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Preface

Face recognition is a task humans perform remarkably easily and successfully. This appar-
ent simplicity was shown to be dangerously misleading as the automatic face recognition
seems to be a problem that is still far from solved. In spite of more than 20 years of extensive
research, large number of papers published in journals and conferences dedicated to this
area, we still can not claim that artificial systems can measure to human performance.
Automatic face recognition is intricate primarily because of difficult imaging conditions
(lighting and viewpoint changes induced by body movement) and because of various other
effects like aging, facial expressions, occlusions etc. Researchers from computer vision, im-
age analysis and processing, pattern recognition, machine learning and other areas are
working jointly, motivated largely by a number of possible practical applications.

The goal of this book is to give a clear picture of the current state-of-the-art in the field of
automatic face recognition across three main areas of interest: biometrics, cognitive models and
human-computer interaction. Face recognition has an important advantage over other biomet-
ric technologies - it is a nonintrusive and easy to use method. As such, it became one of three
identification methods used in e-passports and a biometric of choice for many other security
applications. Cognitive and perception models constitute an important platform for inter-
disciplinary research, connecting scientists from seemingly incompatible areas and enabling
them to exchange methodologies and results on a common problem. Evidence from neuro-
biological, psychological, perceptual and cognitive experiments provide potentially useful
insights into how our visual system codes, stores and recognizes faces. These insights can
then be connected to artificial solutions. On the other hand, it is generally believed that the
success or failure of automatic face recognition systems might inform cognitive and percep-
tion science community about which models have the potential to be candidates for those
used by humans. Making robots and computers more "human" (through human-computer
interaction) will improve the quality of human-robot co-existence in the same space and
thus alleviate their adoption into our every day lives. In order to achieve this, robots must
be able to identify faces, expressions and emotions while interacting with humans.
Hopefully, this book will serve as a handbook for students, researchers and practitioners in
the area of automatic (computer) face recognition and inspire some future research ideas by
identifying potential research directions. The book consists of 28 chapters, each focusing on
a certain aspect of the problem. Within every chapter the reader will be given an overview
of background information on the subject at hand and in many cases a description of the au-
thors' original proposed solution. The chapters in this book are sorted alphabetically, ac-
cording to the first author's surname. They should give the reader a general idea where the
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current research efforts are heading, both within the face recognition area itself and in inter-
disciplinary approaches.

Chapter 1 describes a face recognition system based on 3D features, with applications in
Ambient Intelligence Environment. The system is placed within a framework of home
automation - a community of smart objects powered by high user-friendliness. Chapter 2
addresses one of the most intensely researched problems in face recognition - the problem of
achieving illumination invariance. The authors deal with this problem through a novel
framework based on simple image filtering techniques. In chapter 3 a novel method for pre-
cise automatic localization of certain characteristic points in a face (such as the centers and
the corners of the eyes, tip of the nose, etc) is presented. An interesting analysis of the rec-
ognition rate as a function of eye localization precision is also given. Chapter 4 gives a de-
tailed introduction into wavelets and their application in face recognition as tools for image
preprocessing and feature extraction.

Chapter 5 reports on an extensive experiment performed in order to analyze the effects of
JPEG and JPEG2000 compression on face recognition performance. It is shown that tested
recognition methods are remarkably robust to compression, and the conclusions are statisti-
cally confirmed using McNemar's hypothesis testing. Chapter 6 introduces a feed-forward
neural network architecture combined with PCA and LDA into a novel approach. Chapter 7
addresses the multi-view recognition problem by using a variant of SVM and decomposing
the problem into a series of easier two-class problems. Chapter 8 describes three different
hardware platforms dedicated to face recognition and brings us one step closer to real-world
implementation. In chapter 9 authors combine face and gesture recognition in a human-
robot interaction framework.

Chapter 10 considers fuzzy-geometric approach and symbolic data analysis for modeling
the uncertainty of information about facial features. Chapter 11 reviews some known ap-
proaches (e.g. PCA, LDA, LPP, LLE, etc.) and presents a case study of intelligent face recog-
nition using global pattern averaging. A theoretical analysis and application suggestion of
the compact optical parallel correlator for face recognition is presented in chapter 12. Im-
proving the quality of co-existence of humans and robots in the same space through another
merge of face and gesture recognition is presented in chapter 13, and spontaneous facial ac-
tion recognition is addressed in chapter 14.

Based on lessons learned from human visual system research and contrary to traditional
practice of focusing recognition on internal face features (eyes, nose, and mouth), in chapter
15 a possibility of using external features (hair, forehead, laterals, ears, jaw line and chin) is
explored. In chapter 16 a hierarchical neural network architecture is used to define a com-
mon framework for higher level cognitive functions. Simulation is performed indicating that
both face recognition and facial expression recognition can be realized efficiently using the
presented framework. Chapter 17 gives a detailed mathematical overview of some tradi-
tional and modern subspace analysis methods, and chapter 18 reviews in depth some near-
est feature classifiers and introduces dissimilarity representations as a recognition tool. In
chapter 19 the authors present a security system in which an image of a known person is
matched against multiple images extracted from a video fragment of a person approaching a
protected entrance

Chapter 20 presents recent advances in machine analysis of facial expressions with special
attention devoted to several techniques recently proposed by the authors. 3D face recogni-
tion is covered in chapter 21. Basic approaches are discussed and an extensive list of refer-
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ences is given, making this chapter an ideal starting point for researchers new in the area.
After multi-modal human verification system using face and speech is presented in chapter
22, the same authors present a new face detection and recognition method using optimized
3D information from stereo images in chapter 23. Far-field unconstrained video-to-video
face recognition system is proposed in chapter 24.

Chapter 25 examines the results of research on humans in order to come up with some hints
for designs of artificial systems for face recognition. Frequency domain processing and rep-
resentation of faces is reviewed in chapter 26 along with a thorough analysis of a family of
advanced frequency domain matching algorithms collectively know as the advanced corre-
lation filters. Chapter 27 addresses the problem of class-based image synthesis and recogni-
tion with varying illumination conditions. Chapter 28 presents a mixed reality virtual sys-
tem with a framework of using a stereo video and 3D computer graphics model.

June 2007 Kresimir Delac
Mislav Grgic

University of Zagreb

Faculty of Electrical Engineering and Computing
Department of Wireless Communications

Unska 3/X1I, HR-10000 Zagreb, Croatia

E-mail: kdelac@ieee.org
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3D Face Recognition
in a Ambient Intelligence Environment Scenario

Andrea F. Abate, Stefano Ricciardi and Gabriele Sabatino
Dip. di Matematica e Informatica - Universita degli Studi di Salerno
Italy

1. Introduction

Information and Communication Technologies are increasingly entering in all aspects of our
life and in all sectors, opening a world of unprecedented scenarios where people interact
with electronic devices embedded in environments that are sensitive and responsive to the
presence of users. Indeed, since the first examples of “intelligent” buildings featuring
computer aided security and fire safety systems, the request for more sophisticated services,
provided according to each user’s specific needs has characterized the new tendencies
within domotic research. The result of the evolution of the original concept of home
automation is known as Ambient Intelligence (Aarts & Marzano, 2003), referring to an
environment viewed as a “community” of smart objects powered by computational
capability and high user-friendliness, capable of recognizing and responding to the presence
of different individuals in a seamless, not-intrusive and often invisible way. As adaptivity
here is the key for providing customized services, the role of person sensing and recognition
become of fundamental importance.

This scenario offers the opportunity to exploit the potential of face as a not intrusive
biometric identifier to not just regulate access to the controlled environment but to adapt the
provided services to the preferences of the recognized user. Biometric recognition (Maltoni
et al., 2003) refers to the use of distinctive physiological (e.g., fingerprints, face, retina, iris)
and behavioural (e.g., gait, signature) characteristics, called biometric identifiers, for
automatically recognizing individuals. Because biometric identifiers cannot be easily
misplaced, forged, or shared, they are considered more reliable for person recognition than
traditional token or knowledge-based methods. Others typical objectives of biometric
recognition are user convenience (e.g., service access without a Personal Identification
Number), better security (e.g., difficult to forge access). All these reasons make biometrics
very suited for Ambient Intelligence applications, and this is specially true for a biometric
identifier such as face which is one of the most common methods of recognition that
humans use in their visual interactions, and allows to recognize the user in a not intrusive
way without any physical contact with the sensor.

A generic biometric system could operate either in verification or identification modality,
better known as one-to-one and one-to-many recognition (Perronnin & Dugelay, 2003). In
the proposed Ambient Intelligence application we are interested in one-to-one recognition,
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as we want recognize authorized users accessing the controlled environment or requesting a
specific service.

We present a face recognition system based on 3D features to verify the identity of subjects
accessing the controlled Ambient Intelligence Environment and to customize all the services
accordingly. In other terms to add a social dimension to man-machine communication and
thus may help to make such environments more attractive to the human user. The proposed
approach relies on stereoscopic face acquisition and 3D mesh reconstruction to avoid highly
expensive and not automated 3D scanning, typically not suited for real time applications.
For each subject enrolled, a bidimensional feature descriptor is extracted from its 3D mesh
and compared to the previously stored correspondent template. This descriptor is a normal
map, namely a color image in which RGB components represent the normals to the face
geometry. A weighting mask, automatically generated for each authorized person, improves
recognition robustness to a wide range of facial expression.

This chapter is organized as follows. In section 2 related works are presented and the
proposed method is introduced. In section 3 the proposed face recognition method is
presented in detail. In section 4 the Ambient Intelligence framework is briefly discussed and
experimental results are shown and commented. The paper concludes in section 5 showing
directions for future research and conclusions.

2. Related Works

In their survey on state of the art in 3D and multi-modal face recognition, Bowyer et al.
(Bowyer et al., 2004) describe the most recent results and research trends, showing that “the
variety and sophistication of algorithmic approaches explored is expanding”. The main
challenges in this field result to be the improvement of recognition accuracy, a greater
robustness to facial expressions, and, more recently, the efficiency of algorithms. Many
methods are based on Principal Component Analysis (PCA), such is the case of Hester et al.
(Hester et al., 2003) which tested the potential and the limits of PCA varying the number of
eigenvectors and the size of range images. Pan et al. (Pan et al., 2005) apply PCA to a novel
mapping of the 3D data to a range, or depth, image, while Xu et al. (Xu et al., 2004) aim to
divide face in sub-regions using nose as the anchor, PCA to reduce feature space
dimensionality and minimum distance for matching. Another major research trend is based
on Iterative Closest Point (ICP) algorithm, which has been exploited in many variations for
3D shape aligning, matching or both. The first example of this kind of approach to face
recognition has been presented from Medioni and Waupotitsch (Medioni & Waupotitsch,
2003), then Lu and Jain (Lu & Jain, 2005) developed an extended version aimed to cope with
expressive variations, whereas Chang et al. (Chang et al., 2005) proposed to apply ICP not to
the whole face but to a set of selected subregions instead.

As a real face is fully described by its 3D shape and its texture, it is reasonable to use both
kind of data (geometry and color or intensity) to improve recognition reliability: this is the
idea behind Multi-Modal or (3D+2D) face recognition. The work by Tsalakanidou et al.
(Tsalakanidou et al., 2003) is based on PCA to compare both probe’s range image and
intensity /color image to the gallery, Papatheodorou and Rueckert (Papatheodorou &
Rueckert, 2004) presented a 4D registration method based on Iterative Closest Point (ICP),
augmented with texture data. Bronstein et al. (Bronstein et al., 2003) propose a multi-modal
3D + 2D recognition using eigen decomposition of flattened textures and canonical images.
Other authors combine 3D and 2D similarity scores obtained comparing 3D and 2D profiles
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(Beumier & Acheroy, 2000), or extract a feature vector combining Gabor filter responses in
2D and point signatures in 3D (Wang et al., 2003).

3. Description of Facial Recognition System

The basic idea behind proposed system is to represent user’s facial surface by a digital
signature called normal map. A normal map is an RGB color image providing a 2D
representation of the 3D facial surface, in which each normal to each polygon of a given
mesh is represented by a RGB color pixel. To this aim, we project the 3D geometry onto 2D
space through spherical mapping. The result is a bidimensional representation of original
face geometry which retains spatial relationships between facial features. Color info coming
from face texture are used to mask eventual beard covered regions according to their
relevance, resulting in a 8 bit greyscale filter mask (Flesh Mask). Then, a variety of facial
expressions are generated from the neutral pose through a rig-based animation technique,
and corresponding normal maps are used to compute a further 8 bit greyscale mask
(Expression Weighting Mask) aimed to cope with expression variations. At this time the two
greyscale masks are multiplied and the resulting map is used to augment with extra 8 bit
per pixel the normal map, resulting in a 32 bit RGBA bitmap (Augmented Normal Map).
The whole process (see Figure 1) is discussed in depth in the following subsections 3.1 to
34..

Figure 1. Facial and Facial Expression Recognition workflow
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3.1 Face Capturing

As the proposed method works on 3D polygonal meshes we firstly need to acquire actual
faces and to represent them as polygonal surfaces. The Ambient Intelligence context, in
which we are implementing face recognition, requires fast user enrollment to avoid
annoying waiting time. Usually, most 3D face recognition methods work on a range image
of the face, captured with laser or structured light scanner. This kind of devices offer high
resolution in the captured data, but they are too slow for a real time face acquisition. Face
unwanted motion during capturing could be another issue, while laser scanning could not
be harmless to the eyes.

For all this reasons we opted for a 3D mesh reconstruction from stereoscopic images, based
on (Enciso et al., 1999) as it requires a simple equipment more likely to be adopted in a real
application: a couple of digital cameras shooting at high shutter speed from two slightly
different angles with strobe lighting. Though the resulting face shape accuracy is inferior
compared to real 3D scanning it proved to be sufficient for recognition yet much faster, with
a total time required for mesh reconstruction of about 0.5 sec. on a P4/3.4 Ghz based PC,
offering additional advantages, such as precise mesh alignment in 3D space thanks to the
warp based approach, facial texture generation from the two captured orthogonal views and
its automatic mapping onto the reconstructed face geometry.

3.2 Building a Normal Map

As the 3D polygonal mesh resulting from the reconstruction process is an approximation of
the actual face shape, polygon normals describe local curvature of captured face which
could be view as its signature. As shown in Figure 2, we intend to represent these normals
by a color image transferring face’s 3D features in a 2D space. We also want to preserve the
spatial relationships between facial features, so we project vertices’ 3D coordinates onto a
2D space using a spherical projection. We can now store normals of mesh M in a
bidimensional array N using mapping coordinates, by this way each pixel represents a
normal as RGB values. We refer the resulting array as the Normal Map N of mesh M and
this is the signature we intend to use for the identity verification.

Figure 2. (a) 3d mesh model, (b) wireframe model, (c) projection in 2D spatial coordinates,
(d) normal map

3.3 Normal Map Comparison
To compare the normal map N from input subject to another normal map Np previously
stored in the reference database, we compute through:
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the angle included between each pairs of normals represented by colors of pixels with
corresponding mapping coordinates, and store it in a new Difference Map D with
components r, ¢ and b opportunely normalized from spatia | domain to color domain, so
0< Py, 28y, bNA <1 and ongﬂ, gN,,°bN,, <1. The value 0, with 0 < 0 < &, is the angular

difference between the pixels with coordinates (xNA Y NA) in N and (an’yzvn) in Np and it is
stored in D as a gray-scale color. At this point, the histogram H is analyzed to estimate the
similarity score between Na and Np. On the X axis we represent the resulting angles
between each pair of comparisons (sorted from 0° degree to 180° degree), while on the Y
axis we represent the total number of differences found. The curvature of H represents the
angular distance distribution between mesh MA and MB, thus two similar faces featuring
very high values on small angles, whereas two unlike faces have more distributed
differences (see Figure 3). We define a similarity score through a weighted sum between H
and a Gaussian function G, as in:

k _=
similarity _score = Z(H(x) ! e zalj
=0 o2z
©)
where with the variation of o and k is possible to change recognition sensibility. To reduce
the effects of residual face misalignment during acquisition and sampling phases, we
calculate the angle 0 using a k x k (usually 3 x 3 or 5 x 5) matrix of neighbour pixels.

Figure 3. Example of histogram H to represent the angular distances. (a) shows a typical
histogram between two similar Normal Maps, while (b) between two different Normal
Maps

3.4 Addressing Beard and Facial Expressions via 8 bit Alpha Channel

The presence of beard with variable length covering a portion of the face surface in a subject
previously enrolled without it (or vice-versa), could lead to a measurable difference in the
overall or local 3D shape of the face mesh (see Figure 4). In this case the recognition
accuracy could be affected resulting, for instance, in a higher False Rejection Rate FRR. To
improve the robustness to this kind of variable facial features we rely on color data from the
captured face texture to mask the non-skin region, eventually disregarding them during the
comparison.
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Figure 4. Normal maps of the same subject enrolled in two different sessions with and
without beard

We exploit flesh hue characterization in the HSB color space to discriminate between skin
and beard/moustaches/eyebrows. Indeed, the hue component of each given texel is much
less affected from lighting conditions during capturing then its corresponding RGB value.
Nevertheless there could be a wide range of hue values within each skin region due to
factors like facial morphology, skin conditions and pathologies, race, etc., so we need to
define this range on a case by case basis to obtain a valid mask. To this aim we use a set of
specific hue sampling spots located over the face texture at absolute coordinates, selected to
be representative of flesh’s full tonal range and possibly distant enough from eyes, lips and
typical beard and hair covered regions.

Figure 5. Flesh Hue sampling points (a), Flesh Hue Range (b) non-skin regions in white (c)

This is possible because each face mesh and its texture are centered and normalized during
the image based reconstruction process (i.e. the face’s median axis is always centered on the
origin of 3D space with horizontal mapping coordinates equal to 0.5), otherwise normal map
comparison would not be possible. We could use a 2D or 3D technique to locate main facial
features (eye, nose and lips) and to position the sampling spots relative to this features, but
even these approaches are not safe under all conditions. For each sampling spot we sample
not just that texel but a 5 x 5 matrix of neighbour texels, averaging them to minimize the
effect of local image noise. As any sampling spot could casually pick wrong values due to
local skin color anomalies such as moles, scars or even for improper positioning, we
calculate the median of all resulting hue values from all sampling spots, resulting in a main
Flesh Hue Value FHV which is the center of the valid flesh hue range. We therefore consider
belonging to skin region all the texels whose hue value is within the range: -t < FHV < ¢,
where ¢ is a hue tolerance which we experimentally found could be set below 10° (see Figure
5-b). After the skin region has been selected, it is filled with pure white while the remaining
pixels are converted to a greyscale value depending on their distance from the selected flesh
hue range (the more the distance the darker the value).
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To improve the facial recognition system and to address facial expressions we opt to the use
of expression weighting mask, a subject specific pre-calculated mask aimed to assign
different relevance to different face regions. This mask, which shares the same size of
normal map and difference map, contains for each pixel an 8 bit weight encoding the local
rigidity of the face surface based on the analysis of a pre-built set of facial expressions of the
same subject. Indeed, for each subject enrolled, each of expression variations (see Figure 6) is
compared to the neutral face resulting in difference maps.

Figure 6. An example of normal maps of the same subject featuring a neutral pose (leftmost
face) and different facial expressions

The average of this set of difference maps specific to the same individual represent its
expression weighting mask. More precisely, given a generic face with its normal map No
(neutral face) and the set of normal maps Ny, Ny, ..., Nj (the expression variations), we first
calculate the set of difference map Dy, D, ..., D, resulting from {No - N1, No - Ny, ..., No -
Np}. The average of set {D1, Dy, ..., Dy} is the expression weighting mask which is multiplied
by the difference map in each comparison between two faces.

We generate the expression variations through a parametric rig based deformation system
previously applied to a prototype face mesh, morphed to fit the reconstructed face mesh
(Enciso et al., 1999). This fitting is achieved via a landmark-based volume morphing where
the transformation and deformation of the prototype mesh is guided by the interpolation of
a set of landmark points with a radial basis function. To improve the accuracy of this rough
mesh fitting we need a surface optimization obtained minimizing a cost function based on
the Euclidean distance between vertices.

So we can augment each 24 bit normal map with the product of Flesh Mask and Expression
Weighting Mask normalized to 8 bit (see Figure 7). The resulting 32 bit per pixel RGBA
bitmap can be conveniently managed via various image formats like the Portable Network
Graphics format (PNG) which is typically used to store for each pixel 24 bit of colour and 8
bit of alpha channel (transparency). When comparing any two faces, the difference map is
computed on the first 24 bit of color info (normals) and multiplied to the alpha channel
(filtering mask).

4. Testing Face Recognition System into an Ambient Intelligence Framework

Ambient Intelligence (AmlI) worlds offer exciting potential for rich interactive experiences.

The metaphor of Aml envisages the future as intelligent environments where humans are
surrounded by smart devices that makes the ambient itself perceptive to humans’ needs or
wishes. The Ambient Intelligence Environment can be defined as the set of actuators and
sensors composing the system together with the domotic interconnection protocol. People
interact with electronic devices embedded in environments that are sensitive and responsive
to the presence of users. This objective is achievable if the environment is capable to learn,
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build and manipulate user profiles considering from a side the need to clearly identify the
human attitude; in other terms, on the basis of physical and emotional user status captured
from a set of biometric features.

Figure 7. Comparison of two Normal Maps using Flesh Mask and the resulting Difference
Map (c)
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Figure 8. Ambient Intelligence Architecture

To design Ambient Intelligent Environments, many methodologies and techniques have to
be merged together originating many approaches reported in recent literature (Basten &
Geilen, 2003). We opt to a framework aimed to gather biometrical and environmental data,
described in (Acampora et al., 2005) to test the effectiveness of face recognition systems to
aid security and to recognize the emotional user status. This Aml system’s architecture is
organized in several sub-systems, as depicted in Figure 8, and it is based on the following
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sensors and actuators: internal and external temperature sensors and internal temperature
actuator, internal and external luminosity sensor and internal luminosity actuator, indoor
presence sensor, a infrared camera to capture thermal images of user and a set of color
cameras to capture information about gait and facial features. Firstly Biometric Sensors are
used to gather user’s biometrics (temperature, gait, position, facial expression, etc.) and part
of this information is handled by Morphological Recognition Subsystems (MRS) able to
organize it semantically. The resulting description, together with the remaining biometrics
previously captured, are organized in a hierarchical structure based on XML technology in
order to create a new markup language, called H2ML (Human to Markup Language)
representing user status at a given time. Considering a sequence of H2ML descriptions, the
Behavioral Recognition Engine (BRE), tries to recognize a particular user behaviour for which
the system is able to provide suitable services. The available services are regulated by means
of the Service Requlation System (SRS), an array of fuzzy controllers coded in FML (Acampora
& Loia, 2004) aimed to achieve hardware transparency and to minimize the fuzzy inference
time.

This architecture is able to distribute personalized services on the basis of physical and
emotional user status captured from a set of biometric features and modelled by means of a
mark-up language, based on XML. This approach is particularly suited to exploit biometric
technologies to capture user’s physical info gathered in a semantic representation describing
a human in terms of morphological features.

4.1 Experimental Results

As one of the aims in experiments was to test the performance of the proposed method in a
realistic operative environment, we decided to build a 3D face database from the face
capture station used in the domotic system described above. The capture station featured
two digital cameras with external electronic strobes shooting simultaneously with a shutter
speed of 1/250 sec. while the subject was looking at a blinking led to reduce posing issues.
More precisely, every face model in the gallery has been created deforming a pre-aligned
prototype polygonal face mesh to closely fit a set of facial features extracted from front and
side images of each individual enrolled in the system.

Indeed, for each enrolled subject a set of corresponding facial features extracted by a
structured snake method from the two orthogonal views are correlated first and then used
to guide the prototype mesh warping, performed through a Dirichlet Free Form
Deformation. The two captured face images are aligned, combined and blended resulting in
a color texture precisely fitting the reconstructed face mesh through the feature points
previously extracted. The prototype face mesh used in the dataset has about 7K triangular
facets, and even if it is possible to use mesh with higher level of detail we found this
resolution to be adequate for face recognition. This is mainly due to the optimized
tessellation which privileges key area such as eyes, nose and lips whereas a typical mesh
produced by 3D scanner features almost evenly spaced vertices. Another remarkable
advantage involved in the warp based mesh generation is the ability to reproduce a broad
range of face variations through a rig based deformation system. This technique is
commonly used in computer graphics for facial animation (Lee et al., 1995, Blanz & Vetter,
1999) and is easily applied to the prototype mesh linking the rig system to specific subsets of
vertices on the face surface. Any facial expression could be mimicked opportunely
combining the effect of the rig controlling lips, mouth shape, eye closing or opening, nose
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tip or bridge, cheek shape, eyebrows shape, etc. The facial deformation model we used is
based on (Lee et al., 1995) and the resulting expressions are anatomically correct.

We augmented the 3D dataset of each enrolled subject through the synthesis of fiften
additional expressions selected to represent typical face shape deformation due to facial
expressive muscles, each one included in the weighting mask. The fiften variations to the
neutral face are grouped in three different classes: “good-mood”, “normal-mood” and “bad-
mood” emotional status (see Figure 9).

We acquired three set front-side pair of face images from 235 different persons in three
subjective facial expression to represent “normal-mood”, “good-mood” and “bad-mood”
emotional status respectively (137 males and 98 females, age ranging from 19 to 65).

Figure 9. Facial Expressions grouped in normal-mood (first row), good-mood (second row),
bad-mood (third row)

For the first group of experiments, we obtained a database of 235 3D face models in neutral
pose (represented by “normal-mood” status) each one augmented with fiften expressive
variations. Experimental results are generally good in terms of accuracy, showing a
Recognition Rate of 100% using the expression weighting mask and flesh mask, the
Gaussian function with 0=4.5 and k=50 and normal map sized 128 x 128 pixels. These
results are generally better than those obtained by many 2D algorithms but a more
meaningful comparison would require a face dataset featuring both 2D and 3D data. To this
aim we experimented a PCA-based 2D face recognition algorithm [Moon and Phillips 1998,
Martinez and Kak 2001] on the same subjects. We have trained the PCA-based recognition
system with frontal face images acquired during several enrolment sessions (from 11 to 13
images for each subject), while the probe set is obtained from the same frontal images used
to generate the 3D face mesh for the proposed method. This experiment has shown that our
method produce better results than a typical PCA-based recognition algorithm on the same
subjects. More precisely, PCA-based method reached a recognition rate of 88.39% on gray-
scaled images sized to 200 x 256 pixels, proving that face dataset was really challenging.
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Figure 10. Precision/Recall Testing with and without Expression Weighting Mask and Flesh

Mask to show efficacy respectively to (a) expression variations, (b) beard presence and (c)
both

Figure 10 shows the precision/recall improvement provided by the expression weighting
mask and flesh mask. The results showed in Figure 10-a were achieved comparing in one-
to-many modality a query set with one expressive variations to an answer set composed by
one neutral face plus ten expression variations and one face with beard. In Figure 10-b are
shown the results of one-to-many comparison between subject with beard and an answer set
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composed of one neutral face and ten expressive variations. Finally for the test reported in
Figure 10-c the query was an expression variation or a face with beard, while the answer set
could contain a neutral face plus ten associated expressive variations or a face with beard.
The three charts clearly show the benefits involved with the use of both expressive and flesh
mask, specially when combined together.

