual modalities of appearance and depth. It also shows that 
each contains independent information from the other. In this experiment, the recognition 
rate for 3D alone is nearly the same with the one on 2D. 
In order to compare the proposed RMPM method with the existing methods, e.g. SVM, 
KNN, we evaluate the performance of SVM, KNN and the proposed RMPM using the same 
database. The results for 2D plus 3D, 3D alone and 2D alone by the proposed RMPM, a RBF-
kernel SVM (OSU SVM package, WWWd) and KNN on XM2VTS databse are shown in Fig. 
9. to Fig. 11. respectively. We can see that the recognition rate has been improved by fusing 
appearance and depth. By comparing the results in Fig. 9 to Fig. 11, we can see that the 
RMPM method can yield results compariable with SVM. Both the RMPM and SVM get 
better results than the one by the KNN.  

(a) The first 40 Eigenfaces of the appearance gallery 

(b) The first 40 Eigenfaces of the depth gallery  
Figure 8. Eigenface features of the appearance and depth training samples 
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4.2 Experiment on stereo vision system 

Encouraged by the good performance of the recognition algorithm on XM2VTS database, we 
implemented the algorithms on a stereo vision system. We aim at identifying a face by 
fusing disparity/depth and intensity information from a binocular stereo vision system 
(WWWb), which outputs the disparity/range information automatically in real-time. The 
existing 3D face recognition techniques assume the use of active 3D measurement for 3D 
face image capture. However, active methods employ structured illumination (structure 
projection, phase shift, etc) or laser scanning, which is not desirable in many applications. In 
this paper, we use passive stereo to obtain 3D face images and a face recognition using 
appearance and depth is presented. A major problem of using passive stereo is its low 
accuracy, and thus no passive method for 3D face recognition has been reported. Thanks to 
the technical progress in 3D capture/computing, an affordable real-time stereo system is 
now available by which one can get a comparable resolution of 3D data in real-time. In this 
paper, we used SRI stereo head (WWWb), in which the stereo process interpolates 
disparities to 1/16 pixels. Both internal and external parameters are calibrated by an 
automatic calibration procedure. The disparity change, Δd is (1/16)×7.5 μm = 0.46875 μm.  
Here a pixel size of 7.5 μm. We used MAGA-D stereo head, where the baseline, B, is 9cm, 
the focus length, f, is 16mm, Hence, when the distance from the subject to the stereo head, s,
is 1m, the range resolution, i.e. the smallest change in range that is discernable by the stereo 
geometry, 

Δr = (s2/Bf)Δd = (1m2/(90mm×16mm))×0.46875μm×10-3 = 0.3255 mm 

The range resolution is high enough for our face recognition applications, a fact verified by 
our experiments.    The SRI Small Vision System outputs the disparity/range information 
automatically in real-time. The size of the left image, right image and disparity image is 320 
× 240. In our experiments, the distance between the person-of-interest to the camera is about 
1m to 1.5m. At this distance, the size of the face region is big enough and the disparity 
image is good with 16 mm lens. We calibrate the camera within this distance range in order 
that a good disparity image can be obtained as the distance between the person to the 
camera is within the distance range. In our experiments, the entire face detection, tracking, 
feature extraction, pose estimation and recognition can be performed in real time at 15 
frames per second on a P4 3.46Ghz, 1G memory PC. When a subject is found to be a new 
user by the system, i.e. when the output of the reduced model is less than 0.5, the user will 
be registered by the system automatically.  
Using the above-mentioned system, a database is built to include 116 subjects. There are 12 
pairs of images (appearance and depth) for each subject. The face images are captured over 
a period of six months. Some normalized appearance and disparity images are shown in Fig. 
12. We pick randomly any two of them for the learning gallery, while the remainder ten 
pairs per subject are used as probes. The average recognition rate was obtained over 66 runs. 
We use the same parameters for RMPM on XM2VTS database, i.e. the order of the RMPM, r, 
is set to be 2. b is set to be (10-4). The new users that are not included in the database can be 
registered automatically using the method described in Section 2.4. 
The recognition results for 2D plus 3D, 3D alone and 2D alone by using the proposed 
RMPM, SVM and KNN are given in Fig. 13 to Fig. 15 respectively. We can see that the 
RMPM method can yield results comparable with SVM. 
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Figure 9. Recognition rates for 2D+3D vs. number of eigenfaces on XM2VTS database 

Figure 10. Recognition rates for 3D vs. number of eigenfaces on XM2VTS database  

Figure 11. Recognition rates for 2D vs. number of eigenfaces on XM2VTS database 
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5. Conclusion 

 In this paper, we contributed a stereo face recognition formulation which combines 
appearance and disparity/depth at feature level. We showed that the present-day passive 
stereovision in combination with 2D appearance images can match up to other methods 
which rely on active depth data. A Reduced Multivariate Polynomial Model was adopted to  
fuse the appearance and disparity images. RMPM is extended so that the problem of new-
user registration can be overcome. We evaluated the performance of such fusion on 
XM2VTS face database. The evaluation results, which included results from appearance 
alone, depth alone and fusion of them respectively, using XM2VTS database, showed 
improvement of recognition rate from combining 3D information and 2D information. The 
performance using fused depth and appearance was found to be the best among the three 
tests. Furthermore, we implemented the algorithm on a real-time stereo vision system where 
near-frontal views were selected from stereo sequence for recognition.  The evaluation 
results, which included results from appearance alone, depth alone and fusion of them 
respectively, using a database collected by the stereo vision system also showed 
improvement of the recognition rate by combining 3D information and 2D information. The 
RMPM can yield comparable results with SVM while the computation load of the RMPM is 
much lower than SVM.  

Figure 12. Normalized appearance and disparity images from the stereo vision system 

The face recognition approach is anticipated to be useful for some on-line applications, such 
as visitor identification, ATM, and HCI. Prior to such implementations in physical systems, 
the performance of the system should be investigated on data with larger pose variance in 
terms of the verification accuracy. This is our future work. In addition, new dimension 
reduction method could be investigated in the future work. 
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Figure 13. Recognition rates for 2D+3D vs. number of eigenfaces on our database 

Figure 14. Recognition rates for 3D vs. number of eigenfaces on our database 

Figure 15. Recognition rates for 2D vs. number of eigenfaces on our database
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