The second group of experiments has been conducted on FRGC dataset rel. 2/Experiment 3s
(only shape considered) to test the method's performance with respect to Receiver
Operating Characteristic (ROC) curve which plots the False Acceptance Rate (FAR) against
Verification Rate (1 - False Rejection Rate or FRR) for various decision thresholds. The 4007
faces provided in the dataset have undergone a pre-processing stage to allow our method to
work effectively. The typical workflow included: mesh alignment using the embedded info
provided by FRGC dataset such as outer eye corners, nose tip, chin prominence; mesh
subsampling to one fourth or original resolution; mesh cropping to eliminate unwanted
detail (hair, neck, ears, etc.); normal map filtering by a 5 x 5 median filter to reduce capture
noise and artifacts. Fig. 11 shows resulting ROC curves with typical ROC values at
FAR = 0.001. The Equal Error Rate (EER) measured on all two galleries reaches 5.45% on the
our gallery and 6.55% on FRGC dataset.

Figure 11. Comparison of ROC curves and Verification Rate at FAR=0.001

Finally, we have tested the method in order to evaluate statistically the behaviour of method
to recognize the “emotional” status of the user. To this aim, we have performed a one-to-
one comparison of a probe set of 3D face models representing real subjective mood status
captured by camera (three facial expressions per person) with three gallery set of artificial
mood status generated automatically by control rig based deformation system (fifteen facial
expression per person grouped as shown in Figure 9). As shown in Table 1, the results are
very interesting, because the mean recognition rate on “good-mood” status gallery is 100%
while on “normal-mood” and “bad-mood” status galleries is 98.3% and 97.8% respectively
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(probably, because of the propensity of the people to make similar facial expressions for
“normal-mood” and “bad-mood” status).

Recognition Rate

“normal-mood” “good-mood” “bad-mood”
98.3% 100% 97.8%

Table 1. The behaviour of method to recognize the “emotional” status of the user

5. Conclusion

We presented a 3D face recognition method applied to an Ambient Intelligence
Environment. The proposed approach to acquisition and recognition proved to be suited to
the applicative context thanks to high accuracy and recognition speed, effectively exploiting
the advantages of face over other biometrics. As the acquisition system requires the user to
look at a specific target to allow a valid face capture, we are working on a multi-angle
stereoscopic camera arrangement, to make this critical task less annoying and more robust
to a wide posing range.

This 3D face recognition method based on 3D geometry and color texture is aimed to
improve robustness to presence/absence of beard and to expressive variations. It proved to
be simple and fast and experiments conducted showed high average recognition rate and a
measurable effectiveness of both flesh mask and expression weighting mask. Ongoing
research will implement a true multi-modal version of the basic algorithm with a second
recognition engine dedicated to the color info (texture) which could further enhance the
discriminating power.
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Achieving lllumination Invariance using Image
Filters
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1. Introduction

In this chapter we are interested in accurately recognizing human faces in the presence of
large and unpredictable illumination changes. Our aim is to do this in a setup realistic for
most practical applications, that is, without overly constraining the conditions in which
image data is acquired. Specifically, this means that people's motion and head poses are
largely uncontrolled, the amount of available training data is limited to a single short
sequence per person, and image quality is low.

In conditions such as these, invariance to changing lighting is perhaps the most significant
practical challenge for face recognition algorithms. The illumination setup in which
recognition is performed is in most cases impractical to control, its physics difficult to
accurately model and face appearance differences due to changing illumination are often
larger than those differences between individuals [1]. Additionally, the nature of most real-
world applications is such that prompt, often real-time system response is needed,
demanding appropriately efficient as well as robust matching algorithms.

In this chapter we describe a novel framework for rapid recognition under varying
illumination, based on simple image filtering techniques. The framework is very general and
we demonstrate that it offers a dramatic performance improvement when used with a wide
range of filters and different baseline matching algorithms, without sacrificing their
computational efficiency.

1.1 Previous work and its limitations

The choice of representation, that is, the model used to describe a person's face is central to
the problem of automatic face recognition. Consider the components of a generic face
recognition system schematically shown in Figure 1.

A number of approaches in the literature use relatively complex facial and scene models that
explicitly separate extrinsic and intrinsic variables which affect appearance. In most cases,
the complexity of these models makes it impossible to compute model parameters as a
closed-form expression ("Model parameter recovery" in Figure 1). Rather, model fitting is
performed through an iterative optimization scheme. In the 3D Morphable Model of Blanz
and Vetter [7], for example, the shape and texture of a novel face are recovered through
gradient descent by minimizing the discrepancy between the observed and predicted
appearance. Similarly, in Elastic Bunch Graph Matching [8, 23], gradient descent is used to
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recover the placements of fiducial features, corresponding to bunch graph nodes and the
locations of local texture descriptors. In contrast, the Generic Shape-Illumination Manifold
method uses a genetic algorithm to perform a manifold-to-manifold mapping that preserves
pose.

Figure 1. A diagram of the main components of a generic face recognition system. The
"Model parameter recovery" and "Classification" stages can be seen as mutually
complementary: (i) a complex model that explicitly separates extrinsic and intrinsic
appearance variables places most of the workload on the former stage, while the
classification of the representation becomes straightforward; in contrast, (ii) simplistic
models have to resort to more statistically sophisticated approaches to matching

"'\-\.\_\_:_\_\_\-‘-\-
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Figure 2. (a) The simplest generative model used for face recognition: images are assumed to
consist of the low-frequency band that mainly corresponds to illumination changes,
midfrequency band which contains most of the discriminative, personal information and
white noise, (b) The results of several most popular image filters operating under the
assumption of the frequency model
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One of the main limitations of this group of methods arises due to the existence of local
minima, of which there are usually many. The key problem is that if the fitted model
parameters correspond to a local minimum, classification is performed not merely on noise-
contaminated but rather entirely incorrect data. An additional unappealing feature of these
methods is that it is also not possible to determine if model fitting failed in such a manner.
The alternative approach is to employ a simple face appearance model and put greater
emphasis on the classification stage. This general direction has several advantages which
make it attractive from a practical standpoint. Firstly, model parameter estimation can now
be performed as a closed-form computation, which is not only more efficient, but also void
of the issue of fitting failure such that can happen in an iterative optimization scheme. This
allows for more powerful statistical classification, thus clearly separating well understood
and explicitly modelled stages in the image formation process, and those that are more
easily learnt implicitly from training exemplars. This is the methodology followed in this
chapter. The sections that follow describe the method in detail, followed by a report of
experimental results.

2. Method details

2.1 Image processing filters

Most relevant to the material presented in this chapter are illumination-normalization
methods that can be broadly described as quasi illumination-invariant image filters. These
include high-pass [5] and locally-scaled high-pass filters [21], directional derivatives [1, 10,
13, 18], Laplacian-of-Gaussian filters [1], region-based gamma intensity correction filters
[2,17] and edge-maps [1], to name a few. These are most commonly based on very simple
image formation models, for example modelling illumination as a spatially low-frequency
band of the Fourier spectrum and identity-based information as high-frequency [5,11], see
Figure 2. Methods of this group can be applied in a straightforward manner to either single
or multiple-image face recognition and are often extremely efficient. However, due to the
simplistic nature of the underlying models, in general they do not perform well in the
presence of extreme illumination changes.

2.2 Adapting to data acquisition conditions

The framework proposed in this chapter is motivated by our previous research and the
findings first published in [3]. Four face recognition algorithms, the Generic Shape-
Illumination method [3], the Constrained Mutual Subspace Method [12], the commercial system
Facelt and a Kullback-Leibler Divergence-based matching method, were evaluated on a large
database using (i) raw greyscale imagery, (ii) high-pass (HP) filtered imagery and (iii) the
Self-Quotient Image (QI) representation [21]. Both the high-pass and even further Self
Quotient Image representations produced an improvement in recognition for all methods
over raw grayscale, as shown in Figure 3, which is consistent with previous findings in the
literature [1,5,11,21].

Of importance to this work is that it was also examined in which cases these filters help and
how much depending on the data acquisition conditions. It was found that recognition rates
using greyscale and either the HP or the QI filter negatively correlated (with p ~-0.7), as
illustrated in Figure 4. This finding was observed consistently across the result of the four
algorithms, all of which employ mutually drastically different underlying models.
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Figure 3. Performance of the (a) Mutual Subspace Method and the (b) Constrained Mutual
Subspace Method using raw grey scale imagery, high-pass (HP) filtered imagery and the
Self-Quotient Image (QI), evaluated on over 1300 video sequences with extreme
illumination, pose and head motion variation (as reported in [3]). Shown are the average
performance and + one standard deviation intervals

Figure 4. A plot of the performance improvement with HP and QI filters against the
performance of unprocessed, raw imagery across different illumination combinations used
in training and test. The tests are shown in the order of increasing raw data performance for
easier visualization

This is an interesting result: it means that while on average both representations increase the
recognition rate, they actually worsen it in "easy" recognition conditions when no
normalization is needed. The observed phenomenon is well understood in the context of
energy of intrinsic and extrinsic image differences and noise (see [22] for a thorough
discussion). Higher than average recognition rates for raw input correspond to small
changes in imaging conditions between training and test, and hence lower energy of
extrinsic variation. In this case, the two filters decrease the signal-to-noise ratio, worsening
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the performance, see Figure 5 (a). On the other hand, when the imaging conditions between
training and test are very different, normalization of extrinsic variation is the dominant
factor and performance is improved, see Figure 5 (b).

(a) Similar acquisition conditions between sequences

(b) Different acquisition conditions between sequences

Figure 5. A conceptual illustration of the distribution of intrinsic, extrinsic and noise signal
energies across frequencies in the cases when training and test data acquisition conditions
are (a) similar and (b) different, before (left) and after (right) band-pass filtering

This is an important observation: it suggests that the performance of a method that uses
either of the representations can be increased further by detecting the difficulty of
recognition conditions. In this chapter we propose a novel learning framework to do exactly
this.

2.2.1 Adaptive framework

Our goal is to implicitly learn how similar the novel and training (or gallery) illumination
conditions are, to appropriately emphasize either the raw input guided face comparisons or
of its filtered output.

Let {X oo XN } be a database of known individuals, X novel input corresponding to one
of the gallery classes and p( ) and F( ), respectively, a given similarity function and a quasi
illumination-invariant filter. We then express the degree of belief y that two face sets A and
X; belong to the same person as a weighted combination of similarities between the
corresponding unprocessed and filtered image sets:

n=(1—a")p(X,X;) +a"p(F(X), F(X;)) @



20 Face Recognition

In the light of the previous discussion, we want a* to be small (closer to 0.0) when novel and
the corresponding gallery data have been acquired in similar illuminations, and large (closer
to 1.0) when in very different ones. We show that a* can be learnt as a function:

o* = a*(p) @

where y is the confusion margin - the difference between the similarities of the two AX; most
similar to &". The value of a* (i) can then be interpreted as statistically the optimal choice of
the mixing coefficient a given the confusion margin y. Formalizing this we can write

o () = argmax plau) @)

or, equivalently
a,

o (p) = arg max pz(o(,uéb) 4)

Under the assumption of a uniform prior on the confusion margin, p(y)
pleli) o pla; p) ®)

and

a’(p) = argmax p(a, 1) 6)

2.2.2 Learning the a - function

To learn the a-function a* (i) as defined in (3), we first need an estimate p(a, 1) of the joint
probability density p(a, y) as per (6). The main difficulty of this problem is of practical
nature: in order to obtain an accurate estimate using one of many off-the-shelf density
estimation techniques, a prohibitively large training database would be needed to ensure a
well sampled distribution of the variable y. Instead, we propose a heuristic alternative
which, we will show, will allow us to do this from a small training corpus of individuals
imaged in various illumination conditions. The key idea that makes such a drastic reduction
in the amount of training data possible, is to use domain specific knowledge of the
properties of p(a, p) in the estimation process.

Our algorithm is based on an iterative incremental update of the density, initialized as a
uniform density over the domain a, € [0,1], see Figure 7. Given a training corpus, we
iteratively simulate matching of an "unknown" person against a set of provisional gallery
individuals. In each iteration of the algorithm, these are randomly drawn from the offline
training database. Since the ground truth identities of all persons in the offline database are
known, we can compute the confusion margin y(a) for each a = k A a, using the inter-
personal similarity score defined in (1). Density p(c, 1t) is then incremented at each ((k A a,
# (0)) proportionally to p (k A a) to reflect the goodness of a particular weighting in the
simulated recognition.

The proposed offline learning algorithm is summarized in Figure 6 with a typical evolution
p(a, u) in Figure 7.
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The final stage of the offline learning in our method involves imposing the monotonicity
constraint on a* (1) and smoothing of the result, see Figure 8.

3. Empirical evaluation

To test the effectiveness of the described recognition framework, we evaluated its perfor-
mance on 1662 face motion video sequences from four databases:

Input: training data D(person, illumination),
filtered data F'(person, illumination),
similarity function p,
filter F'.

Output:  estimate p(o, ).

1: Init
pla,p) =0,

2; Iteration
for all illuminations ¢, j and persons p

3: Initial separation
do = mingp [p(D(p, 1), D(g, ) — p(D(p; i), D(p, 1))]

4: Iteration
forallk =0,...,1/Aa, a = kA«

5: Separation given «
6(kAa) = mingzpap(F(p,i), F(q, 7))
—ap(F (p, i), F(p, 7))
+(1 — a)p(D(p, i), D(q, 7))
—(1 = a)p(D(p,4), D(p, j))]

6: Update density estimate
p(kAa, 8y) = p(kAca, dg) + 5(kAa)

7: Smooth the output
pla, p) = pla, ) * Go=0.05

8: Normalize to unit integral
Blev, p) = pla, w)/ [, [, Plov, z)dada

Figure 6. Offline training algorithm
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Figure 7. The estimate of the joint density p(a, y#) through 550 iterations for a band-pass filter
used for the evaluation of the proposed framework in Section 3.1
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Figure 8. Typical estimates of the a -function plotted against confusion margin y. The
estimate shown was computed using 40 individuals in 5 illumination conditions for a
Gaussian high-pass filter. As expected, a* assumes low values for small confusion margins
and high values for large confusion margins (see (1))

CamPFace with 100 individuals of varying age and ethnicity, and equally represented
genders. For each person in the database we collected 7 video sequences of the
person in arbitrary motion (significant translation, yaw and pitch, negligible roll),
each in a different illumination setting, see Figure 9 (a) and 10, at 10 fps and 320 x
240 pixel resolution (face size ~ 60 pixels) 1.

ToshFace kindly provided to us by Toshiba Corp. This database contains 60 individuals of
varying age, mostly male Japanese, and 10 sequences per person. Each sequence
corresponds to a different illumination setting, at 10 fps and 320 x 240 pixel
resolution (face size ~ 60 pixels), see Figure 9 (b).

Face Video freely available? and described in [14]. Briefly, it contains 11 individuals and 2
sequences per person, little variation in illumination, but extreme and uncontrolled

1 A thorough description of the University of Cambridge face database with examples of video
sequences is available at http: //mi.eng.cam. ac.uk/~0a214/.
2See http: / /synapse. vit. lit. nrc. ca/db/video/ faces /cvglab.
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variations in pose and motion, acquired at 25fps and 160 x 120 pixel resolution (face
size = 45 pixels), see Figure 9 (c).

Faces96 the most challenging subset of the University of Essex face database, freely available
from http://cswww.essex.ac.uk/mv/allfaces/ faces96 .html. It contains 152
individuals, most 18-20 years old and a single 20-frame sequence per person in 196
x 196 pixel resolution (face size ~ 80 pixels). The users were asked to approach the
camera while performing arbitrary head motion. Although the illumination was
kept constant throughout each sequence, there is some variation in the manner in
which faces were lit due to the change in the relative position of the user with
respect to the lighting sources, see Figure 9 (d).

For each database except Faces96, we trained our algorithm using a single sequence per
person and tested against a single other sequence per person, acquired in a different session
(for CamFace and ToshFace different sessions correspond to different illumination condi-
tions). Since Faces96 database contains only a single sequence per person, we used the first
frames 1-10 of each for training and frames 11-20 for test. Since each video sequence in this
database corresponds to a person walking to the camera, this maximizes the variation in
illumination, scale and pose between training and test, thus maximizing the recognition
challenge.

Offline training, that is, the estimation of the a-function (see Section 2.2.2) was performed

using 40 individuals and 5 illuminations from the CamFace database. We emphasize that

these were not used as test input for the evaluations reported in the following section.

Data acquisition. The discussion so far focused on recognition using fixed-scale face

images. Our system uses a cascaded detector [20] for localization of faces in cluttered

images, which are then rescaled to the unform resolution of 50 x 50 pixels (approximately
the average size of detected faces in our data set).

e Gaussian high-pass filtered images [5,11] (HP):

Xg =X (X*xGg-15) ?)

e local intensity-normalized high-pass filtered images - similar to the Self-Quotient Image

[21] (QD):
X =Xg/(X - Xg) (8)

the division being element-wise,
e distance-transformed edge map [3, 9] (ED):

X g = DistTrans(Canny(X)) 9)
e Laplacian-of-Gaussian [1] (LG):

Xy, =X*xVGy=s (10)

and
e  directional grey-scale derivatives [1,10] (DX, DY):
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(a) Cambridge Face Database

(b) Toshiba Face Database

(c) Face Video Database

(d) Faces 96 Database
Figure 9. Frames from typical video sequences from the four databases used for evaluation

Methods and representations. The proposed framework was evaluated using the following
filters (illustrated in Figure 11):
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For baseline classification, we used two canonical correlations-based [15] methods:
o Constrained MSM (CMSM) [ 12] used in a state-of-the-art commercial system
FacePass® [19],

e Mutual Subspace Method (MSM) [12], and

These were chosen as fitting the main premise of the chapter, due to their efficiency,
numerical stability and generalization robustness [16]. Specifically, we (i) represent each
head motion video sequence as a linear subspace, estimated using PCA from appearance
images and (ii) compare two such subspaces by computing the first three canonical
correlations between them using the method of Bjorck and Golub [6], that is, as singular

values of the matrix B{ Bz where B 5 are orthonormal basis of two linear subspaces.

(a) FaceDBIOO

(b) FaceDB60

Figure 10. (a) Illuminations 1-7 from database FaceDBIOO and (b) illuminations 1-10 from
database FaceDBOO

Figure 11. Examples of the evaluated face representations: raw grey scale input (RW), high-
pass filtered data (HP), the Quotient Image (QI), distance-transformed edge map (ED),
Laplacian-of-Gaussian filtered data (LG) and the two principal axis derivatives (DX and DY)

3.1 Results

To establish baseline performance, we performed recognition with both MSM and CMSM
using raw data first. A summary is shown in Table 3.1. As these results illustrate, the Cam-
Face and ToshFace data sets were found to be very challenging, primarily due to extreme
variations in illumination. The performance on Face Video and Faces96 databases was sig-
nificantly better. This can be explained by noting that the first major source of appearance
variation present in these sets, the scale, is normalized for in the data extraction stage; the
remainder of the appearance variation is dominated by pose changes, to which MSM and
CMSM are particularly robust to [4,16].

Next we evaluated the two methods with each of the 6 filter-based face representations. The
recognition results for the CamFace, ToshFace and Faces96 databases are shown in blue in
Figure 12, while the results on the Face Video data set are separately shown in Table 2 for the
ease of visualization. Confirming the first premise of this work as well as previous research
findings, all of the filters produced an improvement in average recognition rates. Little
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interaction between method/filter combinations was found, Laplacian-of-Gaussian and the
horizontal intensity derivative producing the best results and bringing the best and average
recognition errors down to 12% and 9% respectively.

a) CamFace

(b) ToshFace

(c) Faces96

Figure 12. Error rate statistics. The proposed framework (-AD suffix) dramatically improved
recognition performance on all method/filter combinations, as witnessed by the reduction
in both error rate averages and their standard deviations. The results of CMSM on Faces96
are not shown as it performed perfectly on this data set
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CamPFace ToshFace FaceVideoDB Faces96 Average
CMSM 73.6 /225 793/ 18.6 91.9 100.0 87.8
MSM 583 /243 46.6 / 28.3 81.8 90.1 727

Table 1. Recognition rates (mean/STD, %)

RW HP Qi ED LG DX DY

MSM 0.00 0.00 0.00 0.00 9.09 0.00 0.00
MSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CMSM 0.00 9.09 0.00 0.00 0.00 0.00 0.00
CMSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2. FaceVideoDB, mean error (%)

Finally, in the last set of experiments, we employed each of the 6 filters in the proposed
data-adaptive framework. The recognition results are shown in red in Figure 12 and in Table
2 for the Face Video database. The proposed method produced a dramatic performance
improvement in the case of all filters, reducing the average recognition error rate to only 3%
in the case of CMSM/Laplacian-of-Gaussian combination.This is a very high recognition
rate for such unconstrained conditions (see Figure 9), small amount of training data per
gallery individual and the degree of illumination, pose and motion pattern variation
between different sequences. An improvement in the robustness to illumination changes can
also be seen in the significantly reduced standard deviation of the recognition, as shown in
Figure 12. Finally, it should be emphasized that the demonstrated improvement is obtained
with a negligible increase in the computational cost as all time-demanding learning is
performed offline.

4. Conclusions

In this chapter we described a novel framework for automatic face recognition in the
presence of varying illumination, primarily applicable to matching face sets or sequences.
The framework is based on simple image processing filters that compete with unprocessed
greyscale input to yield a single matching score between individuals. By performing all
numerically consuming computation offline, our method both (i) retains the matching
efficiency of simple image filters, but (ii) with a greatly increased robustness, as all online
processing is performed in closed-form. Evaluated on a large, real-world data corpus, the
proposed framework was shown to be successful in video-based recognition across a wide
range of illumination, pose and face motion pattern changes.
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1. Introduction

Facial feature extraction consists in localizing the most characteristic face components (eyes,
nose, mouth, etc.) within images that depict human faces. This step is essential for the
initialization of many face processing techniques like face tracking, facial expression
recognition or face recognition. Among these, face recognition is a lively research area
where it has been made a great effort in the last years to design and compare different
techniques.

In this chapter we intend to present an automatic method for facial feature extraction that
we use for the initialization of our face recognition technique. In our notion, to extract the
facial components equals to locate certain characteristic points, e.g. the center and the
corners of the eyes, the nose tip, etc. Particular emphasis will be given to the localization of
the most representative facial features, namely the eyes, and the locations of the other
features will be derived from them.

An important aspect of any localization algorithm is its precision. The face recognition
techniques (FRTSs) presented in literature only occasionally face the issue and rarely state the
assumptions they make on their initialization; many simply skip the feature extraction step,
and assume perfect localization by relying upon manual annotations of the facial feature
positions.

However, it has been demonstrated that face recognition heavily suffers from an imprecise
localization of the face components.

This is the reason why it is fundamental to achieve an automatic, robust and precise
extraction of the desired features prior to any further processing. In this respect, we
investigate the behavior of two FRTs when initialized on the real output of the extraction
method.

2. General framework

A general statement of the automatic face recognition problem can be formulated as follows:
given a stored database of face representations, one has to identify subjects represented in
input probes. This definition can then be specialized to describe either the identification or
the wverification problem. The former requires as input a face image, and the system
determines the subject identity on the basis of the database of known individuals; in the
latter situation the system has to confirm or reject the identity claimed by the subject.
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As noted by [Zhao et al., 2003], whatever the problem formulation, its solution requires the
accomplishment of three subsequent subtasks: face detection, feature extraction and face
recognition (Figure 1).

often simultaneous

R e i e T B R e S e e 1
| |
I face feature | face
I detection |— | extraction —i—» recognition
| (FD) (FE) | (FR)
|
|

Figure 1. The subtasks of the face recognition problem

In fact, given an input image depicting one or more human subjects, the problem of
evaluating their identity boils down to detecting their faces, extracting the relevant
information needed for their description, and finally devising a matching algorithm to
compare different descriptions.

On one hand, the modularity of the original problem is a beneficial property as it allows to
decompose it and to concentrate on the specific difficulties of each task in order to achieve a
more effective solution. On the other hand, care must be taken in recomposing the separate
modules: a common approach is to devise techniques that face only a task at once! without
considering the problems that can arise at the “interfaces” between them.

In particular, most of face recognition techniques (FRTs) presented in literature skip the
previous tasks and assume perfect feature extraction. While this can be certainly useful to
develop and compare different recognition strategies, this attitude is not practical if the goal
is to produce a fully automatic recognition system. Relying upon manual annotations of the
feature positions does not account for the influence played by the extraction error on the
recognition rate: the amount and trend of this dependency is not easily predictable and
varies from FRT to FRT.

These facts bring to two important observations: first of all it is fundamental to achieve an
automatic, robust and precise extraction of the desired features prior to the application of a
face recognition technique; secondly, it is important to study the relation between the
quality of the feature extraction and the performance of the face recognition. By doing so,
one ensures to couple only truly compatible modules to realize a fully automatic, robust
system for face recognition. Differently stated, any FRT should be aware of the minimum
precision required for its functioning and should clearly declare it.

Regarding feature extraction, there is a general agreement that eyes are the most important
facial features, thus a great research effort has been devoted to their detection and
localization [Ji et al., 2005, Zhu and Ji, 2005, Fasel et al., 2005, Hamouz et al., 2005, Tang et
al., 2005, Wang et al., 2005, Song et al., 2006, Gizatdinova and Surakka, 2006]. This is due to
several reasons, among which:

e eyes are a crucial source of information about the state of human beings.

1 Face detection and feature extraction are often accomplished simultaneously as it is possible to locate
faces by directly locating their inner features.
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e the eye appearance is less variant to certain typical face changes. For instance they are
unaffected by the presence of facial hair (like beard or mustaches), and are little altered
by small in-depth rotations and by transparent spectacles.

e the knowledge of the eye positions allows to roughly identify the face scale (the inter-
ocular distance is relatively constant from subject to subject) and its in-plane rotation.

e the accurate eye localization permits to identify all the other facial features of interest.

To our knowledge, eyes are the only facial features required for the initialization of any FRT;
actually this is the only information needed by those methods that operate an alignment of
the face region, for instance as done by [Zhang et al., 2005]. However some techniques may
require more features than just the eyes. For instance all FRTs derived from subspace
methods (see [Shakhnarovich and Moghaddam, 2004] for a detailed survey) are initialized
on four positions (the eyes, nose and mouth locations) to warp the face region before
projection.2 Other techniques operate on larger sets of facial positions because they base the
recognition on some kind of local processing: e.g. [Wiskott et al., 1999] is based on the
comparison of the image texture found in the neighborhood of several fiducial points.

Due to these considerations, the performance evaluation of a feature extraction method is
usually given in terms of error measures that take into account only the localized eye
positions. In Sec. 3. we will motivate the choice of such measures and we will introduce the
study of the recognition rate in function of the eye localization precision. Sec. 4. presents the
proposed algorithm for precise eye localization, together with the experimental results of its
application on many public databases. In Sec. 5. we show a possible way to automatically
derive the locations of a set of facial features from the knowledge of the sole eye positions.
Sec. 6. reports the results of two face recognition experiments carried out on automatically
extracted features: the behavior of two FRTs is discussed by making some considerations
about their dependence on the extraction quality.

3. The importance of precise eye localization

Given the true positions of the eye centers (by manual annotation), the eye localization
accuracy is expressed as a statistics of the error distribution made over each eye (usually the
mean or the maximum), measured as the Euclidean pixel distance. In order to make these
statistics meaningful, so that they can be used to compare the results obtained on any
dataset, it is necessary to standardize the error by normalizing it over the face scale.

One popular error measure has been introduced by [Jesorsky et al., 2001], and it has been
already adopted by many research works on eye localization. The measure, which can be
considered a worst case analysis, is defined as

£ — max(||C; — G|l [1Cr = C:l))
e 1C = C |

2 Both the alignment and the warping are operations that intend to normalize a face database. The
former consists in bringing the principal features (usually the eyes) to the same positions. This is done
via an affine transformation (a scaling plus a roto-translation) that uses the eye centers as “pivots” of the
transform. A warping is a non-affine transformation (a non uniform “stretching” of the face
appearance) that is meant to densely align the face appearance (or at least the position of several
features).
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where (C1:Cr) are the ground truth positions and (C1.Cr) the results of automatic
localization. There is a general agreement [Jesorsky et al., 2001, Ma et al., 2004a, Zhou and
Geng, 2004] that de. < 0.25 is a good criterion to flag the eye presence (to claim eye
detection). This precision roughly corresponds to a distance smaller than or equal to the eye
width. However, this accuracy level may not be sufficient when the localized positions are
used for the initialization of subsequent techniques.

Following the idea presented in [Ma et al., 2004a], we studied the relation between d.,. and
the face recognition rate of some baseline methods available in the CSU package [Beveridge
et al., 2005] together with the LAIV-FRT described in Sec. 6. To mimic the behavior of eye
localization techniques that achieve different levels of precision, we carried out four
recognition experiments by artificially perturbing the ground truth quality; both C, and G
have been randomly displaced inside circles of radii equal to 5%, 10% and 15% of || Ci -C,||
with uniform distribution. In Figure 2 we report the results of this study on the XM2VTS
database (see Appendix 8.). The experiment is defined as follows: session 1 is used for the
gallery, session 2 for the probe, sessions 3 and 4 constitute the training set.3 Differently from
[Ma et al., 2004a] where only the probe set is affected by artificial error, all three sets
(gallery, probe and training) have been perturbed as it would happen in a completely
automatic system. The graphs of Figure 2 clearly show that the precision of eye localization
is critical for the alignment of faces, even if it does not affect all the methods in the same
way.

Face recognition on the XM2VTS
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Figure 2. Face recognition vs. (artificial) eye localization precision

Very recently in [Rodriguez et al., 2006] the issue has been further developed, suggesting a
new error measure which is more discriminative than d.. as it permits a quantitative
evaluation of the face recognition degradation with respect to different error types. Instead
of considering only the Euclidean distance between the detections and the ground truth
points, it considers four kinds of error: the horizontal and the vertical error (both measured

3 The training set is needed by all the reported CSU methods, not by LAIV-FRT.
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between the mid-points Co: Co of the segments CrCy, CrCY, see Figure 3), the scale and
the rotation error.

— dx o — ||(~‘|’_(""'E| oy
Ay = reTeeal (horizontal) A = el (scale)
=
Ay, = IIC_;TC;H (vertical) A, =CC.CC, (rotation)

In fact it happens that some FR systems are more sensitive to certain types of error. In
particular, the baseline PCA method is extremely sensitive to all types, while the FR system
described in the article (referred to as DCT/GMM) seems to be almost indifferent to
translational errors (A, Ay), while its performance notably degrades when the error is due
principally to scale or rotation inaccuracy (As, A,). The authors conclude that it is not
possible to define an absolute concept of precise localization: each FR will have a different
tolerance to errors and it should clearly state the level and type of precision required for its
initialization.

The article [Shan et al., 2004] is entirely devoted to the so called curse of misalignment. There
it is reported the high dependence of the Fisherface method [Belhumeur et al., 1997]
performance on the alignment precision, especially with respect to rotation or scale errors.
The authors also propose to evaluate the overall face recognition rate with a measure, rate*,
that integrates the FR rate over all possible misaligned initializations, weighted by their
probability:

rate” = ] rate(e)P(e)de )
eCerrors

They measure the robustness of a FRT to errors as the overall FR rate normalized with
respect to the ideal case of absence of error, i.e. rate*/rate(0). Although we deem correct the
definition of the overall FR rate, the limit of this approach is the difficulty of knowing the
pdf of the misalignment distribution, thus preventing from a direct computation of rate*.
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Figure 3. Localization error: (Cj, C.) are the ground truth positions, (é;-_ Chf,-) are the results
of automatic localization

A totally different approach is that of [Martinez, 2002] where, instead of imposing the
maximum level of acceptable localization error, it is proposed to deal with it by learning its
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distribution directly into the statistical model of each subject. The method requires a
quantitative estimate of the localization error distribution to be used to perturb each image
accordingly, generating a certain number of new images constituting the set of all the
possible displacements. These enriched samples become the classes to be modelled (one for
each subject). Such models are then used for face recognition, being robust to localization
errors by construction. A similar approach has also been proposed by [Min et al., 2005].

4. Coarse-to-fine eye localization

The general outline of our eye localization system is presented in Figure 4. The system
assumes to be initialized on a face map (a binary image of the regions that have been detected
as faces) and processes it in a coarse-to-fine fashion: the first level is an eye detector meant to
locate the eye pattern; the second level is initialized on the positions output by the first one
and aims at improving the localization precision. Both modules are based on strong
statistical classifiers and both take advantage of a suitable eye representation consisting in
optimally selected wavelet coefficients. One important difference lies in the definition of the
receptive field of the respective eye patterns: the first is equal to the inter-ocular distance,
while the second is half of it to consider a finer space resolution (see some examples in
Figure 5).

OUR SYSTEM -

final output

Figure 4. General outline of the eye localization system

The system can be applied to the output of any face detector that returns a rough estimation
of the face position and scale, e.g. [Viola and Jones, 2004, Schneiderman and Kanade, 2004,
Osadchy et al., 2005, Campadelli et al., 2005]. The eye detector serves two distinct objectives:
it not only produces a rough localization of the eye positions, it also validates the output of
the face detector (a region of the face map is validated as a true face if and only if there has
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been at least an eye detection within it). In fact all face detectors manifest a certain false
detection rate that must be dealt with.

dRShEbEARE -
B sEFEEEEE

Figure 5. Examples of eye patterns for the eye detector (first row) and locator (second row)

4.1 Wavelet selection

The difficulty intrinsic to the task of eye localization requires an accurate choice of a suitable
representation of the eye pattern. It has been observed that the wavelet representation is
more favorable than the direct representation as it leads to a smaller generalization error
[Huang and Wechsler, 1999]. Haar-like wavelets permit to describe visual patterns in terms
of luminance changes at different frequencies, at different positions and along different
orientations.

Before the wavelet decomposition, each eye patch undergoes an illumination normalization
process (a contrast stretching operation) and is then reduced to 16x16 pixels.* The
decomposition is realized via an overcomplete bi-dimensional FWT (Fast Wavelet Transform)
[Campadelli et al., 2006a] that produces almost four times as many coefficients with respect
to the standard FWT. This redundancy is desirable as we want to increase the cardinality of
the feature “vocabulary” before going through the selection procedure.

In order to carry out the feature selection, we follow the idea proposed in [Oren et al., 1997]
to apply a normalization step, which allows us to distinguish two sub-categories of wavelet
coefficients: C" and C'. Both retain precious information: the first class gathers the
coefficients that capture the edge structure of the pattern, while the second class contains the
coefficients that indicate a systematic absence of edges (in a certain position, at a certain
frequency and along a certain orientation). What is more important, the normalization step
naturally defines a way to (separately) order the two categories, thus providing a way to
assess the relative importance of the respective coefficients (for the technical details refer to
[Campadelli et al., 2006b]).

Once ordered the normalized coefficients, we define an error function to drive the selection
process. We can measure the expressiveness of the coefficients by measuring how well they
reconstruct the pattern they represent. We wish to find the set of optimal coefficients

w = arg min E—Eyl?+a-||E, —U|?
e w=wty w™, ” b || || " “ 2)
wtC ¢+, w=C C~

4 Such a dimension represents a trade off between the necessity to maintain low the computational cost
and to have sufficient details to learn the pattern appearance.
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where E is the mean eye pattern.5 U is the uniform pattern (with all pixels set to the mean
luminance of E) and E,, is the reconstruction obtained by retaining the set w of the wavelet
coefficients W € CT and w™ € C. The first term of the objective function represents
the error made by the reconstruction, while the second term intends to bound the amount of
detail we are adding to the pattern representation (the value o is a trade-off to balance
between these two opposite goals). The ordering of the coefficients avoids to optimize over
all the possible subsets of C'" LU C'™: w is incremented by iteratively adding new coefficients
according to their ordering.

We experimentally observed that the trend of the objective function is rather insensitive to
variations of o in the interval [0.5, 1]; we set it to 0.8. As it can be expected, the norm of the
reconstruction maximally varies increasing the number of w+ retained, while it is almost
unaffected by the number of selected w-. Due to this consideration, the selected
w = w" Uw are such that they correspond to a local minimum of the objective function
(2.), with the additional constraint [w*|/|C*| ~ [w|/IC™ |,

Figure 6 shows the coefficients selected for the pattern representation of each classifier. For
the eye detector the process retains 95 wavelet coefficients that well characterize the general
eye shape (the highest frequency coefficients are not considered). The representation
associated with the eye locator keeps 334 coefficients, therefore the application of the second
classifier is more costly than the first one.

Figure 6. From left to right: the mean eye pattern, its wavelet decomposition and the
selected features (red contour) of the two eye patterns. High intensities correspond to strong
edges, low intensities indicate uniform regions

4.2 Eye detection

The module for eye detection takes in a face map output by a generic face detector and
produces a first, rough localization of the eye centers. Its core component is a strong
statistical classifier that is capable of distinguishing the eye appearance from that of the
other facial features; for this purpose we employ a binary Support Vector Machine (SVM),
that is the state-of-the-art model for many classification tasks [Vapnik, 1995]. The
classification is carried out on examples represented via a set of 95 selected wavelet filter
responses, as described in the previous section.

The training of the SVM has been carried out on a total of 13591 examples extracted from
1416 images: 600 belonging to the FERET database (controlled images of frontal faces), 416
to the BANCA database (to model different illumination conditions and the closed eyes),
and 600 taken from a custom database containing many heterogenous and uncontrolled

5 Defined simply by averaging the gray levels of 2152 eye patterns.
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pictures of various people (useful to model pose variations, non-neutral face expressions
and random background examples). The positive class is built to contain eye examples
cropped to a square of side equal to the inter-ocular distance. The negative class is
populated by the other facial features (nose, mouth, chin, cheeks, forehead, etc.) and by
some examples extracted from the background of images (respectively 3 and 2 for every
positive). The definition of the two classes is driven by the notion that the eye detection
module must be applied most of the time within the face region, therefore a negative
example in this context is actually a facial feature distinct from the eyes. However, as face
detectors sometimes detect some false positives, it is useful to enrich the definition of the
negative class by adding random negative patterns.

The machine is defined as follows: we employed a C-SVM (regulated by the error-

penalization parameter C) based on the RBF kernel (parameterized by 7 = ﬁ, which
regulates the amplitude of the radial supports). The tuning of the two hyper-parameters C
and y has been done in order to maximize the precision X recall® on a test set of 6969 examples
disjoint from the training set, but generated according to the same distribution. This
procedure selected C = 6 and y = 4.0 x 104, which yielded a SVM of 1698 support vectors
(let us call it SVM1) and a 3.0% of misclassifications on the test set. This error can be
considered an empirical estimate of the generalization error of the binary classifier.

Once trained, the SVM1 is integrated into a pattern search strategy that avoids a multiscale
scan: we infer the size of a hypothetical eye present in that region from the size of the face
detector output.” However, any face detector is subject to a certain error distribution on the
size of its detections (either over-estimating or under-estimating the true face size), so the
inferred eye scale cannot be fully trusted. We account for this uncertainty by considering a
range of three scales; the evaluation of a candidate point P comes down to evaluating three
examples centered in it: the one at the inferred scale (xp ), plus two examples (xp- and xp* )
extracted in a way to account for an error distribution of the face size that is between half
and twice the true size. This is a very reasonable requirement for a good face detector and
permits to treat almost all of its outputs. If SVM1(x) = 0 is the equation of the decision
function (hyperplane) separating the two classes, then we can treat the functional margin
SVM1(x) as a “measure” of the confidence with which the SVM classifies the example x.
Thus we define the function

p(P) = SVM1(xp) + SVM1(xp) + SVM1(x})

as the strength of the candidate point P.

Moreover, in order to make the search more efficient, we avoid an exhaustive scan of the
candidate points: first comes the identification of points lying on edges, then they are
subsampled with a step that depends on the scale of the face region;® we consider as
detections the points for which p(P) > 0, and we group them according to their proximity in

6 If TP = true positives, FN = false negatives, FP = false positives
]')

PrECiSION = m— recall = ,L
TP+ FP TP+ FN
7 This relation has been estimated for each employed face detector and applied consistently.
region radius
[ 25 —|, where the “radius” of a region is simply L

ATen

8 The subsampling step is defined as
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the image;? each group of point candidates is then represented by its centroid (the eye
center) obtained weighting each point P with its p(P).

Ideally we should have just two eye centers detected for each face, however sometimes it
happens that the eye classifier detects also one or more false positives. To deal with this, we
introduce a selection criterion that exploits the margin of the classifier and assumes the
substantial verticality of the face pose. Doing so, we manage to select the eye positions, and
to discard the false detections, by choosing the couple of centers (c;, ¢;) that maximizes

SVM(c;) - SVM(c;)

where (c;)y is the y coordinate of the center c;. As we do not want to enforce the perfect
verticality of the face, the square root at denominator is introduced to give more importance
to the strength of the eye centers with respect to their horizontal alignment.

Figure 7 visualizes the data flow of the eye detection module.

Figure 7. Eye detector outline

4.3 Eye localization

The module for eye localization is conceived to be applied in cascade to the eye detection
one, when it is desirable a greater localization precision of the detected positions. The
general architecture of this module is very similar to the previous one, therefore we can
concentrate on the description of the main differences.

While the eye detector must distinguish the global eye shape from that of other facial
patterns, the eye locator must work at a much finer detail level: the goal here is to start from
a rough localization and refine it by bringing it closer to the exact eye center location.
Bearing in mind this objective, at this stage we consider a richer pattern representation (334
wavelet coefficients) that permits a finer spacing resolution. The positive examples

9 Two detections are “close”, and hence must be aggregated, if their Euclidean distance is smaller than
five times the subsampling step. This multiple is not arbitrary, as it corresponds to about half the
distance between the eye corners.
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correspond to a smaller receptive field (half of the inter-ocular distance) and the negative
examples are generated by small, random displacements of the subimages used for the
extraction of the positive ones (10 negative examples for each positive).

The C-SVM with RBF kernel is first tuned in the same way as before, selecting C = 1.35 and
y= 3.6 x 10-4. The training is then carried on over 22647 examples, producing a SVM of 3209
support vectors (SVM2 from now on) that exhibits a misclassification rate of 2.5% on a test
set of 11487 examples.

The output of the eye detection module is used for the initialization of the eye localization
module. The pattern search proceeds only in a small neighborhood of the starting locations,
but this time we do an exhaustive scan as we do not want to loose spacial resolution. The
search is done at only one scale, inferred averaging the three scales previously considered

and weighting them according to their respective SVM1 margin (the factor % is due to the
smaller receptive field):
1 er{x;:.x},,x!,} [O(SVM1(x)) x (scale of x)]

3 3 where O(z) = {

if2z>0
) if2<0

o

—

Finally the SVM2 evaluations are thresholded at 0, determining a binary map consisting of
one or more connected regions. The refined eye center is found at the centroid of the
connected region that weights the most according to the SVM2 margin.

Figure 8 visualizes the data flow of the eye localization module.

Figure 8. Eye locator outline

We note here that the computational cost of each single SVM evaluation is linearly
proportional to the number of support vectors. Therefore, in order to reduce the
computational time of our application, it would be desirable to approximate the hyperplane
associated to the SVM by reducing the number of its supports, without deteriorating its
separation abilities. Some research has been devoted to optimal approximation techniques
for support vector reduction, which usually require to specify aforetime the desired number
of supports to retain at the end of the reduction process [Burges, 1996, Scholkopf et al.,
1999]. However there is no general rule regarding how many vectors can be suppressed
before compromising the performance of a SVM classifier; this quantity clearly depends on
the difficulty of the classification task. Another approach consists in fixing a threshold on
the maximum marginal difference of the old support vectors with respect to the new
hyperplane [Nguyen and Ho, 2005]. This perspective is particularly interesting as it enables
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to specify a stop quantity that is no more arbitrary, on the contrary it allows to limit the
oscillation of the decision surface.

We have reimplemented the technique described in [Nguyen and Ho, 2005] and applied it
only to the SVM2 because a reduction of this machine would be of great benefit with regards
to the computational time: in fact it is composed of almost twice as many support vectors
than the SVM1, and it is evaluated at many more candidate points. What is more, while a
reduction of the SVM1 strongly influences the eye detection rate, a reduced SVM2 only
degrades the localization precision, and in a much more progressive way. The results of the
reduction experiments are given in the next section.

4.4 Eye localization results

The experiments have been carried out on images taken from the following datasets:
XM2VTS, BANCA, FRGC v.1.0, BioID and FERET (see Appendix 8. for the full specification
of the datasets composition). All these images depict one subject shot with vertical, frontal
pose, eyes closed or open, presence or absence of spectacles; none of these images has been
used for the training of the SVM classifiers. On color images (XM2VTS, BANCA, FRGC) the
face detection has been carried out using the method in [Campadelli et al., 2005], while
when the input images are gray scale (BiolD, FERET), the detection is performed by a re-
implementation of [Viola and Jones, 2001].
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Figure 9. The cumulative distributions of eye detection and localization over different
databases

The graphs in Figure 9 display the performance of the eye detector (SVM1), the eye locator
(SVM2) and, when available, we report the performance achieved by the methods presented
by [Hamouz et al., 2005] (denoted as “1 face on the output” in the original article) and
[Cristinacce and Cootes, 2006] (Constrained Local Models, CLM). Regarding CLM, the
curves plotted on the BiolD and XM2VTS graphs have been extrapolated from the results
kindly provided by the authors of the method.
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The numbers reported in parenthesis on the graphs represent the Area Under the Curve
(AUCQC), therefore they give a global estimation of the performance of each localization
method over that particular dataset. Regarding eye detection, the SVMI1 alone permits to
achieve rates of 99.0%, 95.5%, 95.6%, 97.1% and 97.8% over the datasets BANCA, BiolD,
FERET, FRGC and XM2VTS respectively (deye < 0.25). As expected, the addition of the
second classifier greatly improves the precision of the detection and the curves are
systematically above the rates declared by Hamouz et al. Regarding CLM, we note that it is
very effective in localizing the eyes over the BiolD database, while on the XM2VTS it
achieves a lower rate.10

Also the works by [Jesorsky et al., 2001], [Ma et al., 2004b], [Tang et al., 2005] and [Niu et al.,
2006] use the error measure d,. in order to assess the quality of eye localization. The first
work exhibits a localization performance that is lower than that reported by Hamouz et al.
The second one presents a cumulative curve that looks similar to the performance of the
SVM1 but it is obtained referring to a mix of databases with no intersection with the ones we
considered, making impossible a direct comparison. The third paper reports results on the
BiolD, tabulating only the values corresponding to d.y. < 0.1 and d.y. < 0.25 (91.8% and 98.1%
respectively), while omitting the curve behavior under this value. Finally, the last work
presents results on XM2VTS and BioID; we do not report them in figure since the values are
not clearly tabulated, however we note that the performance on XM2VTS is comparable to
ours, while on the BiolD their results are significantly better.

Other works face the same problem, while adopting a different metrics. For instance [Wang
et al., 2005] adopt a normalized mean error (not the maximum) and give an error of 2.67%
on the entire FRGC. By adopting this measure on the considered FRGC subsets we observe
an error of 3.21%. Analogously, [Fasel et al.,, 2005] provide the localization results on the
BiolD in terms of the mean relative error, this time expressed in iris units. Noting that the
iris diameter is slightly shorter than the 20% of the inter-ocular distance, their measurement
corresponds to a mean error (relative to the inter-ocular distance) of 0.04, while we report a
mean relative error of 0.031. The method described by [Everingham and Zisserman, 2006]
carries out the experiments on the FERET database: in the 90% of images the mean relative
error is reported to be smaller or equal to 0.047, which is remarkable (for the same level of
precision, on the FERET we count about the 81% of images).

We also present in Figure 10 the histograms of Ay, Ay, A, A, (recall Sec. 3.) made by our eye
localization module on all the datasets previously considered; for comparison, we report in
Figure 11 the results of the CLM algorithm on the available datasets (BiolD, XM2VTS).
Referring to the FR algorithm DCT/GMM proposed by [Rodriguez et al., 2006], we observe
that each error histogram generated by the coarse-to-fine technique is entirely included
within the declared error tolerance (rotation error € [-10°, 10°], translational error € [-0.2,
0.2], scale error € [0.8, 1.2]). In the spirit of their article, we conclude that our application
would be appropriate for the initialization of DCT/GMM.

The speed was not the main focus of our research, giving that nowadays there exist
dedicated architectures which would allow to obtain a real-time application. Running java
interpreted code on a Pentium 4 with 3.2GHz, we report the computational time of the two

10 The authors attribute this behavior to the major similarity of BioID images to the images used to train
CLM.
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modules: on average eye detection requires about 4 seconds on faces with an inter-ocular
distance of 70 pixels, while eye localization takes about 12 seconds.

We have investigated the possibility of reducing the cardinality of the SVM2. As already
pointed out, the entity of the support vectors reduction is proportional to the threshold
imposed on the maximum marginal difference; in particular we have carried out the
experiments by fixing the threshold at 0.5 and 1. The value 0.5 is chosen to interpolate between
0 and 1 in order to sketch the trend of the performance reduction vs. the SV reduction.
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Figure 10. The histograms of the horizontal, vertical, scale and rotation error of the eye
localization module (SVM2)

Thresholds 1 and 0.5 led respectively to a reduction of the original SVM2 from 3209 SVs to
529 and 1716. As the computational cost of the eye locator is three times bigger than that of
the eye detector, and as it is linearly dependent on the number of SVs, these reductions
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roughly correspond to a global application speed-up of 60% and 35% respectively. There is a
clear trade-off between the entity of the reduction and the accuracy of the localization: the
performance of the localization module, measured on a randomly chosen subset (400
images) of the XM2VTS, and expressed in terms of AUC, decreased by about 3.3% and 0.6%
respectively (See graph 12.). This is quite a good result, especially regarding the latter
experiment. On the other hand, if this deterioration of the localization precision is not
acceptable for a certain face processing application, then the original SVM2 should be used
instead.
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Figure 11. The histograms of the horizontal, vertical, scale and rotation error of the CLM
algorithm
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5. From eye centers to fiducial points

In this section we show how, given the eye centers, we derive a set of 27 characteristic points
(fiducial points): three points on each eyebrow, the tip, the lateral extremes and the vertical
mid-point of the nose, the eye and lip corners, their upper and lower mid-points, the mid-
point between the two eyes, and four points on the cheeks (see Figure 13).

This module has been conceived to work on still color images of good quality, acquired with
uniform illumination, where the face is almost frontal and the subject assumes either a
neutral or a slightly smiling expression.

The method proceeds in a top-down fashion: given the eye centers, it derives the eye, nose
and mouth subimages on the basis of simple geometrical considerations, and extracts the
corresponding fiducial points (green points in Figure 13) as described in the following.
Finally, in order to enrich the face description, further fiducial points (red points in Figure
13) are inferred on the basis of the position of the extracted points.

Figure 13. A face is described by 27 fiducial points: 13 are directly extracted from the image
(in green), 14 are inferred from the former ones (in red)

5.1 Eyes

The eyes are described by a parametric model which is a simplified version (6 parameters
instead of 11) of the deformable template proposed in [Yuille et al., 1992].

The eye model is made of two parabolas, representing the upper and lower eye arcs, and
intersecting at the eye corners (see Figure 14); the model parameters, 7 = {ze,ye.0.b,¢.0,}
are: the model eye center coordinates (x;, v;), the eye upper and lower half-heights a and c,
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the eye half-width b, and the rotation angle §; expressing the rotation of the model with
respect to the horizontal axis.

The fundamental step to obtain good results is a very precise initialization of the template
parameters. To this end, the eye center coordinates, (x, y.), derived by the SVM2, are used as
initial values for (x;, ys). In order to find a good initial estimate for the parameters 4, b, c, we
carried out a statistical study on 2000 images to evaluate the relation between the inter-
ocular distance d and both the semi-width, b and the semi-height of the eye, a and ¢,
obtaining very stable results: the mean values are 5.6 and 12 respectively, with small
variance values (0.8 and 1.2), making these evaluations reliable and useful to set the initial
values of the parameters a, b, c correspondingly. The last parameter, §, is set initially to the
estimated face tilt.
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Figure 14. Deformable eye template

In order to adapt the generic template to a specific eye, we minimize an energy function E;
that depends on the template parameters (prior information on the eye shape) and on
certain image characteristics (edges and the eye sclera). The characteristics are evaluated on
the u plane of the CIE-Luv! space, since in this color plane the information we are looking
for (edges and eye sclera) are strengthened and clearer (see Figure 15 b,c). More precisely:

E! = E}'H'f:l’”' + E(.' + E}.-.

where:
1 Eprior = (@ —a)?+ (e —v)?) + %2 (b-d/12)2 + % (b - 2a)? + (a — 2¢)?)
2 Ee=—pry Jor, Pel@)ds

being Ry, the upper and lower parabolas, and @. the edge image obtained applying the
Sobel filter to the eye subimage.

Ej = —C9 J}?w ‘I’,(F)d‘:

where Ry, is the region enclosed between the two parabolas, and ®; is a weighted image
called eye map, and determined as follows:

e threshold the u plane with a global threshold:
th = 0.9 x max(u)

11 Uniform color space introduced by the CIE (Commission Internationale de 1'Eclairage) to properly
represent distances between colors [Wyszecki and Stiles, 1982].
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e adapt the threshold until the pixels set to 1 are symmetrically distributed around
the eye center.
e for every pixel p
255 if p is white
i(p) = { ~100  if p is black
The function is optimized adopting a search strategy based on the steepest descent, as
suggested in Yuille’s work; once obtained the eye contour description, we derive the two
eye corners and the upper and lower mid-points straightforwardly (see Figure 15).

5.2 Nose

The nose is characterized by very simple and generic properties: the nose has a “base” the
gray levels of which contrast significantly with the neighboring regions; moreover, the nose
profile can be characterized as the set of points with the highest symmetry and high
luminance values; therefore we can identify the nose tip as the point that lies on the nose
profile, above the nose baseline, and that corresponds to the brightest gray level. These
considerations allow to localize the nose tip robustly (see Figure 16).

Figure 15. Eye points search: a) eye subimage b) edge image c) eye map d) initial template
position e) final template position f ) fiducial points

Figure 16. Examples of nose processing. The black horizontal line indicates the nose base;
the black dots along the nose are the points of maximal symmetry along each row; the red
line is the vertical axis approximating those points; the green marker indicates the nose tip

5.3 Mouth

Regarding the mouth, our goal is to locate its corners and its upper and lower mid-points.
To this aim, we use a snake [Hamarneh, 2000] to determine the entire contour since we
verified that they can robustly describe the very different shapes that mouths can assume.
To make the snake converge, its initialization is fundamental; therefore the algorithm
estimates the mouth corners and anchors the snake to them: first, we represent the mouth
subimage in the YCbCr color space, and we apply the following transformation:

MM = (255 - (C, - C)) C,2
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MM is a mouth map that highlights the region corresponding to the lips; MM is then
binarized putting to 1 the 20% of its highest values; the mouth corners are determined
taking the most lateral extremes (see Figure 17).

Figure 17. Mouth corners estimation: a) mouth subimage b) mouth map c) binarized mouth
map d) mouth corners

Figure 18. Snake evolution: a) snake initialization b) final snake position c) mouth fiducial
points

The snake we used to find the mouth contour is composed of an initial set S of 4 points: the
mouth corners and 2 points taken as a function of both the mouth subimage dimensions and
of the mouth corner positions (see Figure 18 a). To better describe the contour, the size of S
is automatically increased, while the snake is being deformed, by adding points where the
contour presents high curvature values.

In order to deform the snake, a force Fy is applied to each point P = (x, y) € S:

Fiot(P) = aFeat(P) + bTp(P) + cFp(P) + dIp(P)

It is constituted of both external and internal forces. F.,; is external and deforms the snake in
order to attract it to the mouth contour extracted from MM

Fert(P(z,y)) = 1[(IVMM(z,y+1)| - |[|[VMM(z,y—1)|,
([VMM(z+ 1,9)|| — [VMM(xz - 1,y)||]

while T, Fr, Ir are internal forces that constrain the snake to stay continuous and smooth
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where 7i(x, i) is the vector in P(x, y) normal to the snake.

The algorithm adds points and deforms the snake until the global force Fi, is lower than a
certain tolerance for a fixed number of consequent steps. Once obtained the mouth contour
description, we derive the fiducial points straightforwardly. Figure 18 reports some results;
we notice that the described method achieves good results both on closed and open mouths.

5.4 Evaluation of the fiducial points precision

In order to quantitatively evaluate the precision of the extracted fiducial points (FP), we
adopt the error measure drp that can be considered an extension of d.,. to a bigger set of
features

g ] 1P —P|
PTFP] 10 -Gl

where P is the localized position of a fiducial point and P is the corresponding ground
truth. Notice that drp is a statistics different from d.,. as it averages the localization errors
instead of taking their maximum. On one hand this is a less demanding criterion, however it
is a more representative measure of a larger set of features.

Unfortunately, such performance evaluation is rarely given in the related literature. As we
have been provided with the localization output of the CLM method on the XM2VTS
database, we are able to compare it with our own. On the 9 fiducial points that are common
to both methods (eye corners, nose tip, mouth corners and mid-points), we obtain a drp
equal to 0.051 while CLM achieves 0.056. Regarding solely our method, if we take into
account also the 4 eye mid-points, the precision considerably improves to 0.045. The
remaining 14 fiducial points are not considered for the performance evaluation because they
are inferred from the other 13 and their precision is correlated.

Furthermore, a disjoint analysis of the precision achieved over each fiducial point highlights
that the nose tip is the most critical one (mean error of 0.07), while the points lying around
the eyes are the most precisely determined (mean error of 0.03).

6. Face recognition experiment

We set up a simple face recognition experiment to investigate the behavior of two different
FRTs when initialized on real outputs of our feature extraction method. The techniques,
LAIV and CAS, have been chosen in such a way to represent two different processing
paradigms: the former is based on local features, the latter treats the information at the
global face level. For this experiment we do not consider any more the CSU baseline
methods considered in Sec. 3. since they are not state-of-the-art FRTs, being their purpose
only comparative. Instead, LAIV and CAS are very recent methods which are reported to
score high recognition rates.
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The experiment has two aims: to compare the absolute performance achieved by either
method; to analyze the relative performance decay of each FRT in function of the eye
localization precision.

LAIV-FRT: This technique is a feature-based FRT described in [Arca et al., 2006]. Given the
eye positions, it uses the technique described in Sec. 5. to automatically locate the position of
27 fiducial points. Each fiducial point is characterized by extracting square patches centered
in them and convolving those with the Gabor filter bank described in [Wiskott et al., 1999].
The resulting 40 coefficients are complex numbers, and the jet | is obtained by considering
only the magnitude part. Thus, the face characterization consists of a jets vector of 40 x 27
real coefficients.

The recognition task becomes the problem of finding a suitable similarity measure between
jets. The LAIV technique introduces the idea of considering only the set of points for which
the corresponding jets have high similarity. In particular, to recognize a test image f, it is
compared one-to-one with each image i belonging to the gallery G, producing a similarity
score, and it is recognized as the subject i* which obtained the highest score:

e for each image i € G and each fiducial point k = 0, .., 26, compute the similarity measure

between pairs of corresponding Jets:

En Jg.ﬁ"]i.ﬁ‘
VIR 5 (502

where z = 0, ..., 39 and [ is the Jet in the test image corresponding to the ki fiducial
point.

e for each fiducial point k, order the values {Sit} in descending order, and assign to each
of them a weight wi* as a function of its ordered position pik:

SJ'J.' — S(JF.F{. Jf'..k:) —

wt = . [In(z +y) — In(z + p’-‘;")],

where 3 = (—ll z = e~ 3, and c is a normalization factor.
e  for each gallery image i, the similarity score is obtained as a weighted average of the
pairwise jet similarity, limited to the set BestPoints of Lz—z‘J+ 1 = 14 points with highest

weight:

score(i) = Z wik ik,

ke Best Points

This technique gives better results than considering the average of all similarities, since it
allows to discard wrong matches on single points: if some fiducial points are not precisely
localized either in the test or in the gallery image, they will have low similarity measures
and will not belong to the set BestPoints, so they will not be used for recognition.

CAS-FRT: We consider here a custom reimplementation of the method proposed by [Zhang
et al., 2005]; the authors have successively developed the technique in [Shan et al., 2006],
which however requires an extremely long learning phase.
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Just like LAIV-FRT, CAS does not need any training procedure to construct the face model.
First it proceeds to normalize each face to a size of 80x88 pixels, obtained by means of an
affine transformation of the original image so that the eye centers are brought in predefined
positions and their distance is 40 pixels. The knowledge of the eye locations is sufficient to
compute this transformation.

Secondly, a multi-scale face representation is obtained by convolving the normalized face
with the same bank of 40 Gabor filters as before, this time computed pixelwise on the whole
face; the result is a set of 40 Gabor magnitude pictures (GMPs). Since the Gabor magnitude
changes very slowly with the displacement, the information in the GMPs is further
enhanced by applying the local binary pattern (LBP) operator [Ojala et al., 2002], to obtain 40
local Gabor binary pattern maps (LGBP maps). Each LGBP map is spatially divided into non-
overlapping regions (with a 4x8 pixel size), then the histograms of all regions are computed
and concatenated in a histogram sequence (LGBPHS) that models the face (see Figure 19 for a
visual representation of the whole procedure).

Gabor
Norma |I|f( llllcl r i]i‘
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Figure 19. The face pre-processing of CAS-FRT

Finally, the technique of histogram intersection is used to measure the similarity between
different face models to achieve face recognition.

Analogously to what done in Sec. 3., the recognition experiments are carried out on the
XM2VTS. However, as both LAIV-FRT and CAS-FRT need no training, now it is possible to
use all sessions but one (used as gallery) as probe set.

Table 1. reports the face recognition rate of LAIV-FRT and CAS-FRT when initialized
respectively on the eye ground truth positions, and on the localization output by the eye
detector and locator.

FR rate

Initialization
LAIV-FRT | CAS-FRT

ground truth 95.1% 96.4%
eye detector 92.3% 82.8%
eye locator 93.5% 87.9%

Table 1. The face recognition rate of LAIV-FRT and CAS-FRT with different initializations
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It can be noted that CAS-FRT performs better than LAIV-FRT (96.4% vs. 95.1%) when it is
manually and precisely initialized, but its performance drops dramatically when an
automatic eye localization method is used. On the contrary, LAIV-FRT proves to be more
robust with respect to localization errors; indeed, it can overcome slight mis-initializations.
It can be stated that LAIV-FRT behaves globally better than CAS-FRT as it is more robust in
the spirit of Eq. (1).

This difference in performance is probably due to the global nature of CAS initialization: if
the eye centers estimation is mistaken, the error will propagate to the rest of the face regions
due to the global affine transformation. Also in the case of LAIV-FRT the error affects the
computation, but in a more local sense: first of all, this FRT relies on the measured inter-
ocular distance to scale the Gabor filters, however the histogram of the scale error is quite
narrow (see the third graph of the last row of Figure 10); secondly, a slightly wrong
initialization of the employed templates is often recovered by the template matching
algorithms. Anyways, even when a full recovery is not attained, the selection criterion of the
BestPoints set allows to discard the unreliable fiducial points and LAIV-FRT still manages to
recognize the face in a number of cases. On the other hand, it should be observed that the
presence of the intermediate module described in Sec. 5., and the discard operated by the
selection criterion, weaken the dependency between the eye localization precision and the
recognition rate, so that the performance results on the different initializations are very
similar.

The same phenomenon explains the results of the experiment reported in Figure 2 regarding
artificially perturbed manual annotations: all the considered CSU face recognition
techniques start from a global representation of the face and hence are greatly affected by
misalignments.

7. Conclusion

The subject of this chapter is the presentation of a novel method for the automatic and
precise localization of facial features in 2D still images. The method follows the top-down
paradigm and consists of subsequent steps to decompose the initial problem in increasingly
easier tasks: assuming a rough localization of the face in the image, first comes the
application of an eye detector with the aim of discriminating between real face regions and
possible false positives. The accuracy of the detection is nearly optimal. Successively, an eye
locator is applied on a small neighborhood of the detector output to improve the localization
precision. Finally, the eye center positions are used to derive 27 facial fiducial points, either
extracted directly from the image or inferred on the basis of simple geometrical
considerations.

The eye localization module has been extensively tested on five publicly available databases
with different characteristics to remark its generality. In the overall, the results are
comparable to or better than those obtained by the state-of-the-art methods. The
performance evaluation is carried out according to two objective performance measures in
order to favor the comparison with other techniques. Concerning the fiducial point
localization, results on the XM2VTS show high precision.

In the last years many research works have pointed out the importance of facial feature
localization as the fundamental step for the initialization of other methods, mostly face
recognition techniques. In general, not all types of error affect the subsequent processing in
the same way: for instance scale errors usually affect a FR technique more than translational
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misalignment. Moreover, face recognition techniques manifest a different tolerance to the
localization error depending on the nature of their initialization. We conducted some
experiments which suggest that, as the localization precision decreases, the recognition rate
decays more rapidly for those methods which start from a global face representation.
However, since different FR techniques exhibit a different robustness to certain types and
amount of error, there exists no absolute threshold for precise localization. The authors of
face recognition techniques should investigate the robustness of their methods with respect
to misalignments, in order to state the error tolerance that they assume when declaring the
face recognition rate.

Both the obtained localization results and the survey of recent eye localization techniques
clearly show that we are far from perfect localization and there is still room for
improvement.

8. Appendix: datasets

This appendix details the definition of the considered public databases, specifying for each
of them which images have been used to carry out the experimental tests. In alphabetical
order:

e The [BANCA DB, web] of English people consists of three sections referred to as
Controlled, Adverse and Degraded. The latter is not considered as the images are
particularly blurred, making the step of precise eye localization useless. Regarding the
former:

e Controlled: it consists of 2080 images each one representing one person placed in
front of the camera and standing on a uniform background. The database collects
pictures of 52 people of different ethnic groups (Caucasian, Indians, Japanese,
Africans, South-Americans), acquired in 4 different sessions (10 images per subject
in each session). The illumination conditions vary from daylight to underexposed,
while no evident chromatic alteration is present.

e Adverse: like the Controlled section it consists of 2080 images, each one
representing one person placed in front of the camera and looking down as if
reading, while in this section the background is non-uniform. The image quality
and illumination are not very good.

The selected test set is composed of the first image of each subject in each section, for a

total of 416 images.

e The [BiolD DB, web] is formed of 1521 gray scale images of close-up faces. The number
of images per subject is variable, as it is the background (usually cluttered like in an
office environment).

The tests reported in the previous sections refer to the whole database.

e The [FERET DB, web] database consists of 10 gray level images per person organized
according to the out of plane rotation: 0°, £15°, £25°, +40° or +60°; regarding the sole
frontal views the set contains two images per subject, one smiling, one with neutral
expression.

The considered test set consists of 1000 images randomly selected from the images with

rotation up to £15°.
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e The [FRGC DB, web] database version 1.0 collects 5658 high resolution images of 275
subjects in frontal position, arranged in two sections: controlled and uncontrolled. The
images are organized in subject sessions: each contains 4 images acquired in controlled
conditions (uniform background and homogeneous illumination) and 2 in uncontrolled
conditions (generic background and varying illumination conditions). In both
conditions, half of the images represent the subject while smiling, the remaining half
with neutral expression. The number of sessions varies from subject to subject, between
land?7.

The considered test set is composed of both 473 controlled and 396 uncontrolled
images. These numbers are obtained by taking, for each subject, the first controlled
image of the first two sessions (when the second is present).

e The [XM2VTS DB, web] consists of 1180 high quality images of single faces acquired in
frontal position and with homogeneous background; some of the subjects wear
spectacles. The pictures are grouped into 4 sessions of 295 subjects each.

The conducted tests refer to the whole database.
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1. Introduction

Face recognition has recently received significant attention (Zhao et al. 2003 and Jain et al.
2004). It plays an important role in many application areas, such as human-machine
interaction, authentication and surveillance. However, the wide-range variations of human
face, due to pose, illumination, and expression, result in a highly complex distribution and
deteriorate the recognition performance. In addition, the problem of machine recognition of
human faces continues to attract researchers from disciplines such as image processing,
pattern recognition, neural networks, computer vision, computer graphics, and psychology.
A general statement of the problem of machine recognition of faces can be formulated as
follows: Given still or video images of a scene, identify or verify one or more persons in the
scene using a stored database of faces.

In identification problems, the input to the system is an unknown face, and the system
reports back the determined identity from a database of known individuals, whereas in
verification problems, the system needs to confirm or reject the claimed identity of the input
face.

The solution to the problem involves segmentation of faces (face detection) from cluttered
scenes, feature extraction from the face regions, recognition or verification. Robust and
reliable face representation is crucial for the effective performance of face recognition system
and still a challenging problem.

Feature extraction is realized through some linear or nonlinear transform of the data with
subsequent feature selection for reducing the dimensionality of facial image so that the
extracted feature is as representative as possible.

Wavelets have been successfully used in image processing. Its ability to capture localized
time-frequency information of image motivates its use for feature extraction. The
decomposition of the data into different frequency ranges allows us to isolate the frequency
components introduced by intrinsic deformations due to expression or extrinsic factors (like
illumination) into certain subbands. Wavelet-based methods prune away these variable
subbands, and focus on the subbands that contain the most relevant information to better
represent the data.

In this paper we give an overview of wavelet, multiresolution representation and wavelet
packet for their use in face recognition technology.
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2. Introduction to wavelets

Wavelets are functions that satisfy certain mathematical requirements and are used in
presenting data or other functions, similar to sines and cosines in the Fourier transform.
However, it represents data at different scales or resolutions, which distinguishes it from the
Fourier transform.

2.1 Continuous wavelet transform
Wavelets are formed by dilations and translations of a single function #(t) called mother
wavelet so that the dilated and translated family

l-t_--».,,,,(r) = ﬁ‘[ﬂ]

is a basis of L*(R). The normalization ensures that ||'t-"'3f-’*(t)” is independent of the scale

parameter a and the position parameter b. The function ¥ is assumed to satisfy some
admissibility condition, for example,

(@.b)ER\|O}xR

C. =I}M¢iw<m 1)

¥

where ¥(w) is the Fourier transform of ¢. The admissibility condition (1) implies

W(0) = [w(t)dt=0 )

The property (2) motivates the name wavelet. The “diminutive” appellation comes from the
fact that i can be well localized with arbitrary fine by appropriate scaling. For any
f(t) € L*(R), the continuous wavelet transformation (CWT) is defined as

CWIF(a,b) = (f 4, (0D = [ F()0, (Bt

However, in signal processing, we often use discrete wavelet transform (DWT) to represent
a signal f(t) with translated version of a lowpass scaling function ¢(f) and the dilated and
translated versions of mother wavelet ¥(f) (Daubechies, 1992).
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where the functions @;:(f)=2"*¢(2’t—k) and ¢j,k(t):2j/2¢(2jt*k) . J.k€Z, form an

orthonormal basis of L*(R).
F~

The partial sum of wavelet Zk:ﬂ(f ik can be interpreted as the approximation of f
at the resolution 2. The approximation of signals at various resolutions with orthogonal
projections can be computed by multiresolution which is characterized by a particular
discrete filter that governs the loss of information across resolutions. These discrete filters
provide a simple procedure for decomposing and synthesizing wavelet coefficients at
different resolutions (Mallat, 1999).
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where { I }, { g} are discrete filter sequences, they satisfy respectively
o(t) =Y (2t —k), v(t) =) gd(2t k), g = (1),
k k

The two-channel filter bank method parallelly filters a signal by the lowpass filters i and
highpass filter g followed by subsampling. The filter /1 removes the high frequencies and
retains the low frequency components, the filter ¢ removes the low frequencies and
produces high frequency components. Together, they decompose the signal into different
frequency subbands, and downsampling is used to keep half of the output components of
each filter. For the wavelet transform, only the lowpass filtered subband is further
decomposed.

2.2 Two-dimensional wavelet transform
The two-dimensional wavelet can also be constructed from the tensor product of one-
dimensional ¢ and ¥ by setting:

o(x,y) = (X)d(y) , ¥ (x,y)=S(x)U(y) ,
W (x, ) = v(x)D(y) , V7 (x, ) = e(x)e(y)

where wH(xry)/ wv(x/y) ’ Q/JD(xry) are wavelet functions. Their dilated and translated

family {5 () s ki ko €2 A=H,V,D} and {8, (69): . ks ke €2} forms an
orthonormal basis of L’ (R?). For every f € L*(R?), it can be represented as
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Similar to one-dimensional wavelet transform of signal, in image processing, the
approximation of images at various resolutions with orthogonal projections can also be
computed by multiresolution which characterized by the two-channal filter bank that
governs the loss of information across resolutions. The one-dimensional wavelet
decomposition is first applied along the rows of the images, then their results are further
decomposed along the columns. This results in four decomposed subimages Li, Hi, Vi, D1
These subimages represent different frequency localizations of the original image which
refer to Low-Low, Low-High, High-Low and High-High respectively. Their frequency
components comprise the original frequency components but now in distinct ranges. In each
iterative step, only the subimage L; is further decomposed. Figure 1 (Top) shows a two-
dimensional example of facial image for wavelet decomposition with depth 2.

The wavelet transform can be interpreted as a multiscale differentiator or edge detector that
represents the singularity of an image at multiple scales and three different orientations —
horizontal, vertical, and diagonal (Choi & Baraniuk, 2003). Each image singularity is
represented by a cascade of large wavelet coefficients across scale (Mallat, 1999). If the
singularity is within the support of a wavelet basis function, then the corresponding wavelet
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coefficient is large. Contrarily, the smooth image region is represented by a cascade of small

wavelet coefficients across scale. Some researchers have studied several features of wavelet

transform of natural images (Mallat, 1999) (Vetterli & Kovaeevize, 1995) (Choi & Baraniuk,

2003):

e Multiresolution: Wavelet transform analyzes the image at different scales or
resolutions.

e Locality: Wavelet transform decomposes the image into subbands that are localized in
both space and frequency domains.

e  Sparsity: A wavelet coefficient is large only if the singularities are present in the
support of a wavelet basis function. The magnitudes of coefficients tend to decay
exponentially across scale. Most energy of images concentrate on these large
coefficients.

e Decorrelation: Wavelet coefficients of images tend to be approximately decorrelated
because of the orthonormal property of wavelet basis functions.

These properties make the wavelet domain of natural image more propitious to feature

extraction for face recognition, compared with the direct spatial-domain.

2.3 Wavelet-packet

There are complex natural images with various types of spatial-frequency structures, which
motivates the adaptive bases that are adaptable to the variations of spatial-frequency.
Coifman and Meyer (Coifman & Meyer 1990) introduced an orthonormal multiresolution
analysis which leads to a multitude of orthonormal wavelet-like bases known as wavelet
packets. They are linear combinations of wavelet functions and represent a powerful
generalization of standard orthonormal wavelet bases. Wavelet bases are one particular
version of bases that represent piecewise smooth images effectively. Other bases are
constructed to approximate various-type images of different spatial-frequency structures
(Mallat, 1999).

Level 1 Level 2

Figure 1. (Top) Two-dimensional wavelet decomposition of facial image with depth 2.
(Bottom) Two-dimensional wavelet packet decomposition of facial image with depth 2
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As a generalization of the wavelet transform, the wavelet packet coefficients also can be
computed with two-channel filter bank algorithm. The two-channel filter bank is iterated
over both the lowpass and highpass branch in wavelet packet decomposition. Not only L; is
further decomposed as in wavelet decomposition, but also Hi, Vi, D are further
decomposed. This provides a quad-tree structure corresponding to a library of wavelet
packet basis and images are decomposed into both spatial and frequency subbands, as
shown in Fig 1.

3. Preprocessing: Denoising

Denoising is an important step in the analysis of images (Donoho & Johnstone 1998, Starck

et al. 2002). In signal denoising, a compromise has to be made between noise reduction and

preserving significant signal details. Denoising with the wavelet transform has been proved

to be effective, especially the nonlinear threshold-based denoising schemes. Wavelet

Transform implements both low-pass and high-pass filters to the signal. The low-frequency

parts reflect the signal information, and the high-frequency parts reflect the noise and the

signal details. Thresholding to the decomposited high-frequency coefficients on each level

can effectively denoise the signal.

Generally, denoising with wavelet consists of three steps:

¢ Wavelet Decomposition. Transform the noisy data into wavelet domain.

e  Wavelet Thresholding. Apply soft or hard thresholding to the high-frequency
coefficients, thereby suppress those coefficients smaller than certain amplitude.

e Reconstruction. Transform back into the original domain.

In the whole process, a suitable wavelet, an optimal decomposition level for the hierarchy

and one appropriate thresholding function should be considered (Mallat 1999). But the

choice of threshold is the most critical.

3.1 Wavelet Thresholding
Assuming the real signal f [n] of size N is contaminated by the addition of a noise. This
noise is modeled as the realization of a random process W[n]. The observed signal is

X[n]= f[n]+ WI[n], n=0,--,N-1

The signal f is estimated by transforming the noisy data X with a decision operator Q. The
resulting estimator is

F=QX

The goal is to minimize the error of the estimation, which is measured by a loss function. The

square Euclidean norm is a familiar loss function. The risk of the estimator F of fis the
average loss:

Q. f)=E{l f - QXIF} .
The noisy data
X=f+W @)

is decomposed in a wavelet basis B=1{b,,}y,.<. The inner product of (3) with b,, gives
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Xylm] = fylm]+ Wy[m]

Where XB[m] = <X'bm>’ fB[m] = <f/bm>’ WB[m] = <W'bm>'
A diagonal estimator of f from (3) can be written

F—0X =Y pu (X [mDb,,

m=0

where p,, are thresholding functions.

A wavelet thresholding is equivalent to estimating the signal by averaging it with a kernel
that is locally adapted to the signal regularity. A filter bank of conjugate mirror filters
decomposes a discrete signal in a discrete orthogonal wavelet basis. The discrete wavelets

w,',k[”] =¢(H[n—N2'k] are translated modulo modifications near the boundaries. The
support of the signal is normalized to [0, 1] and has N samples spaced by N-1. The scale

parameter 2’ thus varies from 2L = N-1 up to 2/ <1:
B =[{L."'.l,l.-[”]}1__ j=]0<k<2 -’{(";)ﬂ.k In- k2! I .
A thresholding estimator in this wavelet basis can be written
N ]2 2!
F= E ZfJ-r'((Xf't.""s,a-))t."-’s,a- "’“Z(Xf@*’a.;-)ﬂ")r.u
f=L+1 k=0 k=0

where pris a hard thresholding or a soft thresholding.
A hard thresholding estimator is implemented with
x if [x|>T
x) =
Pr=10 if |x|<T

A soft thresholding estimator is implemented with

x—T ifx=>T
pr(x)={x+T ifx<-T
0 i |x|<T

The threshold T is generally chosen so that there is a high probability that it is just above the
maximum level of the noise. When Ws is a vector of independent Gaussian random
variables of variance 02 , the maximum amplitude of the noise has a very high probability of

being just below T =cv2InN. So we often choose the threshold T =cv2InN . In this case,
the soft thresholding guarantees with a high probability that

[CE, ) H pr (X0 D) [I(f 1440 |, The estimator F is at least as regular as f because its
wavelet coefficients have a smaller amplitude. This is not true for the hard thresholding
estimator, which leaves unchanged the coefficients above T , and which can therefore be
larger than those of fbecause of the additive noise component.

Face images with noise can be estimated by thresholding their wavelet coefficients. The
image f [n1, no] contaminated by a white noise is decomposed in a separable two-
dimensional wavelet basis. Figure 2 (a) is the original image, Figure 2 (b) is the noise image.
Figure 2 (c, d) are obtained with a hard thresholding and a soft thresholding in a Symmlet 4
wavelet basis.
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@ ®) © @
Figure 2. (a) Original image, (b) Noisy image (SNR = 19.95), (c) Estimation with a hard
thresholding in a separable wavelet basis (Symmlet 4), (SNR = 22.03),. (d) Soft thresholding
(SNR =19.96)

The threshold T=o0+2InN is not optimal, especially, when the noise W is not white, the
variance of the noise depends on each vector b,, of the basis. Thresholding estimators can be
adapted.

3.2 Multiscale SURE Thresholds

Piecewise regular signals have a proportion of large coefficients 1{/:%.01 that increases
when the scale 2 increases. Indeed, a singularity creates the same number of large
coefficients at each scale, whereas the total number of wavelet coefficients increase when the
scale decreases. To use this prior information, one can adapt the threshold choice to the scale
2. At large scale 2/ the threshold T; should be smaller in order to avoid setting to zero too
many large amplitude signal coefficients, which would increase the risk.

3.3 Translation Invariance

Thresholding noisy wavelet coefficients create small ripples near discontinuities. Indeed,
setting to zero a coefficient (%) subtracts S %ie)¥k from f, which introduces oscillations
whenever (//¥x) is non-negligible. These oscillations are attenuated by a translation
invariant estimation, consequently, can significantly improve the SNR. Thresholding
wavelet coefficients of translated signals and translating back the reconstructed signals
yields shifted oscillations created by shifted wavelets that are set to zero. The averaging
partially cancels these oscillations, reducing their amplitude. Design of a translation
invariant pattern recognition based on wavelets is still demanded.

4. Wavelets for feature extraction

Feature extraction in the sense of some linear or nonlinear transform of the data with
subsequent feature selection is commonly used for reducing the dimensionality of facial
image so that the extracted feature is as representative as possible. The images may be
represented by their original spatial representation or by frequency domain coefficients.
Features that are not obviously present in one domain may become obvious in the other
domain. Unfortunately, Heisenberg uncertainty theorem implies that the information can
not be compact in both spatial and frequency domain simultaneously. So, neither approach
is ideally suited for all kinds of feature distribution. It motivates the use of the wavelet
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transform which represents both the spatial and frequency domain simultaneously.
Moreover, multiresolution analysis makes it more appropriate to represent and extract
features across different scales.

The wavelet transform or the wavelet packet transform have been used for feature
extraction in face recognition. These are used in three ways:

e  Direct use of wavelet coefficients.

e  From combination of wavelet coefficients.

e  Searching the best feature in the wavelet packet library.

4.1 Direct use of wavelet coefficients

The simplest application of the wavelet transform for face recognition uses directly wavelet
coefficients as features. The wavelet transform can locally detect the multiscale edges of
facial images, the lineament edge information exists in the lowest spatial-frequency
subband, while finer edge information presents in the higher spatial-frequency subband.
The waveletface (Chien & Wu, 2002) is a wavelet based approach. It uses the wavelet
transform to decompose the image data into four subimages via the low-pass and high-pass
filters with respect to the column vectors and the row vectors of array pixels. Then the low
spatial-frequency subimage is selected for further decomposition. The three-level lowest
spatial-frequency subimage with a matrix of (1,00/8) X (1c1/8) is extracted as the feature
vector, referred to as waveletface, where 7,5, X 7 is the resolution of facial image.
Generally, low frequency components represent the basic figure of an image, which is less
sensitive to image variations. These components form the most informative subimage
gearing with the highest discriminating power. The waveletface can be expressed by a form
of linear transformation: y= WTyuerer X, Where Wit X is composed of impulse responses of
the low pass filter h. Different from some statistics based methods, such as eigenface and
fisherface, see (Zhao et al 2003), the waveletface can be independently extracted without the
effect of new enrolled users. Waveletface is an efficient method because no extra
computation is needed.

4.2 From combinations of wavelet coefficients

The direct use of wavelet coefficients may not extract the most discriminative features for

two reasons:

e  There is much redundant or irrelevant information contained in wavelet coefficients.

e  Can not recover new meaning underlying features which has more discriminative power.

In order to overcome the deficiency of direct use of wavelet coefficients, it is possible to

construct features from the combinations of wavelet coefficients to produce a low-

dimensional manifold with minimum loss of information so that the relationships and

structure in the data can be identified. These can be done in two ways:

e  Use the statistical quantum of wavelet coefficients in each spatial-frequency subband as
discriminative features.

e Employ traditional transforms (e.g., PCA, LDA, ICA, AM, Neural Networks) to
enhance and extract discriminative features in one or several special spatial-frequency
subbands.
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4.2.1 Use the statistical measures as discriminative features

The statistical measures, e. g., mean, variance, are usually helpful to represent features or
characteristics of data, it is simple and requires less computation load.

Garcia et al. (Garcia et al., 1998) present a wavelet-based framework for face recognition.
Each face is described by a subset of subband filtered images containing wavelet coefficients
after two-level wavelet packet transform. These coefficients characterize the face texture and
a set of simple statistical measures are used to reduce dimensionality and characterize

16

textural information, which forms compact and meaningful feature vectors ¥ = igo{uifaiz .
After the extraction of all the vectors of the training set, only the components with a mean
value above a predefined threshold are considered for feature vector formation. It is
supposed that each component pair is independent from the other component pairs of the
feature vector. Then, the Bhattacharrya distance between two feature vectors vy and v; is
computed on a component-pair basis

L

! 1 (g — 1)
D(v,,17,) = D.(v,,1) , D(v, v :—% +—
()= D) » Dl = 2

(0k +01)
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in order to classify the face feature vectors into person classes.

In fact, other statistical measures, e. g., other kinds of moments can be used in the above
wavelet-based framework for face recognition. Moreover, the discrete density function of
whole wavelet coefficients in each subband can be evaluated. The similarity measure of
density function can be computed by some relative entropy, such as Kullback-Leibler
divergence or J-divergence.

4.2.2 Employ traditional transform in special subbands

Generally, the wavelet coefficients are deficient to be good discriminative features, a further
discriminant analysis is adopted to recover new meaningful underlying features which has
more discriminative power. The traditional transforms (e.g., PCA, LDA, ICA, AM, Neural
Networks) are very popular for their simplicity and practicality. They can be performed on
one or several special spatial-frequency subbands which may be chosen by certain criterion.
We (Feng et al. 2000) proposed a wavelet subband approach in using PCA for human face
recognition. Three-level wavelet transform is adopted to decompose an image into different
subbands with different frequency components. A midrange frequency subband is selected
for PCA representation. The experiments show that it has low computation and higher
accuracy, comparing with using original PCA directly in spatial domain.

In (Dai & Yuen, 2006) we used a wavelet enhanced regularized discriminant analysis to
solve the small sample size problem and applied it to human face recognition. We analyzed
the role of the wavelet transform, low-pass filtering will reduce the dimension of input data
but meanwhile increases the magnitude of the within-class covariance matrix so that the
variation information plays too strong a role and the performance of the system will become
poorer. It also overcomes the difficulty in solving a singular eigenvalue problem in
traditional LDA. Moreover, a wavelet enhanced regularization LDA system for human face
recognition is proposed to adequately utilize the information in the null space of withinclass
scatter matrix (Dai & Yuen, 2003).

Ekenel et al. (Ekenel & Sankur, 2005) introduced a ternary-architecture multiresolution face
recognition system. They used the 2D discrete wavelet transform to extract multiple
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subband face images. These subband images contain coarse approximations of the face as
well as horizontal, vertical and diagonal details of faces at various scales. Subsequently, The
PCA or ICA features are extracted from these subbands. They exploit these multiple
channels by fusing their information for improved recognition. Their experiments show that
it has good performance, especially against illumination perturbations.

In ( Zhang et al., 2004), they proposed a modular face recognition scheme by combining the
techniques of wavelet subband representations and kernel associative memories. By the
wavelet transform, face images are decomposed and the computational complexity is
substantially reduced by choosing a lower spatial-frequency subband image. Then an kernel
associative memory (KAM) model are built up for each subject, with the corresponding
prototypical images without any counter examples involved. Multiclass face recognition is
thus obtained by simply holding these associative memories. When a probe face is
presented, the KAM model gives the likelihood that the probe is from the corresponding
class by calculating the reconstruction errors or matching scores.

[llumination compensation is always a problem important but difficult to solve in face
recognition. The wavelet transform decomposes the data into different frequency ranges
which allows us to isolate the frequency components introduced by illumination effects into
certain subspaces. We can use the subspaces that do not contain these illumination-based
frequency components to better represent our data, so as to eliminate the influence of the
illumination changes, before a face image is recognized. In (Zhang et al., 2005), a face
compensation approach based on wavelet and neural network is proposed. A rough linear
illumination compensation was first performed for the given face image, which can only
compensate the lower frequency features and the effect is limited. The higher frequency
features are not be compensated. But it can reduce the learning pressure of the neural
network, accelerate the convergent rate and improve the learning accuracy as well as the
extensibility of the network. The method can compensates the different scale features of the
face image by using the multi-resolution characteristic of the wavelet and the self-adaptation
learning and good spread ability of BP neural network. Their experiments show that it can
solve the problem of illumination compensation in the face recognition process.

4.3 Search local discriminant basis/coordinates in wavelet packet library

As a generalization of the wavelet transform, the wavelet packet not only offers us an
attractive tool for reducing the dimensionality by feature extraction, but also allows us to
create localized subbands of the data in both space and frequency domains. A wavelet
packet dictionary provides an over-complete set of spatial-frequency localized basis
functions onto which the facial images can be projected in a series of subbands. The main
design problem for a wavelet packet feature extractor is to choose which subset of basis
functions from the dictionary should be used. Most of the wavelet packet dictionary
methods that have been proposed in the literature are based on algorithms which were
originally designed for signal compression such as the best basis algorithm (Coifman &
Wicherhauser, 1992), or the matching pursuit algorithm (Mallat & Zhang, 1993).

Saito and Coifman introduced the local discriminant basis (LDB) algorithm based on a best
basis paradigm, searching for the most discriminant subbands (basis) that illuminates the
dissimilarities among classes from the wavelet packet dictionary (Coifman & Satio, 1994)
(Satio & Coifman, 1995). It first decomposes the facial images in the wavelet packet
dictionary, then facial image energies at all coordinates in each subband are accumulated for
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each class separately to form a spatial-frequency energy distribution per class on the
subband. Then the difference among these energy distributions of each subband is
measured by a certain “distance” function (e.g., Kullback-Leibler divergence), a complete
local discriminant basis (LDB) is selected by the difference-measure function using the best
basis algorithm (Coifman & Wicherhauser, 1992), which can represent the distinguishing
facial features among different classes. After the basis is selected, the loadings of their
coordinates are fed into a traditional classifier such as linear discriminant analysis (LDA) or
classification tree (CT). Finally, the corresponding coefficients of probes are computed and
fed to the classifier to predict their classes.

Unfortunately, the energies may not be so indicative for discrimination sometimes, because
not all coordinates in the LDB are powerful to distinguish different subjects. Many less
discriminant coordinates may add up to a large discriminability for the LDB. An example of
artificial problem was used to validate that it may be fail to select the right basis function as a
discriminator (Saito & Coifman, 2002). So Saito and Coifman suggested a modified version of
the LDB (MLDB) algorithm which uses the empirical probability distributions instead of the
space-scale energy as their selection strategy to eliminate some less discriminant coordinates in
each subband locally (Saito & Coifman, 2002). It estimates the probability density of each class
in each coordinate in all subbands. Then the discriminative power of each subband is
represented by the first Ny most discriminant coordinates in terms of the “distance” among the
corresponding densities (e.g., Kullback-Leibler divergence among the densities). This
information is then used for selecting a basis for classification as in original LDB algorithm.
Although the MLDB algorithm may overcome some shortage of LDB, the selection of
coordinates is only limited to each subband so that the coordinates in different subbands are
still incomparable. Therefore, the MLDB algorithm gives an alternative to the original LDB.
This LDB concept has become increasingly popular and has been applied to a variety of
classification problems. Based on LDB idea, Kouzani et al. proposed a human face
representation and recognition system based on the wavelet packet method and the best
basis selection algorithm (Kouzani et al. 1997). An optimal transform basis, called the face
basis, is identified for a database of the known face images. Then it is used to compress all
known faces within the database in a single pass. For face recognition, the probe face image
is transformed, and the compressed face is then compared against the database. The best
filter and best wavelet packet decomposition level are also discussed there.

Since features with good discriminant property may locate in different subbands, it is
important to find them among all subbands instead of certain specific subbands. We
proposed a novel local discriminant coordinates (LDC) method based on wavelet packet for
face recognition to compensate for illumination, pose and expression variations (Liu et al.
2007). The method searches for the most discriminant coordinates from the wavelet packet
dictionary, instead of the most discriminant basis as in the LDB algorithm. The LDC idea
makes use of the scattered characteristic of best discriminant features. In the LDC method,
the feature selection procedure is independent of subbands, and only depends on the
discriminability of all coordinates, because any two coordinates in the wavelet packet
dictionary are comparable for their discriminability which is computed by a maximum a
posterior logistic model based on a dilation invariant entropy. LDC based feature extraction
not only selects low frequency components, but also middle frequency components whose
judicious combination with low frequency components can improve the performance of face
recognition greatly.



70 Face Recognition

4.4 Robust issue

It is known that a good feature extractor of face recognition system is claimed to select as
more as possible the best discriminant features which are not sensitive to arbitrary
environmental variations. Nastar et al. (Nastar & Ayach, 1996) investigated the relationship
between variations in facial appearance and their deformation spectrum. They found that
facial expressions and small occlusions affect the intensity manifold locally. Under
frequency-based representation, only high-frequency spectrum is affected. Moreover,
changes in pose or scale of a face and most illumination variations affect the intensity
manifold globally, in which only their low-frequency spectrum is affected. Only a change in
face will affect all frequency components. So there are no special subbands whose all
coordinates are not sensitive to these variations.

In each subband, there may be only segmental coordinates have enough discriminant power
to distinguish different person, the remainder may be sensitive to environmental changes,
So some methods based on the whole subband may also use these sensitive features which
maybe affect their performance for face recognition.

Moreover, there may be no special subbands containing all the best discriminant features,
because the features not sensitive to environmental variations are always distributed in
different coordinates of different subbands locally. So methods based on the segmental
subbands may lose some good discriminant features.

Furthermore, in different subbands, the amount and distribution of best discriminant
coordinates are always different. Many less discriminant coordinates in one subband may
add up to a larger discriminability than another subband whose discriminability is added
up with few best discriminant coordinates and residual small discriminant coordinates. So
the few best discriminant coordinates may be discarded by some methods which search for
the best discriminate subbands, but usually only the few best discriminant coordinates are
needed.

So the best discriminant information selection should be independent of their seated
subbands, and only depends on their discriminability for face recognition. In addition, there
may be some redundancy or collinearity in features which will affect the performance for
face recognition. However, another limitation of using wavelet for face recognition is that
the wavelet transform has no property of translation invariance. Mallat (Mallat, 1996)
discussed that the wavelet representation not only contains spatial and frequency
information, but also phase information. When the phase information varies with small
translations, it will cause difficulties with matched filtering applications. For achieving
translation invariance, it should contain some redundant information in the representing
features.

The wide-range variations of human face, due to pose, illumination, and expression, require
the wavelet transform to extract features that are translation invariant and to a certain extent
scale invariant. This constitutes a trade-off between the amount of possible invariance and
the sparseness of the wavelet representation. So a robust wavelet feature extractor should
select a best discriminant features group with appropriate redundancy or co-linearity.
However, searching such a wavelet feature extractor is a difficult task and needs further
research.
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5. Conclusion

Wavelets have been successfully used in image processing. Their ability to capture localized
spatial-frequency information of image motivates their use for feature extraction. We give
an overview of using wavelets in the face recognition technology. Due to limit of space the
use of Gabor wavelets is not covered in this survey. Interested readers are referred to section
8.3 for references.
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1. Introduction

With the growing number of face recognition applications in everyday life, image- and
video-based recognition methods are becoming important research topic (Zhao et al., 2003).
Effects of pose, illumination and expression are issues currently most studied in face
recognition. So far, very little has been done to investigate the effects of compression on face
recognition, even though the images are mainly stored and/or transported in a compressed
format. Still-to-still image experimental setups are often researched, but only in
uncompressed image formats. Still-to-video research (Zhou et al., 2003) mostly deals with
issues of tracking and recognizing faces in a sense that still uncompressed images are used
as a gallery and compressed video segments as probes.

In this chapter we analyze the effects that standard image compression methods - JPEG
(Wallace, 1991) and JPEG2000 (Skodras et al., 2001) - have on three well known subspace
appearance-based face recognition algorithms: Principal Component Analysis - PCA (Turk
& Pentland, 1991), Linear Discriminant Analysis - LDA (Belhumeur et al., 1996) and
Independent Component Analysis - ICA (Bartlett et al., 2002). We use McNemar's
hypothesis test (Beveridge et al.,, 2001; Delac et al., 2006) when comparing recognition
accuracy in order to determine if the observed outcomes of the experiments are statistically
important or a matter of chance. Following the idea of a reproducible research, a
comprehensive description of our experimental setup is given, along with details on the
choice of images used in the training and testing stage, exact preprocessing steps and
recognition algorithms parameters setup. Image database chosen for the experiments is the
grayscale portion of the FERET database (Phillips et al., 2000) and its accompanying
protocol for face identification, including standard image gallery and probe sets. Image
compression is performed using standard JPEG and JPEG2000 coder implementations and
all experiments are done in pixel domain (i.e. the images are compressed to a certain
number of bits per pixel and then uncompressed prior to use in recognition experiments).
The recognition system's overall setup we test is twofold. In the first part, only probe images
are compressed and training and gallery images are uncompressed (Delac et al., 2005). This
setup mimics the expected first step in implementing compression in real-life face
recognition applications: an image captured by a surveillance camera is probed to an
existing high-quality gallery image. In the second part, a leap towards justifying fully
compressed domain face recognition is taken by using compressed images in both training
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and testing stage (Delac, 2006). We will show that, contrary to common opinion,
compression does not deteriorate performance but it even improves it slightly in some cases.
We will also suggest some prospective lines of further research based on our findings.

2. Image compression basics

First let us briefly explain some basic concepts needed to fully understand the rest of the
chapter. Image compression will be introduced with scarce details and an interested reader
is referred to cited papers for further exploration.

There are two standard image compression schemes that are of interest here: JPEG (Wallace,
1991) and JPEG2000 (Skodras et al., 2001). These image compression standards are widely
used in many applications and are expected to be employed in face recognition as well.
Generally, compression seems to be imperative for any reasonable implementation where a
large quantity of images need to be stored and used. Both JPEG and JPEG2000 use the
general transform coding scheme shown in Figure 1.

Meiniunal fwranas ey,

Decompressed image
I a

Figure 1. Basic steps of transform coding (compression) of images

The images are first transformed into a form (domain) more suitable for compression.
Transforms used are the Discrete Cosine Transform (DCT) in JPEG and Discrete Wavelet
Transform (DWT) in JPEG2000. This procedure assigns values to different spatial frequency
components present in the image. Since the human visual system is less sensitive to higher
frequencies, the coefficients representing such frequencies can be discarded, thus yielding
higher compression rates. This is done through quantization and entropy coding, creating
the compressed file as an output. Decompression follows the exact inverse procedure. JPEG
and JPEG2000 are irreversible, meaning that the original image can not be reconstructed
from the compressed file (this is because some coefficients were discarded). The distortions
are introduced by coefficients quantization in JPEG and both quantization and entropy
coding in JPEG2000. The resulting reconstructed images now have artifacts present, like the
checker-board effect in JPEG images or the smear effect in JPEG2000 images. Some examples
of these effects in face images can be seen in Figure 2. A closer look at these images and
having the former analysis in mind will give us the feel of what actually happens. As the
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transform coefficients that represent higher frequencies are more and more discarded (or are
rounded to lower precision) with higher compression rates, the images become more and
more low-pass filtered. This is quite obvious for the JPEG2000 example at 0.2 bpp where we
can see that the finer details of the face (like wrinkles) are eliminated in the reconstructed
image. It remains to be seen how will this low-pass filtering affect recognition results.

1bpp 0.5 bpp 0.3 bpp 0.2 bpp

JPEG

JPEG2000

Figure 2. Examples of image distortions introduced by JPEG or JPEG2000 compression

The main tool for measuring the magnitude of compression is compression ratio, expressed in
the form of bits per pixel (bpp). Given that the original (uncompressed) grayscale images that
we will consider throughout this chapter are normally 8 bpp, the compression ratio of 1 bpp
represents the 8:1 compression. In other words, the compressed file is eight times smaller
than the original file (image).

As can be seen in Figure 2, there is practically no difference between the original image and
images compressed at 1 bpp, as far as the human visual system is concerned. This comes
naturally from the basic idea that the creators of JPEG and JPEG2000 had in mind when
creating the standards. Loosely speaking: as little visible distortions as possible. However,
the difference can be objectively measured by Peak Signal to Noise Ratio (PSNR), calculated
as:

PSNR = 20 log( i 1\;51} [dB], (1)

where 7 is the number of bits per pixel in the original image and RMS is the Root Mean
Square Error defined as:

where [; is pixel value in the original image, I'; is corresponding pixel value in the
reconstructed image and N is the total number of pixels in the image. PSNR values for
images in Figure 2. are shown in Table 1. We can see that JPEG and JPEG2000 behave
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similarly at moderate compression rates (1 bpp and 0.5 bpp). More apparent differences
arise at higher compression rates (0.3 bpp and 0.2 bpp), where JPEG2000 is clearly superior.

1bpp 05bpp 03bpp 0.2bpp
JPEG 34.02 30.00 26.30 19.88
JPEG2000 35.96 30.28 28.12 25.96

Table 1. PSNR values in dB for images in Figure 2

Similar conclusions on JPEG and JPEG2000 efficiency can be found in (Grgic et al., 2001).
Through using additional objective image quality measures it was shown that DCT-based
and DWT-based compression yield similar results at lower compression rates. At higher
compression rates, DWT-based compression retains rather high quality while DCT-based
compression quality deteriorates rapidly. In (Ebrahimi et al., 2004) authors showed that
there is no significant difference in the quality of JPEG and JPEG2000 compressed images at
lower and moderate compression rates. JPEG2000 was determined to be superior at higher
compression rates. In (Santa-Cruz et al., 2000) authors concluded that JPEG2000 is both
subjectively and objectively superior to JPEG.

In the literature review that follows, we will see how compression effects were tested in face
recognition so far and what still remains to be done.

3. Related work

Before proceeding to related work review, one basic term should be clarified. It has to
emphasized that all the experiments described in this chapter, including the ones in the
following literature review, are conducted in pixel domain. This actually means that the
images are compressed and then uncompressed prior to being used in the experiments. This
way the actual influence that the distortion introduced by compression has on recognition
rate is measured.

There has been little investigation of the effects of image compression on face recognition
systems do far. As will be seen, mostly JPEG compression is covered and mainly at a single
compression ratio.

In (Blackburn et al., 2001) the authors tried to measure the effects of image compression on
face recognition systems by simulating the expected real-life setup: images of persons
known to the system (gallery) were of high quality (non-compressed) and images of persons
unknown to the system (probes) were taken in uncontrolled environment and compressed.
Naturally, images were decompressed prior to recognition and thus we can say that
experiments were conducted in the pixel domain. JPEG compression was used and face
recognition system was tested using the FERET database and its dupl (temporal changes)
probe set. Images were compressed to 0.8, 0.4, 0.25 and 0.2 bpp. The authors conclude that
compression does not affect recognition significantly across wide range of compression
rates. Significant performance drop is noted at 0.2 bpp and below. Recognition rate is even
slightly higher in some cases when using compressed images (compared to results using
original images).

Moon and Phillips (Moon & Phillips, 2001) tested the effects of standard JPEG compression
and of a variant of wavelet compression with a PCA+L1 method. Probe images were in both
cases compressed to 0.5 bpp, decompressed (so the experiments were conducted in pixel
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domain) and then geometrically normalized. The training set of images was uncompressed.
FERET database was used along with its standard probe sets (only fb and dupl in this
experiment). Results indicate no performance drop for JPEG compression and a slight
increase for wavelet compression. Whether this increase in recognition rate is significant or
not is unclear.

JPEG2000 compression effects were tested in (McGarry et al., 2004) as part of the
development of the ANSI INCITS 385-2004 standard: "Face Recognition Format for Data
Interchange" (ANSI, 2004), later to become an ISO/IEC IS 19794-5 standard: "Biometric Data
Interchange Formats - Part 5: Face Image Data" (ISO, 2004). The experiment included
compression at a compression rate of 10:1, as recommended in (ANSI, 2004; ISO, 2004). A
commercial face recognition system was used for testing a vendor database. Again, since
there are no details on the exact face recognition method used in the tested system and no
details on a database used in experiments, it is difficult to make any comparisons to this
work. In a similar setup as in previously described papers, it was determined that there is no
significant performance drop when using compressed probe images. Based on their
findings, the authors conjecture that compression rates higher than 10:1 could be used.

In (Wat & Srinivasan, 2004) the authors test the effects of JPEG compression on PCA and
LDA face recognition methods using the same experimental setup as in (Blackburn et al.,
2001). Results are presented as a function of JPEG quality factor. This fact makes any
comparison with these results very difficult since the same quality factor will yield different
compression rates for different images, dependent upon the statistical properties of a given
image. This is why we decided to used bits per pixel as a measure of compression ratio in
our experiments. The authors used the FERET database and tested the standard probe sets
against a standard gallery. Results indicate a slight increase in performance for the LDA
method with the fc probe set. For all other probe sets and methods the results were
practically the same as with uncompressed images.

An initial detailed experiment of the effects of compression on face recognition was
conducted in (Delac et al., 2005). We tested both JPEG and JPEG2000 compression effects on
a wide range of subspace algorithm - metric combinations. Similar to other studies, we also
concluded that compression does not affect performance significantly. We supported our
conclusions with McNemar's hypothesis test. Some performance improvements were also
noted, but none of them were statistically significant.

Wijaya et al. in (Wijaya et al., 2005) performed face verification on images compressed to 0.5
bpp by JPEG2000 and showed that high recognition rates can be achieved using correlation
filters. Their conclusion was also that compression does not adversely effect performance.
We can see that the described experiments were mainly done in the same setup: training
and gallery images are uncompressed and probe images are compressed to various
compression ratios. Most authors conclude that compression does not affect recognition rate
significantly, but these conclusions still need to be statistically confirmed. Most of these
experiments are limited to a single compression rate and a single recognition method. We
will try to address some of these shortcomings in the experiments presented in this chapter.

4. Experimental setups and results

4.1 Database and protocol
We use the standard FERET data set including the data partitions (subsets) for recognition
tests, as described in (Phillips et al., 2000). The gallery consists of 1,196 images and there are
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four sets of probe images that are compared to the gallery images in recognition stage. The
fb probe set contains 1,195 images of subjects taken at the same time as gallery images with
the only difference being that the subjects were told to assume a different facial expression.
The fc probe set contains 194 images of subjects under different illumination conditions. The
dupl (duplicate I) set contains 722 images taken anywhere between one minute and 1,031
days after the gallery image was taken, and dup2 (duplicate II) set is a subset of dupl
containing 234 images taken at least 18 months after the gallery image was taken. All images
in the data set are of size 384 x 256 pixels and grayscale.

4.2 Preprocessing

Original FERET images were first spatially transformed (to get the eyes at the predefined
fixed points) based upon a ground truth file of the eye coordinates supplied with the
original FERET data. All images were then cropped to 128 x 128 pixels (using the eyes
coordinates) and an elliptical mask was used to further eliminate the background. Finally,
image pixel values were histogram equalized to the range of values from 0 to 255. These
preprocessing steps were carried out on all images prior to preforming the experiments
(including compression).

4.3 Algorithms

Three well known appearance-based subspace face recognition algorithms were used to test
the effects of compression: Principal Component Analysis - PCA (Turk & Pentland, 1991),
Linear Discriminant Analysis - LDA (Belhumeur et al., 1996) and Independent Component
Analysis - ICA (Bartlett et al., 2002). It is important to mention that we use ICA Architecture 2
from (Bartlett et al., 2002) since ICA Architecture 1 was shown to be suboptimal for face
identification tasks (Delac et al., 2005; Delac et al. 2006). For both LDA and ICA, a PCA
dimensionality reduction was done as a preprocessing step.

To train the PCA algorithm we used a subset of classes for which there were exactly three
images per class. We found 225 such classes (different persons), so our training set consisted
of 3 x 225 = 675 images (M = 675, ¢ = 225). The effect that this percentage of overlap has on
algorithm performance needs further exploration and will be part of our future work. PCA
derived, in accordance with theory, M - 1 = 674 meaningful eigenvectors. We adopted the
FERET recommendation and kept the top 40% of those, resulting in 270-dimensional PCA
subspace W (40% of 674 = 270). It was calculated that 97.85% of energy was retained in those
270 eigenvectors. This subspace was used for recognition as PCA face space and as input to
ICA and LDA (PCA was the preprocessing dimensionality reduction step). ICA yielded a
270-dimensional subspace, and LDA yielded only 224-dimensional space since it can, by
theory, produce a maximum of c - 1 basis vectors. All of those were kept to stay close to the
dimensionality of PCA and ICA spaces and thus make comparisons as fair as possible.
Based on our previous findings in (Delac et al., 2005; Delac et al., 2006) we chose the
following combinations of algorithms and metrics (one metric for each algorithm) to be used
in these experiments: PCA+L1, LDA+COS and ICA+COS. These combinations yielded the
highest recognition rates in our previous experiments.

4.4 Measurement methods
Performance of face recognition systems (algorithms, methods) will be presented as rank
one recognition rate, as described in (Phillips et al., 2000). Let T represent the training set, G
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gallery and P probe set of images. T and G can be the same set but this is not a good testing
practice. The actual performance of an algorithm is always rated relative to how well the
images in P are matched to images in G. This is the basis of automatic face recognition.
Intuitively, it is obvious that P and G should be disjoint; otherwise, the stated problem
becomes trivial. We will use the identification scenario in our experiments. To calculate the
recognition rate for a given probe set P, for each probe image P;, we need to sort all the
gallery images by decreasing similarity, yielding a list L = {L1, Lo, ..., Lk}, where K is the total
number of subjects in the gallery (assuming that there is one image per subject, K also
becomes the number of images and the size of the gallery). Now L; is the gallery image most
similar to the given probe image (according to the algorithm), L, is the next closest match
and expanding this to L; being the kth closest gallery match. Rank one recognition rate
answers a simple question: is the top match correct? If L; (labeled as the closest gallery
match to the given probe image) is really the correct answer, we say that the algorithm
correctly recognized the probe image. In other words, the algorithm successfully recognizes
a probe image if the probe image and the top ranked gallery image in L are of the same
subject. This is called rank one recognition rate (RR) and can be formally defined over the
whole set of probe images P as follows: let R; denote the number of correctly recognized
probe images in L at k =1 and | P| be the probe set size, then:

_Ry

RR=-1.
[Pl

®)

A usual way to report rank one performance is to give it in a form of percentage. That way
we actually say that some algorithm has e.g. 86% rank one recognition rate on a given
gallery and probe set. Another possible formulation would be that there is 86% chance that
the correct answer is the top match (the image L1).

To measure the significance of the differences in performance at two different compression
ratios, we will use McNemar's hypothesis test (Beveridge et al., 2001; Delac et al., 2006). We
think that, when comparing recognition algorithms, it is important (yet often neglected) to
answer the following question: when is the observed difference in performance statistically
significant? Clearly, the difference in performance of 1% or 2% could be due to pure chance.
However, we felt the need to investigate these intuitive presumptions using standard
statistical hypothesis testing techniques. Generally, there are two ways of looking at the
performance difference (Yambor et al., 2002): 1) determine if the difference (as seen over the
entire set of probe images) is significant, 2) when the algorithms behave differently,
determine if the difference is significant. As argued in (Yambor et al., 2002), the first way to
evaluate performance difference fails to take the full advantage of the standard face
recognition protocol, so we will focus on the second way. In order to perform this test we
recorded which of the four possible outcomes, when comparing two algorithms Al and A2
(SS - both successful, FF - both failed, FS - first one failed and the second one succeeded, SF
- first one succeeded and the second one failed), is true for each probe image. Let Nss
represent the number of probe images for which SS outcome is true, Nsr the number of
probe images for which SF outcome is true, etc. We then formulated our hypotheses as: H0)
the probability of observing SF is equal to the probability of observing FS; H1) the
probability of observing SF is not equal to the probability of observing FS. HO is the null
hypothesis and H1 the alternative hypothesis.
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In case where one algorithm performs better than another algorithm, HO can be rejected if
the observed difference in performance of the compared algorithms is statistically
significant. Therefore, HO is tested by applying a one-tailed test. Suppose that Pr(SF) and
Pr(FS) are the probabilities of observing SF and FS outcomes under HO. For example, if it
appears that Pr(SF) > Pr(FS), i.e. Al performs better than A2, then we calculate:

n

Pr (Al better than A2 at least as many times as observed) = Z n—’ . (1} (4)
el il(n—i)! \ 2
where 1 = Nsp + Ngs is the number of probe images for which only one algorithm incorrectly
classify them. This probability is usually called p-value for rejecting HO in favor of H1. HO is
rejected when the p-value is lower than some predefined threshold a (usually a = 0.05, i.e.
5%), and in this case we can conclude that the observed difference in performance of the compared
algorithms is statistically significant.
We will report the outcomes of McNemar's test in our results as "O" when there is no
statistically significant difference when using images at a given compression ratio compared
to using original images, "%" the recognition ratio is significantly worse than with original
images and "v" when the recognition ratio using compressed images is significantly higher
than with original images.
Another handy tool that can be used here is the Normalized Recognition Rate (NRR),
defined as the ratio between recognition rate (RR) for compressed images and recognition
rate for original images (Delac, 2006):

RR .
NRR = compressed ) (5)
RR

original

So, at a given bitrate (number of bits per pixel), if NRR = 1, the performance is the same as
with original images, if NRR < 1, performance is worse, and if NRR > 1, performance is
better then with original images. We will present NRR curves (NRR as a function of
compression ratio) for some interesting results just as an example of their possible usage.
Full analysis of the results with NRR is out of scope of this chapter.

4.5 Experiments

As stated before, most of the experiments presented in the literature so far use the scenario
where only probe images are compressed. We will here try to perform another experiment
where all the images are compressed to a given compression ratio. This will be a good
foundation for possible new area in face recognition research - face recognition in compressed
domain. Compressed domain means that instead of decompressing the compressed images
and then using (distorted) pixel values as input to face recognition methods, transformed
coefficients are used as inputs. The decoding process should be interrupted after the entropy
decoding and the obtained coefficients (DCT or DWT) used as inputs to classification
methods. This way it is possible to achieve large computational time saves by avoiding the
inverse DCT or DWT.
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Figure 3. Experimental setup 1 (EXP1)

Scenario that was used in studies so far (only probe images are compressed) will be
addressed as EXP1 in further text and a block-scheme of this approach can be seen in Figure
3. The setup where all images (training, gallery and probe) are compressed to the same
compression ratio will be addressed as EXP2 and a block-scheme can be seen in Figure 4.
The illustrations in Figure 3 and Figure 4 represent the training and recognition stage of a
PCA, LDA or ICA-based system for a single probe image Px. T and G represent training and
gallery sets of images, respectively. Original (uncompressed) images have 8 bpp and
compressed images have a hypothetical value of n bpp. In the module min(d) the distance
between the projected probe image px and the list of gallery images {g1, g2, ... ,gmc} is
calculated and a minimal distance is determined (MG is the number of images in the
gallery). The identity of the person on a gallery image determined to be the closest to P, in
the subspace is the identity of the unknown person returned by the system. This is a
standard rank one identification scenario.

Figure 4. Experimental setup 2 (EXP2)
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4.6 Results

The results for both experiments can be seen in Tables 2 through 9. The figures presented on
tables represent rank one recognition rates. "McN" presents the result of McNemar's
hypothesis test (result at a given compression ratio compared to the result using original
uncompressed images). By looking at the results of McNemar’s test, we can immediately
conclude that compression to 1 bpp and 0.5 bpp does not significantly influence the results
in any method and/or experiment. This is consistent with previous studies and it
additionally gives strong statistical basis for such a conclusion. In the following text we will
give an analysis for each probe set in both experiments and present two possible real life
applications of the conclusions drawn from this study.

fb JPEG Orig. 1bpp 05bpp 03bpp 0.2bpp

EXP1 RR 79,4 79,4 79,4 78,9 77,2

PCA+L1 McN - O O O *
EXP2 RR 79.4 78.9 79.4 79.0 75.4

McN - @) @) @) x
EXP1 1\?1’; 75.4 7554 7&’52 7%3 711.6

LDA+COS < -

EXP2 RR 75.4 75.5 75.5 74.5 72.6

McN - ©) ©) O x
EXP1 RR 83.0 82.8 83.0 82.0 80.0

ICA+COS McN - O O O *
EXP2 RR 83.0 83.1 83.0 82.2 75.6

McN - O O ©) x

Table 2. The results for JPEG compression, fb probe set ("O" - no statistically significant
difference compared to using original images; "%" - RR significantly worse than with
original images; "v" - RR significantly higher than with original images)

fc JPEG Orig. 1bpp 05bpp 03bpp 0.2bpp

EXP1 RR 479 46.4 459 479 443

PCA+L1 McN - O O O x
EXP2 RR 479 50.0 49.5 51.0 42.3

McN - O O v x
EXP1 IJIQCRN 11.3 1;3 1%3 1;3 1%8
LDA+COS xpy RR 113 113 113 119 113

McN - O O O O
RR 68.6 68.0 67.5 69.6 66.5

EXP1

ICA+COS McN - O O @) O
EXP2 RR 68.6 67.5 68.6 66.5 57.7

McN - O O ©) x

Table 3. The results for JPEG compression, fc probe set



Image Compression Effects in Face Recognition Systems

dupl JPEG Orig. 1bpp 05bpp 03bpp 0.2bpp
EXP1 RR 385 38.6 38.5 38.2 35.1
PCA+L1 MN_ - O O O =
EXP2 RR 385 39.2 39.2 38.8 35.7
McN - O O O x
EXP1 IJI{CRN 35.6 3;6 3;3 328 3?:8
LDA+COS EXP2 RR 35.6 35.6 35.3 35.7 33.4
McN - O O O x
EXP1 RR 443 449 445 429 41.1
ICA+COS MN_ - O O * *
EXP2 RR 443 453 445 43.6 36.4
McN - 4 O O x

Table 4. The results for JPEG compression, dupl probe set

dup? JPEG Orig. 1bpp 05bpp 03bpp 0.2bpp

EXP1 RR 19.7 201 20.1 19.2 15.8

PCA+L1 MN - O © O *
EXP2 RR 19.7 20.5 21.4 19.2 17.2

McN - O O O O
RR 12.8 12.8 12.8 13.6 12.4

EXP1

LDA+COS McN - @) O O O
EXP2 RR 12.8 13.2 13.2 124 13.2

McN - O O O O
EXP1 RR 30.8 32.0 30.7 29.9 27.3

ICA+COS MN_ - © O O x
EXP2 RR 30.8 31.2 30.3 31.2 24.8

McN - O O ©) x

Table 5. The results for JPEG compression, dup2 probe set

fb JPEG2000 Orig. 1bpp 05bpp 03bpp 0.2bpp
RR 794 794 79.6 79.1 78.6
EXP1
PCA+L1 McN - ©) ©) ®) o
EXP2 RR 794 792 79.2 79.7 754
McN - ®) ®) ®) x
RR 754 754 75.3 75.2 75.0
EXP1
LDA+COS McN - @) ©) O ®)
EXP2 RR 754 755 75.2 75.1 72.6
McN - O O ®) x
RR 830 831 83.1 83.0 83.4
EXP1
ICA+COS McN - @) ©) O ®)
RR 830 834 83.5 83.8 76.7
EXP2
McN - ©) ©) ®) x

Table 6. The results for JPEG2000 compression, fb probe set
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fc JPEG2000 Orig. 1bpp 05bpp 03bpp 0.2bpp
RR 479 464 46.4 459 458
EXP1
PCA+L1 McN - @) ©) O ®)
EXP2 RR 479 510 51.5 52.6 423
McN - v v v x
RR 113 113 11.3 10.8 11.3
EXP1
LDA+COS McN - ©) ©) O ®)
RR 113 11.3 11.3 10.8 11.3
EXP2
McN - ©) ©) ®) o
RR 686 690 68.5 68.5 68.6
EXP1
ICA+COS McN - ©) ©) ©) ©)
EXP2 RR  68.6  67.0 67.0 64.4 56.2
McN - O O x x

Table 7. The results for JPEG2000 compression, fc probe set

dupl JPEG2000 Orig. 1bpp 05bpp 03bpp 0.2bpp
EXP1 RR 385 383 38.5 38.2 38.5
PCA+L1 McN - ©) ©) ©) o
EXP2 RR 385 388 38.9 38.0 35.7
McN - O O ®) x
RR 35.6 35.6 355 354 35.1
EXP1
LDA+COS McN - @) @) O ®)
EXP2 RR 356 355 35.5 35.3 334
McN - ©) ©) ®) x
RR 443 447 445 445 443
EXP1
ICA+COS McN - @) O O o
EXP2 RR 443 45.0 43.8 424 355
McN - O O x x

Table 8. The results for JPEG2000 compression, dupl probe set

dup? JPEG2000 Orig. 1bpp 05bpp 03bpp 0.2bpp
RR 197 197 20.1 19.7 19.6
EXP1
PCA+L1 McN - ©) ©) ®) o
EXP2 RR 197 205 19.7 18.8 17.9
McN - ©) ©) O ®)
RR 128 133 13.7 13.6 13.2
EXP1
LDA+COS McN - @) ©) O ®)
EXP2 RR 12.8 13.2 13.7 13.7 13.2
McN - O O ®) ©)
RR 308 325 32.0 29.5 30.0
EXP1
ICA+COS McN - @) ©) O ®)
RR 308 325 30.8 29.1 227
EXP2
McN - ©) ©) ®) x

Table 9. The results for JPEG2000 compression, dup2 probe set
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5. Analysis

5.1 Different expressions (fb)

All methods exhibit great stability for both JPEG and JPEG2000 compression and in both
EXP1 and EXP2 setups (Table 2 and Table 6). Even though there are a few recognition rate
increases when the images are mildly compressed, none of those increases are statistically
significant. If we take a look at the example of visual deformations introduced by
compression (Figure 2), this level of stability is quite surprising. In spite of the fact that an
image compressed to 0.3 bpp using JPEG is virtually unrecognizable and, on average, has
PSNR = 25 dB, there seems to be no effect on face recognition performance. If we have a
closer look at the results in Table 2 and Table 6, we can see that both JPEG and JPEG2000 do
not significantly deteriorate performance until 0.2 bpp. At 0.2 bpp all recognition methods
experience significant performance drop. We can conclude that, for the different expressions
task, all compression ratios above 0.2 bpp are acceptable and can be used in a face
recognition system. Unfortunately, rarely are such easy tasks (ideal imaging conditions and
face images varying only in facial expressions) put before the systems designers and this is
why we have to consider other possible influences on recognition accuracy as well (different
illuminations and temporal changes).

JPEG2000 seems to be more efficient (in terms of image quality) if an image is to be
presented to a human operator that has to make a final decision about someone’s identity.
This is an expected scenario in high confidence applications, like law enforcement
applications. In such an application, a list of the most likely matches are presented to the
user which now has to make the final choice. JPEG2000 images seem to be visually less
distorted at higher compression rates and thus more appropriate for such uses. JPEG images
can also be used, but at moderate or low compression rates (0.5 bpp and above).

The overall rank one recognition rates for the fb probe set are above 75%, which was
expected and is consistent with previous studies of the same face recognition algorithms in
pixel domain (Delac et al., 2006; Bartlett et al., 2002; Yambor et al., 2002; Beveridge et al.,
2001; Belhumeur et al, 1996). ICA+COS yielded highest recognition rates in both
experiments. For JPEG - 83% at 0.5 bpp in EXP1 and 83.1% at 1 bpp in EXP2 and for
JPEG2000 - 83.1% at 0.5 bpp in EXP1 and 83.8% at 0.3 bpp in EXP2. It is interesting to notice
that overall best results was achieved at a surprisingly high compression of 0.3 bpp (= 26:1).

5.2 Different illumination (fc)

The results for the fc probe set in both experiments can be seen in Table 3 and 7 and Figure 5
and 6. If we take a look at the results of both experiments for JPEG compression (Table 3 and
Figure 5), we can see that compression again does not deteriorate performance up to 0.3
bpp. Only at 0.2 bpp the differences become statistically significant. These results are mainly
quite similar to the fb probe set results. However, there are some differences, namely, the
statistically significant recognition rate improvement for PCA+L1 with JPEG compression at
0.3 bpp in EXP2, and consistent significant improvement for JPEG2000 compression at 1, 0.5
and 0.3 bpp in EXP2. Both mentioned differences are clearly visible in Figure 5 and 6. In
those figures the NRR curves are shown as a function of compression rate (in bpp) for all
experiments with the fc probe set (Figure 5 for JPEG and Figure 6 for JPEG2000
compression). As already mentioned, PCA+L1 exhibits some statistically significant
improvements in these experiments and this is clearly visible as the curves in Figure 5 and 6
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exceed the value of one in those cases. This is a good example of the advantages of
presenting results of similar experiments using the NRR curve.
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Figure 5. NRR curves for JPEG compression on the fc probe set (EXP1 top; EXP2 bottom)

1,00 \ 1
099
—e— PCA+L1
E 098 —=—LDA+COS
—4—ICA+COS
097 ————— e
~
~
~ ~
096
-\
095
1 bpp. 0.5bpp 0.3 bpp 0.2 bpp
Compression ratio
1,10 _ -
- AN
- AY
1,05 -
\
1,00 \
—e— PCA*LT
g 095 \ —=—LDA+COS
Ay —&—ICA+COS
0,90 \
) 3\
*
0,85
0,80
1 bpp. 0.5 bpp 0.3 bpp 0.2 bpp

Compression ratio

Figure 6. NRR curves for JPEG2000 compression on the fc probe set (EXP1 top; EXP2 bottom)
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Compression drastically improves the results for PCA+L1 algorithm in some cases. For
LDA+COS and ICA+COS this effect is not that emphasized. One might actually expect even
worse results for compression of images taken in different illumination conditions. The
different illumination influences large portions of an image and sometimes even the whole
image. This being so, it appears that illumination changes are represented by low
frequencies in an image, thus low-pass filtering (such as JPEG or JPEG2000 compression)
should not eliminate the differences between various images taken in different illumination
conditions. However, in spite of this, all algorithms seem to be very stable across a wide
range of compression rates and in both experimental setups. Nastar et al. (Nastar et al., 1997)
showed that only the high-frequency spectrum is affected by changes in facial expression.
They also conjecture that illumination changes mostly affect the whole image, thus being in
the low-frequency part of the spectrum. It is interesting to notice that PCA+L1 yielded the
highest recognition rates for both JPEG and JPEG2000 compression at a very high
compression rate of 0.3 bpp. The effect that compression has on PCA+L1 results could be
further explored by reconstructing the compressed images after projection to PCA subspace
and comparing the reconstructed images to original images to capture the differences
induced by compression. The overall best rank one recognition rates for the fc probe set are
achieved by ICA+COS in both experiments. For JPEG - 69.6% at 0.3 bpp in EXP1 and 68.6%
at 0.5 bpp in EXP2 and for JPEG2000 - 69% at 1 bpp in EXP1 and 67% at 1 and 0.5 bpp in
EXP2.

5.3 Temporal changes (dup? & dup?2)

The results for probe sets that test the effect that aging of the subjects has on face recognition
(dupl and dup2) are shown in Tables 4, 5, 8 and 9. The trend of very stable results across a
wide range of compression rates is still noticeable. Additionally, for these probe sets all
three algorithms have statistically insignificant performance differences, even at 0.2 bpp.
Slight (statistically insignificant) improvements are noticeable at almost all compression
rates and for all algorithms. It appears that the low-pass filtering by compression contributes
more to the overall stability of the results than to significant improvements.

The overall best rank one recognition rates for the dup1 probe set are achieved by ICA+COS
in both experiments. For JPEG - 44.9% at 1 bpp in EXP1 and 45.3% at 1 bpp in EXP2 and for
JPEG2000 - 44.7% at 1 bpp in EXP1 and 45% at 1 bpp in EXP2.

The overall best rank one recognition rates for the dup2 probe set are achieved by ICA+COS
in both experiments. For JPEG - 32% at 1 bpp in EXP1 and 31.2% at 1 and 0.3 bpp in EXP2
and for JPEG2000 - 32.5% at 1 bpp in EXP1 and 32.5% at 1 bpp in EXP2.

Mild compression of 8:1 (1 bpp) seems to be very effective at improving face recognition
from images taken at different points in time. The removal of fine details, such as wrinkles
and even facial hair, obviously makes images of the same person more similar.

5.4 Possible applications

We will now try to answer a question of where could the results and conclusions presented
here be used in real life. We will describe two very basic applications. Firstly, as was
previously hinted, the obvious use is in law enforcement applications. An image of an
unknown subject is presented to the system, that image is compared to all the images
known to the system. There can be hundreds of thousands of such images and any storage
requirements save in such application is of crucial importance.
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Secondly, there has recently been an increased interest in using face recognition systems in
mobile and handheld devices (Wijaya et al., 2005). In such applications the face of the
subject is recorded using a camera mounted on a device and transaction/login is approved
or rejected based on that image. Recognition is mostly done at the remote server side and
images (or some extracted image features) are sent over a telecommunication network. If a
device in question is a mobile phone, higher level image processing is usually
computationally expensive so the whole image is sent. Cameras usually deliver images in an
already compressed format and being able to use this feature and send a compressed file
across the network would be a big advantage.

6. Conclusion

We can group the conclusions based on a level of compression and the probe sets into two
parts: i) higher compression rates (0.5, 0.3 and in some cases even 0.2 bpp) seem to be
suitable for recognizing faces with different expressions (fb probe set) and images taken in
different illumination conditions (fc probe set); ii) lower compression rates (1 bpp) seem to
be suitable for recognizing images taken at different points in time (dupl and dup2 probe
set). Taking this analysis into account, it seems that the current practice of deciding on the
level of compression based on visual distortion of images is wrong. While the images
compressed to 0.3 bpp are visually significantly distorted, the recognition results are in
almost all experiments statistically indistinguishable from the results achieved by using
uncompressed images. In many cases these results are slightly better and in some cases even
significantly better than the ones achieved with uncompressed images. The correct criteria
for selecting the optimal compression ratio would therefore be: the optimal compression
rate is the one yielding the highest recognition rate at given circumstances (classification
algorithm, task given etc.). It certainly seems reasonable to allow image compression up to
0.5 bpp (a 16:1 compression) for face recognition purposes.

JPEG2000 compression seems to have less effect on recognition results than JPEG.
Significant performance improvements are not as often as with JPEG, but all methods
exhibit remarkable stability when JPEG2000 was used. This conclusion is similar to the one
presented in (Schaefer, 2004), where the first comprehensive study of the influence of JPEG
and JPEG2000 compression on content-based image retrieval was conducted. Schaefer
concludes that JPEG2000 gives better results at higher compression rates than JPEG.

From the experiments presented in this chapter in can be concluded that compression does not
significantly influence face recognition performance up to 0.3 bpp. In other words, there seems to
be no reason not to store images in the compressed format. 0.3 bpp corresponds to
compression ratio of about 26:1. Even using a more moderate compression of 1 bpp or 0.5
bpp would be a great save in storage requirements while retaining high visual quality of the
reconstructed images. As far as the usage scenario (only probe images are compressed or the
whole systems works with compressed images) is concerned, no conclusion can be drawn as
to which is more suitable. However, since the transition to fully compressed domain
recognition seems plausible, in order to be able to directly compare the results in both
domains, the second scenario (the whole systems works with compressed images at a given
compression rate) should be used when experimenting.
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1. Introduction

After 9/11 tragedy, governments in all over the world started to look more seriously to the
levels of security they have at their airports and borders. Countries annual budgets were
increased drastically to have the most recent technologies in identification, recognition and
tracking of suspects. The demand growth on these applications helped researchers to be able
to fund their research projects. One of most common biometric recognition techniques is
face recognition. Although face recognition is not as accurate as the other recognition
methods such as fingerprints, it still grabs huge attention of many researchers in the field of
computer vision. The main reason behind this attention is the fact that the face is the
conventional way people use to identify each others.

Over the last few decades, a lot of researchers gave up working in the face recognition
problem due to the inefficiencies of the methods used to represent faces. The face
representation was performed by using two categories. The First category is global approach
or appearance-based, which uses holistic texture features and is applied to the face or specific
region of it. The second category is feature-based or component-based, which uses the
geometric relationship among the facial features like mouth, nose, and eyes. (Wiskott et al.,
1997) implemented feature-based approach by a geometrical model of a face by 2-D elastic
graph. Another example of feature-based was done by independently matching templates of
three facial regions (eyes, mouth and nose) and the configuration of the features was
unconstrained since the system didn’t include geometrical model (Brunelli & Poggio, 1993).
Principal components analysis (PCA) method (Sirovich & Kirby, 1987; Kirby & Sirovich,
1990) which is also called eigenfaces (Turk & Pentland, 1991; Pentland & Moghaddam, 1994)
is appearance-based technique used widely for the dimensionality reduction and recorded a
great performance in face recognition. PCA based approaches typically include two phases:
training and classification. In the training phase, an eigenspace is established from the
training samples using PCA and the training face images are mapped to the eigenspace for
classification. In the classification phase, an input face is projected to the same eigenspace
and classified by an appropriate classifier. Contrasting the PCA which encodes information
in an orthogonal linear space, the linear discriminant analysis (LDA) method (Belhumeur et
al., 1997; Zhao et al., 1998) which also known as fisherfaces method is another example of
appearance-based techniques which encodes discriminatory information in a linear
separable space of which bases are not necessarily orthogonal.
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In this chapter, two face recognition systems, one based on the PCA followed by a
feedforward neural network (FFNN) called PCA-NN, and the other based on LDA followed
by a FENN called LDA-NN, are explained. The two systems consist of two phases which are
the PCA or LDA feature extraction phase, and the neural network classification phase. The
introduced systems provide improvement on the recognition performances over the
conventional LDA and PCA face recognition systems.

The neural networks are among the most successful decision making systems that can be
trained to perform complex functions in various fields of applications including pattern
recognition, optimization, identification, classification, speech, vision, and control systems.
In FFNN the neurons are organized in the form of layers. The FFNN requires a training
procedure where the weights connecting the neurons in consecutive layers are calculated
based on the training samples and target classes. After generating the eigenvectors using
PCA or LDA methods, the projection vectors of face images in the training set are calculated
and then used to train the neural network. These architectures are called PCA-NN and
LDA-NN for eigenfaces and fisherfaces methods respectively.

The first part of the chapter introduces PCA and LDA techniques which provide theoretical
and practical implementation details of the systems. Both of the techniques are explained by
using wide range of illustrations including graphs, flowcharts and face images. The second
part of the chapter introduces neural networks in general and FFNN in particular. The
training and test phases of FFNN are explained in detail. Finally the PCA-NN and LDA-NN
face recognition systems are explained and the performances of the respective methods are
compared with conventional PCA and LDA based face recognition systems.

2. Principal Component Analysis

Principal component analysis or karhunen-loéve transformation (Papoulis, 2002) is standard
technique used in statistical pattern recognition and signal processing for data reduction
and Feature extraction (Haykin, 1999). As the pattern often contains redundant information,
mapping it to a feature vector can get rid of this redundancy and yet preserve most of the
intrinsic information content of the pattern. These extracted features have great role in
distinguishing input patterns.

A face image in 2-dimension with size N x N can also be considered as one dimensional
vector of dimension N2. For example, face image from ORL (Olivetti Research Labs)
database with size 112 x 92 can be considered as a vector of dimension 10,304, or
equivalently a point in a 10,304 dimensional space. An ensemble of images maps to a
collection of points in this huge space. Images of faces, being similar in overall
configuration, will not be randomly distributed in this huge image space and thus can be
described by a relatively low dimensional subspace. The main idea of the principle
component is to find the vectors that best account for the distribution of face images within
the entire image space. These vectors define the subspace of face images, which we call “face
space”. Each of these vectors is of length N2, describes an N x N image, and is a linear
combination of the original face images. Because these vectors are the eigenvectors of the
covariance matrix corresponding to the original face images, and because they are face-like
in appearance, we refer to them as “eigenfaces”.
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Let the training set of face images be I';,I,,....,I'vi, then the average of the set is defined by

yo L §r D

1
M n
Each face differs from the average by the vector

@ =T ¥ 2
This set of very large vectors is then subject to principal component analysis, which seeks a
set of M orthonormal vectors, U, , which best describes the distribution of the data. The kth
vector, Uy, is chosen such that

1 M, 2
A :HnEI(Uk q)") @)
is a maximum, subject to
L, ifI=k
Uiy, =5, =4 * 4
1=k "k {0, otherwise} ( )

The vectors Uk and scalars A are the eigenvectors and eigenvalues, respectively of the
covariance matrix

M
C= ﬁquf = 44" ©)
n=1

where the matrix A =[®; ®,...®y]. The covariance matrix C, however is N2 x N2 real
symmetric matrix, and calculating the N2 eigenvectors and eigenvalues is an intractable task
for typical image sizes. We need a computationally feasible method to find these
eigenvectors.

Consider the eigenvectors v, of ATA such that

AT Ay, = v, (6)
Premultiplying both sides by A, we have

AA" Ay, = . Av, 7)

where we see that Av, are the eigenvectors and y; are the eigenvalues of C=A AT.

Following these analysis, we construct the M x M matrix L= ATA, where L,=®,7®, , and
find the M eigenvectors, v, , of L. These vectors determine linear combinations of the M

training set face images to form the eigenfaces U .

M
Uy=Yv®, I=l..M (8)
k=1
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With this analysis, the calculations are greatly reduced, from the order of the number of
pixels in the images (N2) to the order of the number of images in the training set (M). In
practice, the training set of face images will be relatively small (M << N2), and the
calculations become quite manageable. The associated eigenvalues allow us to rank the
eigenvectors according to their usefulness in characterizing the variation among the images.
The eigenface images calculated from the eigenvectors of L span a basis set that can be used
to describe face images. (Sirovich & Kirby, 1987, 1990) evaluated a limited version of this
framework on an ensemble of 115 images (M = 115) images of Caucasian males digitized in
a controlled manner, and found that 40 eigenfaces (M' = 40) were sufficient for a very good
description of face images. In practice, a smaller M' can be sufficient for identification, since
accurate reconstruction of the image is not a requirement. In the framework of face
recognition, the operation is a pattern recognition task rather than image reconstruction. The
eigenfaces span an M' dimensional subspace of the original N2 image space and hence, the
M' significant eigenvectors of the L matrix with the largest associated eigenvalues, are
sufficient for reliable representation of the faces in the face space characterized by the
eigenfaces. Examples of ORL face database and eigenfaces after applying the eigenfaces
algorithm are shown in Figure 1 and Figure 2, respectively.

Figure 1. Samples face images from the ORL database

A new face image (T') is transformed into its eigenface components (projected onto “face
space”) by a simple operation,
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w, =UT (T - %) ©)

for k =1,...,M'". The weights form a projection vector,

o :[Wl Wz....va] (10)

describing the contribution of each eigenface in representing the input face image, treating
the eigenfaces as a basis set for face images. The projection vector is then used in a standard
pattern recognition algorithm to identify which of a number of predefined face classes, if
any, best describes the face. The face class Qi can be calculated by averaging the results of
the eigenface representation over a small number of face images of each individual.
Classification is performed by comparing the projection vectors of the training face images
with the projection vector of the input face image. This comparison is based on the
Euclidean Distance between the face classes and the input face image. This is given in Eq.
(11). The idea is to find the face class k that minimizes the Euclidean Distance. Figure 3
shows the testing phase of the PCA approach.

gsz(Q—Qk) H (11)

Where Qy is a vector describing the kth faces class.
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Figure 2. First 16 eigenfaces with highest eigenvalues
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Figure 3. PCA approach for face recognition

3. Linear Discriminant Analysis

Linear Discriminant analysis or Fisherfaces method overcomes the limitations of eigenfaces
method by applying the Fisher’s linear discriminant criterion. This criterion tries to
maximize the ratio of the determinant of the between-class scatter matrix of the projected
samples to the determinant of the within-class scatter matrix of the projected samples.

Fisher discriminants group images of the same class and separates images of different
classes. Images are projected from N2-dimensional space to C dimensional space (where C is
the number of classes of images). For example, consider two sets of points in 2-dimensional
space that are projected onto a single line. Depending on the direction of the line, the points
can either be mixed together (Figure 4a) or separated (Figure 4b). Fisher discriminants find
the line that best separates the points. To identify an input test image, the projected test
image is compared to each projected training image, and the test image is identified as the
closest training image.

As with eigenspace projection, training images are projected into a subspace. The test
images are projected into the same subspace and identified using a similarity measure. What
differs is how the subspace is calculated.

Unlike the PCA method that extracts features to best represent face images; the LDA
method tries to find the subspace that best discriminates different face classes as shown in
Figure 4. The within-class scatter matrix, also called intra-personal, represents variations in
appearance of the same individual due to different lighting and face expression, while the
between-class scatter matrix, also called the extra-personal, represents variations in
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appearance due to a difference in identity. By applying this method, we find the projection
directions that on one hand maximize the distance between the face images of different
classes on the other hand minimize the distance between the face images of the same class.
In another words, maximizing the between-class scatter matrix S;, while minimizing the
within-class scatter matrix S, in the projective subspace. Figure 5 shows good and bad class
separation.

|

(a) (b)

Figure 4. (a) Points mixed when projected onto a line. (b) Points separated when projected
onto another line
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Figure 5. (a) Good class separation. (b) Bad class separation

The within-class scatter matrix S, and the between-class scatter matrix S, are defined as

=

S =

w

(T = (T —u)" (12)
1

i

J

Where Fl.j is the i*" sample of class j, 4; is the mean of class j, C is the number of classes, N; is

the number of samples in class ;.

C
&=§wfmwpmf (13)
J=



100 Face Recognition

where u represents the mean of all classes. The subspace for LDA is spanned by a set of
vectors W= [W;, W, ..., W], satisfying

T
W =argmax = M (14)
WS, w
Face Database > Training Set
v
Testing Set
4 v
Projection of Test | LDA
Image A (Feature Extraction)
Feature Vector Feature Vectors
Classifier P

(Euclidean Distance)

Decision Making

Figure 6. LDA approach for face recognition

The within class scatter matrix represents how face images are distributed closely within
classes and between class scatter matrix describes how classes are separated from each
other. When face images are projected into the discriminant vectors W, face images should
be distributed closely within classes and should be separated between classes, as much as
possible. In other words, these discriminant vectors minimize the denominator and
maximize the numerator in Equation (14). W can therefore be constructed by the
eigenvectors of S, 1 S;. Figure 7 shows the first 16 eigenvectors with highest associated
eigenvalues of S, 1 Sp. These eigenvectors are also referred to as the fisherfaces. There are
various methods to solve the problem of LDA such as the pseudo inverse method, the
subspace method, or the null space method.

The LDA approach is similar to the eigenface method, which makes use of projection of
training images into a subspace. The test images are projected into the same subspace and
identified using a similarity measure. The only difference is the method of calculating the
subspace characterizing the face space. The face which has the minimum distance with the
test face image is labelled with the identity of that image. The minimum distance can be
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calculated using the Euclidian distance method as given earlier in Equation (11). Figure 6
shows the testing phase of the LDA approach.
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Figure 7. First 16 Fisherfaces with highest eigenvalues

4. Neural Networks

Neural networks, with massive parallelism in its structure and high computation rates,
provide a great alternative to other conventional classifiers and decision making systems.
Neural networks are powerful tools that can be trained to perform a complex and various
functions in computer vision applications, such as preprocessing (boundary extraction,
image restoration, image filtering), feature extraction (extract transformed domain features),
associative memory (storing and retrieving information), and pattern recognition.

4.1 Feedforward Neural Networks (FFNN)

FFNN is suitable structure for nonlinear separable input data. In FFNN model the neurons
are organized in the form of layers. The neurons in a layer get input from the previous layer
and feed their output to the next layer. In this type of networks connections to the neurons
in the same or previous layers are not permitted. Figure 8 shows the architecture of the
system for face classification.
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OutputLayer (1) (2 )------

Hidden Layer

Input Layer

Figure 8. Architecture of FFNN for classification

4.2. Learning Algorithm (Backpropagation)

Learning process in Backpropagation requires providing pairs of input and target vectors.
The output vector o of each input vector is compared with target vector . In case of
difference the weights are adjusted to minimize the difference. Initially random weights and
thresholds are assigned to the network. These weights are updated every iteration in order
to minimize the cost function or the mean square error between the output vector and the
target vector.

Input for hidden layer is given by

net,, = zxzwmz (15)
z=1

The units of output vector of hidden layer after passing through the activation function are
given by

1
_ 16
"1+ exp(—net,,) (16)

In same manner, input for output layer is given by

net;, = thw,a 17)

z=1

and the units of output vector of output layer are given by

1
— 18
%% 1 +exp(—net;,) (18)
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For updating the weights, we need to calculate the error. This can be done by
1 k ) 9
EZEZ(";“Q) (1 )
i=1

If the error is minimum than a predefined limit, training process will stop; otherwise
weights need to be updated. For weights between hidden layer and output layer, the change
in weights is given by

where o is a training rate coefficient that is restricted to the range [0.01,1.0], h;jis the output
of neuron j in the hidden layer, and & can be obtained by

5,' =(t;—0))o;(1-0;) (21)

o; and f; represents the real output and target output at neuron i in the output layer
respectively.
Similarly, the change of the weights between hidden layer and output layer, is given by

Awij = Boyx j (22)

where [ is a training rate coefficient that is restricted to the range [0.01,1.0], x;is the output of
neuron j in the input layer, and dy; can be obtained by

k
Opi :xi(l—xi)zaj%j (23)
j=1

x; is the output at neuron i in the input layer, and summation term represents the weighted
sum of all § values corresponding to neurons in output layer that obtained in equation (21).
After calculating the weight change in all layers, the weights can simply updated by

wy; (new) = wy;(old) + Awy; (24)

5. Performance Analysis and Discussions

5.1. Training and Testing of Neural Networks

Two neural networks, one for PCA based classification and the other for LDA based
classification are prepared. ORL face database is used for training and testing. The training
is performed by n poses from each subject and the performance testing is performed by 10-n
poses of the same subjects.

After calculating the eigenfaces using PCA the projection vectors are calculated for the
training set and then used to train the neural network. This architecture is called PCA-NN.
Similarly, after calculation of the fisherfaces using the LDA, projection vectors are calculated
for the training set. Therefore, the second neural network is trained by these vectors. This
architecture is called LDA-NN (Eleyan & Demirel, 2005, 2006). Figure 9 shows the schematic
diagram for the neural network training phase.
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When a new image from the test set is considered for recognition, the image is mapped to
the eigenspace or fisherspace. Hence, the image is assigned to a feature vector. Each feature
vector is fed to its respective neural network and the network outputs are compared.

—» 0

— 1 Kt person

| 1st Person Images |

| 2nd Person Images |

Feature Neutral Network
' s K Vectors > PCA-NN » 0
1
| Kt Person Images
1
; LDA N f/eatture N Neu{ISAIAIjII\eI’KIvork >0
| Mth Person Images | EEo® Ko person
- »1
»0

Figure 9. Training phase of both Neural Networks

5.2. System Performance

The performances of the proposed systems are measured by varying the number of faces of
each subject in the training and test faces. Table 1 shows the performances of the proposed
PCA-NN and LDA-NN methods based on the neural network classifiers as well as the
performances of the conventional PCA and LDA based on the Euclidean Distance classifier.
The recognition performances increase due to the increase in face images in the training set.
This is obvious, because more sample images can characterize the classes of the subjects
better in the face space. The results clearly shows that the proposed recognition systems,
PCA-NN and LDA-NN, outperforms the conventional PCA and LDA based recognition
systems. The LDA-NN shows the highest recognition performance, where this performance
is obtained because of the fact that the LDA method discriminate the classes better than the
PCA and neural network classifier is more optimal classifier than the Euclidean Distance
based classifier. The performance improvement in PCA versus PCA-NN is higher than the
LDA versus LDA-NN. For example, when there are 5 images for training and 5 images for
testing, the improvement is 7% in PCA based approach and 4% in the LDA based approach.
These results indicate that the superiority of LDA over PCA in class separation in the face
space leaves less room for improvement to the neural network based classifier.

Tﬁ:;‘;;‘f ?;S:ggf PCA |PCA-NN| LDA |LDA-NN
2 8 71 75 78 80
3 7 73 76 82 84
4 6 77 80 87 89
5 5 78 85 87 91
6 4 89 90 93 93
7 3 92 94 95 95
8 2 94 95 9% 97

Table 1. Performance of conventional PCA & LDA versus proposed PCA-NN & LDA-NN
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6. Conclusions

In this chapter, two face recognition systems, the first system based on the PCA
preprocessing followed by a FFNN based classifier (PCA-NN) and the second one based on
the LDA preprocessing followed by another FFNN (LDA-NN) based classifier, are
introduced. The feature projection vectors obtained through the PCA and LDA methods are
used as the input vectors for the training and testing of both FFNN architectures. The
proposed systems show improvement on the recognition rates over the conventional LDA
and PCA face recognition systems that use Euclidean Distance based classifier. Additionally,
the recognition performance of LDA-NN is higher than the PCA-NN among the proposed
systems.

100

Recognition Rate

Number of Training Faces

Figure 10. Recognition rate vs. number of training faces
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1. Introduction

As a result of statistical learning theory, support vector machines (SVMs)[23] are effective
classifiers for the classification problems. SVMs have been successfully applied to various
pattern classification problems, such as handwritten digit recognition, text categorization
and face detection, due to their powerful learning ability and good generalization ability.
However, SVMs require to solve a quadratic optimization problem and need training time
that are at least quadratic to the number of training samples. Therefore, many large-scale
problems by using traditional SVMs are too hard to be solved. To overcome this difficulty,
Lu and colleagues have proposed a min-max modular support vector machine (M3-SVM)
and part-versus-part task decomposition method [16]. A very important advantage of M3-
SVMs over traditional SVMs is that a two-class problem can be further decomposed into a
series of two-class subproblems.

The M3-network model [15] has been applied successfully to many real-world applications
such as part-of-speech tagging [17], single-trial EEG signal classification [18], prediction of
protein subcellular multi-locations [26], face recognition [2, 13] and text categorization [14].
The basic idea behind M3-network is the “divide and conquer” strategy. The task
decomposition scheme of M3-network is based on class relations, and the instances in the
same class can be further decomposed randomly [15], according to parallel hyperplanes [24],
or prior knowledge [13]. The learning procedure of each subproblems is independent, and
therefore parallel learning can be implemented easily. The combination strategy follows two
principles, the minimization principle and the maximization principle [15].

We explore the use of M3-SVMs in multi-view face recognition. Multi-view face recognition
is a more challenging task than frontal view face recognition. Face recognition techniques
have been developed over the past few decades. But many of those existing face recognition
techniques, such as Eigenfaces and Fisher-faces [22, 1], are only effective for frontal view
faces. The difficulties of multi-view face recognition is obvious because of the complicated
nonlinear manifolds existing in the data space. Using M3-SVMs, we can decompose the

1 To whom correspondence should be addressed. This work was supported in part by the National
Natural Science Foundation of China under the grants NSFC 60375022 and NSFC 60473040, and The
Microsoft Laboratory for Intelligent Computing and Intelligent Systems of Shanghai Jiao Tong
University.
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whole complicated problem of multi-view face recognition into several relatively simpler
two-class sub-problems. Every individual two-class sub-problem becomes less complicated
than the original problem and it can be solved effectively. In addition, we use a SVM based
discriminative feature selection (SVM-DFS) method [3] for feature selection in multi-view
face recognition.

2. Part-Versus-Part Task Decomposition

For human beings, the only way to solve a complex problem is to divide it into smaller,
more manageable subproblems. Breaking up a problem helps human beings deal with
complex issues involved in its solution [18]. This “divide-and- conquer” strategy is also
helpful to neural networks and machine learning approaches for dealing with complex
learning problems. Our goal in this Section is to introduce a part-versus-part task
decomposition method for training multi-class SVMs.

Let T be the given training data set for a K-class classification problem,

T = {(Xh }:})}!"Izlf (1)

where X1 € X C R" is the input vector, X’ is the set of training inputs, Y1 € Y C R is
the desired output, J is the set of desired outputs, and L is the total number of training data.
We have suggested that a K-class problem defined by (1) can be divided into K(K-1) = 2
two-class subproblems [15], each of which is given by

i “q j L
Ty = (X", +Dhz, u {7, —DhZ,
fori=1, -+, Kandj=4i+1, -+, K

@)

(7) ()
where Xi € i and X;”" € &) are the training inputs belonging to class C; and class Cj,
respectively, X’ is the set of training inputs belonging to class C;, L; denotes the number of
X, UK X=X, o a Sk Li=L

data in i=1 i=1

In this Chapter, the training data in a two-class subproblem are called positive training data
if their desired outputs are +1. Otherwise, they are called negative training data. The two-
class subproblems defined by (2)

are called pair-wise classification in the machine learning literature [5,11]. We would like to
emphasize that decomposition of a K-class problem into K(K-1) /2 two-class subproblems
defined by (2) is unique for a given training data set because of the uniqueness of A" for
i=1,..,K.

Although the two-class subproblems defined by (2) are smaller than the original K-class
problem, this partition may not be adequate for parallel computation and fast learning. To
speed up learning, all the large and imbalanced two-class subproblems should be further
divided into relatively smaller and more balanced two-class subproblems.

Assume that X’; is partitioned into N; subsets in the form
(i) LY
Xi; ={X J hi
foryj=1,---, Njandi=1, ---, K,

where1 < N;<L;and U;\: i = Xi.
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Various methods can be used for partitioning &’; into N; subsets [15]. A simple and
straightforward approach is to divide A; randomly. The subsets X’ might be disjoint or
joint. Without loss of generality and for simplicity of description, we assume throughout
this Chapter that the random decomposition method is used and the subsets X;; are disjoint
from each other, i.e., X' N Xy= ® fori=1,..,K, jand k=1,...,N;, and j#k.

In practical applications of SVMs, an appropriate value of N; might depend on two main
factors, such as the number of training data belonging to each class and the available
computational power. In the simulations presented in this Chapter, we randomly divide X;
into Nj subsets A’j, which are roughly the same in size. The number of subsets Nj for class C;
is determined according to the following rule:

d + xy if fmod (2;:"'

b; = 2. 4
: [—] otherwise @)
)

) <~vand 2L; > p

where p is the desired number of training data fort wo-class subproblems, y is a threshold
parameter (0<y<1) for fine-tuning the number of subsets, 1) denotes the largest integer less
than or equal to z, (%] denotes the smallest integer larger than or equal to z, the function of f
mod(z1/z2) is employed to produce the decimal part of zi/z>, and z; and z; are two positive
integers, respectively.

After partitioning X’; into Nj subsets, every two-class subproblem 7T defined by (2) can be
further divided into N; x N; relatively smaller and more balanced two-class subproblems as
follows:

Lt

T = (X, D) U, -2, ®)
foru=1, -+, Nj,v=1,---, N;,
i=1,---,K,andj=i+1, -, K
where X @) € X, and X (o) € X'}, are the training inputs belonging to class C;and class Cj,
respectively, Z!?;l LE V=1 i and ZPN:H L.E"”) = LJ’. It should be noted that all the two-

class subproblems have the same number of input dimensions as the original K-class
problem. Comparing the two-class subproblems defined by (5) with the two-class
subproblems obtained by the pairwise-classification approach, we can see that each of the
two-class subproblems defined by (5) containsonly apart of data of each class. Hence, the
decomposition method is called part-versus-part method [16].

According to the above discussion, the part-versus-part task decomposition method can be
described as Table 1.

After task decomposition, each of the two-class subproblems can be treated as a completely
independent, non-communicating problem in the learning phase. Therefore, all the two-
class subproblems can be efficiently learned in a massively parallel way.

From (2) and (5), we see that a K-class problem can be divided into

K-1 K

Z z N; x _"\U: (6)

i=1 j=i+1
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two-class subproblems. The number of training data for each of the two-class subproblems
is about

[Li/N;| + [L;/Nj] @)

Since [L;/N;| + [L;/N;] is independent of the number of classes K, the size of each of the
two-class subproblems is much smaller than the original K-class problem for reasonable N;
and N;.

Step 1: Set the values of p and y.

Step 2: Divide a K-class problem 7 into (I; ) two-class subproblems 7; using (2).

Step 3: If the sizes of all 1ij are less than p, then stop the procedure here. Otherwise, continue
with the following steps.

Step 4: Determine the number of training input subsets N; for i=1,..., K using (4).

Step 5: Divide the training input set X'; into N; subsets &';; using (3).

Step 6: Divide the two-class subproblem 7; into N; X N; relatively smaller and simpler two

T(

w, )
class subproblems “ii  using (5).

Table 1. The part-versus-part task decomposition method

3. Min-Max Modular Support Vector Machine

Before using M3-SVMs, for a K-class problem, we should divide the K-class problem into
K(K- 1)/2 two-class sub-problems according to one-against-one strategy or divide a K-class
problem into K two-class subproblems according to one-against-all strategy. In this work,
we use one-against-one strategy. The work procedure of M3-SVMs consists of three steps:
task decomposition, SVMs training and module combination. First, every two-class problem
is decomposed into relatively smaller two-class problems. Then, every smaller two-class
SVM is trained. At last, all of the modules are integrated into a M3-SVM to obtain the final
solutions to the original problem.

3.1 Support Vector Machine

Support vector machine is a machine learning technique that is well-founded in statistical
learning theory. The SVM algorithm formulates the training problem as a problem that
finds, among all possible separating hyperplanes, one hyperplane that maximizes the
distance between the closest elements of the two classes. In practice, this is determined
through solving a quadratic programming problem. SVMs have a general form of decision
function for an input x as:

f(x) = sign Z yio; K (wi, @) — b (8)

support vectors

where a; are Lagrange parameters obtained in the optimization step, y; are class labels, and
K( ) is the kernel function. The kernel function can be various types.
The linear kernel function is K(x,y)=xw; the radial-basis function kernel function is

K(z,y) = exp (—ﬁ |z — '.UHQ) and the polynomial kernel function is K(x,y)=(x y+1)" .
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3.2 Module Combination
After training, all the individual SVMs are integrated into aM3-SVM with the MIN unit and
the MAX unit according to the following two combination principles: the minimization
principle and the maximization principle [15,16].
Minimization Principle: Suppose a two-classproblem B were divided into P relatively
smallert wo-class subproblems, I3; for i=1,..,P, and also suppose that all the two-class
subproblems have the same positive training data and different negative training data. If the
P two-class subproblems are learned by the corresponding P individual SVMs, M; for
i=1,...,P, then the combination of the P trained SVMs with a MIN unit will produce the
correct output for all the training inputs in B3, where the function of the MIN unit is to find a
minimum value from its multiple inputs. The transfer function of the MIN unit is given by
P
g(x) = I_J_rl_igl M;(x) )

where x denotes the input variable.

Maximization Principle: Suppose a two-classproblem B were divided into P relatively
smaller two-class subproblems, B; for i=1,..,P, and also suppose that all the two-class
subproblems have the same negative training data and different positive training data. If the
P two-class subproblems are learned by the corresponding P individua ISVMs, M; for
i=1,...,P, then the combination of the P trained SVMs with a MAX unit will produce the
correct output for all the training input in BB, where the function of the MAX unit is to find a
maximum value from its multiple inputs. The transfer function of the MAX unit is given by

g(z) = l:i:llx M;(x) (10)

For example, a two-class problems defined by (2) is further divided into N+ xN— relatively
smaller two-class subproblems. After learning all of these two-class subproblems with
SVMs, the trained N+ x N- individual SVM modules are integrated into a M3-SVM with N+
MIN units and one MAX unit as follows:

N .
.\[E_‘;)(:zr) = 111'11[1 M_E_;-’"r'](:zr) foru=1,2,---, Nt (1)
. . ;
and

M;j(x) = max ME_;)(:;:) (12)

u=

(u,v)
where M I;; "(2)denotes the transfer function of the trained SVM corresponding to the two-

class subproblem T:E” ”), and ME;) () denotes the transfer function of a combination of N-

SVMs integrated by the MIN unit. Figure 1 illustrates the structure of a M3-SVM.

Suppose that a 1-out-of-K scheme were used for output representation. Let Y denote the
actual output vector of the M3-SVM for a K-class classification problem, and let g(x) denote
the transfer function of the entire M3-SVM. We may then write

Y =g(z)= [_(;1(-'1')- sy UK (-'f')]’r (13)
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According to the minimization and maximization principles, the (f;) SVMs, M (x) for
i=1,...,K and j=i+1,...,K, and the corresponding (f;) inversions Mys(x) for r=2,...,. K and s=1,...,r
-1, are integrated as
) K i1

¢i(x) = min jliljlill M;;(z), min M,;(x) (14)
where 9; (x) for i=1,...,K denotes the discriminant function, which discriminates the patterns
of class C; from those of th eremaining classes, and the term M, ; () denotes the inversion of
Mr,‘ (x)
It is easy to implement M, ;(x) with M, (x) and an INV unit. The function of the INV unit is
to invert its single input; the transfer function of the INV unit is given by

g=a+p—p (15)

where a, §, p ,and q are the upper and lower limits of input value input, and output,
respectively. For example, a and f are set to +1 and -1, respectively, for support vector
classifiers in the simulations below.

R A A
S
Y
S
=
]

—_— . - MAX |—e

Figure 1. Structure of a M3-SVM consisting of N+ x N— individual SVMs, N+ MIN units,
and one MAX unit
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The relationship among Ms(x), My, ( 2), and the INV unit can be expressed as

Lrs(z) = My (z) = INV(M, (2)) 16
fors=1,--- K—-1;r=s+1,--, K

Similarly, the discriminant function 9; (x) of the Min-Max SVM, which consists of

K —1
e z j=i+1 Ni X Nj network modules, and the corresponding ( ) inversions can be

expressed as
. K Ny [N,
gi(z) = min | min |max min M, (1)
j=i+1 | k=1 |I=1 Y

(17)
i—1 f N
min | max mm M ()
r=1 | k=1 I=1
(k. 1) . .
where  the term maxk 1 [mlll; 1 M {»’U)] denotes the inversion of
111(1:(:'_, [mmi 1I\I (x)]. Tt should be noted that only the inversions of network

modules M; 4 (x) are used for constructing the M3-SVMs, and there are no inversions for
SVMs N[_E;" Y ().

Summarizing the discussion mentioned above, the module combination procedure can be
described as Table 2.

Step 1: If no SVMs M.E;" Y () exist, go to Step 3. Otherwise, perform the following steps.

Step 2: Integrate N; x N; SVMs M.E;" (@) for u =1,. , N, v=1,..., N;, i =1,..., K, and j=i+1,...,K,
into a module M;; (x) with N; MIN units and one MAX unit accordmg to (11) and
(12).

Step 3: Integrate K (K- 1)/2 modules and the corresponding K (K- 1)/2 inversions with K
MIN units according to (14).

Table 2. The module combination procedure

From the module combination procedure above, we see that individual trained SVMs can be
simply integrated into a M3-SVM with MIN, MAX and/or INV units. Since the module
combination procedure is completely independent of both the structure of individual
trained SVMs and their performance, we can easily replace any trained SVMs with desired
ones to achieve better generalization performance. In contrast to the task decomposition
procedure mentioned earlier, the module combination procedure proceeds in a bottom-up
manner. The smaller trained SVMs arei ntegrated into larger modules first, and then the
larger modules arei ntegrated into a M3-SVM.

After finishing module combination, the solutions to the original K-class problem can be
obtained from the outputs of the entire M3-SVM as follows:

C=arg max {gi(x)} fori=1,--- | K (18)

where C is the class that the M3-SVM assigns to the input x.
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Once the size of each of the SVMs is fixed, the space complexity of the entire M3-SVM is
determined according to (14) and (17). Table 3 shows the number of individual SVM
modules and integrating units required to construct a M3-SVM for a K-class problem.

4. Discriminative Feature Selection

We use a SVM-based discriminative feature selection (SVM-DFS) [3] method for multi-view
face recognition in this study.

Name #elements
K-1 K
SVMs|  2) > NixN;
i=1 j=i+1
K-1 K N 1
T ‘ = i
MIN [K+2) Y N[ Nj ]
i=1 j=i+1
K-1
_ N1
MAX| 2 Z(K — )=
INV K(K —1)/2

Table 3. Number of SVM modules and integrating units required to build the M3-SVM for a
K-class problem (K>2)

4.1 Feature Selection in Binary Classification
In the linear case of binary classification, the decision function equation (8) can be reformed
as

f(x) =sign (w-x —b) (19)

where w obtained from

w = Z Yivi Ty (20)

support vectors

The inner product of weight vector w=(wiws,...,w,) and input vector x=(x1,X2,...,%n)
determines the value of f(x). Intuitively,the input features in a subset of (x1,x,...,x,) that are
weighted by the largest absolute value subset of (wi,wy,...,w,) influence most the
classification decision. If the classifier performs well, the input features subset with the
largest weights should correspond to the most informative features. Therefore, the weights
|w;| of the linear decision function can be used as feature ranking criterion [7] [8] [25] [3]
[10] [4] [20] [9] [19]. According to the feature ranking criterion, we can select the most
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discriminative features for the binary classification task. However, this way for feature
ranking is a greedy method and we should look for more evidences for feature selection.
Support vectors can be used as evidence for feature ranking [3] [10] [4], because support
vectors can be used to count for different distributions of the features in the training data.
Assume the distance between the optimal hyperplane and the support vectors is A, the
optimal hyperplane can be viewed as a kind of A-margin separating hyperplane which is
located in the center of margin (-A, A). According to [23], the set of A-margin separating
hyperplanes has the VC dimension & bounded by the inequality

o (B - 21
h < min ([E] ._-n.) +1 (1)

where R is the radius of a sphere which can bound the training vectors x€X. Inequality (21)
points out the relationship between margin A and VC dimension: a larger A means a smaller
VC dimension. Therefore, in order to obtain high generalization ability, we should still
maintain margin large after feature selection. However, because the dimensionality of
original input space has been reduced after featur eselection, the margin is usually to shrink
and what we can do is trying our best to make the shrink small to some extent. Therefore, in
feature selection process, we should preferentially select the features which make more
contribution to maintaining the margin large. This is another evidence for feature ranking.
To realize this idea, a coefficient ¢ is introduced,

Cl = l Z .'I.',-_Ik—t_l Z Ljk (22)

{ -
+iesv, JESV.

where SV denotes the support vectors belong to positive samples, SV_ denotes the support
vectors belong to negative samples, I+ denotes the number of SV, [_denotes the number of
SV_, and x;x denotes the kth feature of support vector i in input space R". The larger cx
indicates that the kth feature of input space can make more contribution to maintaining the
margin large. Therefore, c; can assist |wi| for feature ranking. The solution is that,
combining the two evidences, we can order the features by ranking cx |wx|.

In the nonlinear case of binary classification, a cost function J is computed on training
samples for feature ranking. DJ(i) denotes the change in the cost function J caused by
removing a given feature or, equivalently, by bringing its weight to zero. DJ(i) can be used
as feature ranking criterion. In [7], DJ(i) is computed by expanding J in Taylor series to
second order. At the optimum of ], the first order term can be neglected, yielding

19%J

DIG) = 3 502

(Dw;)? (23)

where the change in weight Dy, corresponds to removing feature i.
For the nonlinear SVMs with the nonlinear decision function f{x), the cost function J being
minimized is

1
J = E(t'THu- —aTv (24)
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where H is the matrix with elements vy, yx K (xn,x:), a is Lagrange parameter vector
a=(ay,az,...,a,), and v is a n dimensional vector of ones [7]. To compute the change in cost
function caused by removing input component i, one leaves the a’s unchanged and one
recomputes matrix H. This corresponds to computing K(x; (=i), xx (-i)), yielding matrix
H(—i), where the notation (—7) means that component i has been removed. Thus, the feature
ranking criterion for nonlinear SVMs is

1

DJ(i) = = (a"Ha — a" H(~i)a) (25)

o |

Computation of DJ(i) is a little more expensive than that in the linear case. However, the
change in matrix H must be computed for support vectors only, which makes it affordable
for small numbers of support vectors.

For the convenience of representation, in both linear and nonlinear cases of binary
classification, we denote feature ranking criterion as #; for the ith feature in the input space
R In linear case of binary classification, r; is

i = cifwgl (26)

In nonlinear case of binary classification, r; is
1 . -
i =g (e"Ha — o' H(—i)a) (27)

Using feature ranking criterion r;, we can select most discriminative features for binary
classification task.

4.2 Feature Selection in Multi-class Classification

In the case of multi-class classification, we use one-versus-all method for multi-class SVMs.
Multi-class classification problem is much more difficult than the binary one especially
when the data are of high dimensionality and the sample size is small. The classification
accuracy appears to degrade very rapidly as the number of classes increases [12]. Therefore,
feature selection in multi-class classification is more challenging than that in binary case. We
should be more careful when extending feature selection from binary case to multi-class
case. Using the statistical relationship between feature ranking and the multiple sub-models
of multi-class SVMs, we propose the SVM-DFS method for features election.

One-versus-all multi-class SVMs constructs K decision functions where K is the number of
classes. The jth decision function f; (x) is constructed with all of the examples in the jth class
with positive labels, and all other examples with negative labels. The f; (x) is a binary
classification sub-model for discriminating the jth class from the all other classes. When f; (x)
has the maximum value among all the sub-models, f; (x) has determined the classification
result that the jth class is true. The r; j, calculated from f; (x), denotes the feature ranking
criterion of the ith feature according to the binary classification sub-model f; (x). There are
sure event E and impossible event @ in probability theory. Let o; denote the event that the
jth class is true. According to probability theory, events w1,@y,...,@ constitute a partition of
the sample space

E=wUwyU...Uwyg (28)
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and
@ = Wy n Wi, i % J (29)

P (wj) is the prior probability that the jth class is true. Define a random event S; as “the ith
feature is selected as discriminative feature”. Let P(S;| ;) denote the conditional probability
of S; given that o; occurred. When event ®; occur, the jth binary classification sub-model f; (x)
has the maximum value among all the sub-models and it is just uniquely effective for
determining the final classification result

P(wj|fi(x) is effective) = P(f;(x) is effective|lw;) =1 (30)

on the premise that the f; (x) is correct. Under the condition that the jth binary classification
sub-model f; (x) is effective, we can calculate P(S; | @;) through the feature ranking criterion r;;

P(Si|w;) = P(S;|f;(z) is effective) = % (31)

t=1"tj

According to the theorem on the total probability, P(S;) can be calculated through P(S;| ®;)
and P(w;)

K
P(S) = 3 P(Silwj)P(w;) )
j=1

Then, P(S;) can be used as feature ranking criterion for the whole multi-class classification
problem. The solution is that we can order the features by ranking P(S;) and select the
features which have larger value of P(S;). In Table 4, we present an outline of the SVM-DFS
algorithm.

In the algorithm, T and M; are two user defined constants. T is the number of the iteration
steps. Usually, T should not be too small. M; is the number of the features to be selected in
the t iteration step. M; can be evaluated by retraining the SVM classifiers with the M;
selected features. M; should be set to such a value that the margin A; of each retrained SVM
sub-model f; (x) is large enough

1
" @]

(33)

where w() denotes the weight vector of sub-model f; (x).According to [23],

()2 ()
[l |7 = Z a; o4

support vectors

where a].(i) denotes Lagrange parameter of sub-model f; (x). Define a coefficient L:

(35)
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e Input:
Training examples

Xo = {X1, xz,...xl} T

e Initialize:
Indices for selected features: s=[1,2,...n]
Train the SVM classifier using samples Xo
e Fort=1,..T:
1. Compute the ranking criteria P(S;) according to the trained SVMs
2. Order the features by decreasing P(S;), select the top M; features, and eliminate the
other features
3. Updates by eliminating the indices which not belong to the selected features
4. Restrict training examples to selected feature indices

X=X0(:,s)

5. Train the SVM classifier using samples X
e  Outputs:
The small set of critical features and the final SVM classifier

Table 4. The outline of the SVM-DFS algorithm

We can use coefficient L to evaluate M;. M; should be set to such a value that the value of L is
small enough. After the M; discriminative features have been selected through SVM-DFS,
the SVM models have to be retrained using the training data.

5. Experiments

We use the UMIST database [6], am ulti-view face database consisting of 575 gray-scale
images of 20 subjects. Each of the subjects covers a wide range of poses from profile to
frontal views. Figure 2 depicts some sample images of a subject in the UMIST database. This
is a classification problem of 20 classes. The overall database is partitioned into two subsets:
the training set and test set. The training set is composed of 240 images of 20 persons: 12
images per person are carefully chosen according to face poses. The remaining 335 images
are used to form the test set. All input images are of size 112x92. We have used SVM-DFS
discriminative feature selection method to reduce the dimensionality of feature space. All of
the experiments were performed on a 3.0 GHz Pentium 4 PC with 1.0 GB RAM.

After nonlinear dimensionality reduction [21], the distribution of face poses is shown in
Figgure 3. From Figgure 3, we can see that the distribution of faces varies based on face
poses. Following the observation from Figgure 3, we partition the set of training inputs for
each class into four subsets by using the part-versus-part task decomposition strategy. As a
result, the original 20-class classification problem has been decomposed into 3040 two-class
subproblems. First, the origial 20-class classification problem has been decomposed into
(20%(20-1))/2=190 two-class subproblems. Second, each two-class subproblem has been
decomposed to 4*4=16 two-class subproblems. Therefore, the original problem has been
decomposed into (20%(20-1))/2*4*4=3040 two-class subproblems. Every individual
subproblem becomes less complicated than the original problem and it can be solved more
effectively.
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Figure 2. Some face samples of one subject from the UMIST face database

Figure 3. Distribution of face poses is shown after nonlinear dimensionality reduction (From
Tenenbaum et al.[21])

90 degree:

Figure 4. Training face images for each class are divided into 4 subsets according to face
poses
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Training time (s)
Methods . l\tIo. o . Test Corri;:t rate
catures Parallel Serial ime (s) (%)
300 30 0.862 13.588 1.522 92.8358
200 25 0.748 12.654 0.976 92.2388
SVMs (rbf kernel)
150 25 0.703 11.865 0.757 90.1493
100 20 0.685 11.269 0.478 82.3881
300 20 0.531 15.273 1.647 93.1343
200 15 0.447 13.413 1.215 92.5373
M3-SVMs(rbfkernel)
150 10 0.386 12.587 0.873 91.3433
100 10 0.359 12.165 0.526 83.8806

Table 5. Test results on UMIST face database

To evaluate the effectiveness of the proposed method, the multi-view face recognition
problem was learned by both M3-SVMs and standard SVMs. The one-versus-all method is
used for training the standard SVMs. A radial-basis function kernel for SVMs is used, the
parameter C=10000, and o is set to the optimal values. The experimental results are shown
in Table 5. From Table 5, we can see that M3-SVMs can obtain better generalization
performance than the standard SVMs when the original problem is decomposed into 3040
two-class subproblems, and meanwhile the training time can be reduced in a parallel way.
The parallel training is to train all the sub-modules at the same time in parallel. And the
serial training is to train all the individual modules one-by-one in serial. In parallel training
way, M3-SVMs can make the training speed faster comparing to the standard SVMs. The
results in Table 5 also indicate that even though in low feature space after discriminative
feature selection, M3-SVMs are still more accurate than the standard SVMs.

6. Conclusions

We have applied the min-max modular support vector machine and the part-versus-part
task decomposition method to dealing with multi-view face recognition problems. We have
demonstrated that face pose information can be easily incorporated into the procedure of
dividing a multi-view face recognition problem into a series of relatively easier two-class
subproblems. We have performed some experiments on the UMIST database and compared
with the standard support vector machines. The experimental results indicate that the min-
max modular support vector machine can improve the accuracy of multi-view face
recognition and reduce the training time. As a future work, we will perform experiments on
large-scale face databases with various face poses. We believe that the min-max modular
support vector machine with incorporating pose information into task decomposition will
have more advantages over traditional support vector machines in both training time and
recognition accuracy when a more number of training samples are available.
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1. Introduction

Human face recognition is an active area of research spanning several disciplines such as
image processing, pattern recognition, and computer vision. Different techniques can be
used to track and process faces (Yang et al, 2001), e.g., neural networks approaches (Férand
et al.,, 2001, Rowley et al., 1998), eigenfaces (Turk & Pentland, 1991), and the Markov chain
(Slimane et al., 1999). Most researches have concentrated on the algorithms of segmentation,
feature extraction, and recognition of human faces, which are generally realized by software
implementation on standard computers. However, many applications of human face
recognition such as human-computer interfaces, model-based video coding, and security
control (Kobayashi, 2001, Yeh & Lee, 1999) need to be high-speed and real-time, for
example, passing through customs quickly while ensuring security.

Liu (1998) realized an automatic human face recognition system using the optical correlation
technique after necessary preprocessing steps. Buhmann et al. (1994) corrected changes in
lighting conditions with an analog VLSI silicon retina in order to increase the face
recognition rate. Matsumoto & Zelinsky (2000) implemented in real time a head pose and
gaze direction measurement system on the vision processing board Hitachi IP5000.

For the last years, our laboratory has focused on face processing and obtained interesting
results concerning face tracking and recognition by implementing original dedicated
hardware systems. Our aim is to implement on embedded systems efficient models of
unconstrained face tracking and identity verification in arbitrary scenes. The main goal of
these various systems is to provide efficient robustness algorithms that only require
moderated computation in order 1) to obtain high success rates of face tracking and identity
verification and 2) to cope with the drastic real-time constraints.

The goal of this chapter is to describe three different hardware platforms dedicated to face
recognition. Each of them has been designed, implemented and evaluated in our laboratory.
In a first part, we describe a real time vision system that allows the localization of faces and
the verification of their identity. This embedded system is based on image processing
techniques and the radial basis function (RBF) neural network approach. The robustness of
this system has been evaluated quantitatively on real video sequences. We also describe
three hardware implementations of our model on embedded systems based, respectively, on
field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and
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digital signal processor (DSP) TMS320C62.We analyze the algorithm complexity and present
results of hardware implementations in terms of resources used and processing speed.

In a second part, we describe the main principles of a full-custom vision system designed in
a classical 0.6 pm CMOS Process. The development of this specific vision chip is motivated
by the fact that preliminary works have shown that simplified RBF networks gave
interesting results but imposed a fast feature extraction to reduce the size of the input
vectors of the RBF network. So, in order to unload a consequent calculation part of FPGA,
we have decided to design an artificial retina embedding the extraction of input vectors of
RBF network. For this purpose, a VLSI sensor is proposed to realize the image acquisition, to
extract a window of interest in the whole image, to evaluate the RBF vectors as means
values of consecutive pixels on lines and columns. A prototype based on this principle, has
been designed, simulated and evaluated.

In a third part, we describe a new promising approach based on a simple and efficient
hardware platform that performs mosaicking of panoramic faces. Our objective is to study
the panoramic face construction in real time. So, we built an original acquisition system
composed of five standard cameras, which can take simultaneously five views of a face at
different angles. Then, we chose an easily hardware-achievable algorithm, based on
successive linear transformations, in order to compose a panoramic face from the five views.
The method has been tested on a large number of faces. In order to validate our system, we
also conducted a preliminary study on panoramic face recognition, based on the principal-
component method. Experimental results show the feasibility and viability of our system.
This rest of the chapter is organized as follows. Section II, IIl and IV describe the three
systems designed by our team. In each of these sections, we present the principles of the
system, the description of the hardware platform and the main simulated and experimental
results. Finally, the last section presents conclusion and future works.

2. Real-time face tracking based on a RBF Neural Network

Face recognition is a very challenging research problem due to variations in illumination,
facial expression and pose. It has received extensive attention during the past 20 years, not
only because of the potential applications in fields such as Human Computer Interaction,
biometrics and security, but also because it is a typical pattern recognition problem whose
solution would help in solving other classification problems.

The recognition technique used in this first embedded system is based on Radial Basis
Function (RBF) networks. The RBF neural networks have been successfully applied to face
recognition. Rosenblum et al. (1996) developed a system of human expressions recognition
from motion based on RBF neural network architecture. Koh et al. (2002) performed an
integrated automatic face detection and recognition system using the RBF networks
approach. Howell & Buxton (1998) compared RBF networks with other neural network
techniques on a face recognition task for applications involving identification of individuals
using low-resolution video information. The RBF networks give performance errors of only
5%-9% on generalization under changes of orientation, scale, pose. Their main advantages
are computational simplicity and robust generalization. Howell and Buxton showed that the
RBF network provides a solution which can process test images in interframe periods on a
low-cost processor. The simplicity and the robust generalization of the RBF networks
approach, with its advantages due to the fact that it can be mapped directly into the existing
neural networks chips lead us to elaborate our model using a RBF classifier.
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We chose three commercial embedded systems for hardware implementations of face
tracking and identity verification. These systems are based, respectively, on most common
electronic devices: FPGA, zero instruction set computer (ZISC) chips, and digital signal
processor (DSP) TMS320C62. We obtained processing speeds of, respectively, for three
implementations: 14 images/s, 25 images/s, and 4.8 images/s.

Hidden layer

centers € G

Input layer

Output layer

1:
f,(x) = exp{- X~ ¢I*/52 } i=

Figure 1. Radial basis function neural network

2.1 Description of the RBF model

The RBF neural network (Park & Sandberg, 1991) has a feedforward architecture with an
input layer, a hidden layer, and an output layer as shown in Figure 1. The input layer of this
network has N units for an N-dimensional input vector. The input units are fully connected
to the hidden layer units, which are in turn connected to the | output layer units, where | is
the number of output classes. RBF networks belong to the category of kernel networks. Each
hidden node computes a kernel function on input data, and the output layer achieves a
weighted summation of the kernel functions. Each node is characterized by two important
associated parameters: 1), its center and 2) the width of the radial function. A hidden node
provides the highest output value when the input vector is close to its center and this output
value decreases as the distance from the center increases. Several distances can be used to
estimate the distance from a center but the most common is the Euclidean distance d(x). The
activation function of the hidden node is often a Gaussian function such that each hidden
node is defined by two parameters: its center ¢; and the width of the radial function ;.

d(x)=|x=c £,(x) = exp oD o

The training procedure undergoes a two-step decomposition: estimating c¢; and o; and
estimating the weights between the hidden layer and output layer. The estimation of these
parameters is largely detailed in Yang & Paindavoine (2003).

2.2 Description and test of our model

Many face recognition algorithms require segmenting the face from the background, and
subsequently extracting features such as eyes, nose, and mouth for further processing. We
propose an integrated automatic face localization and identification model only using a
classifier which responds to the question, “Does the input vector correspond or not the
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person to be verified?” The idea behind this is to simplify the model and reduce
computation complexity in order to facilitate hardware implementations.

Scale 1 Scale 2 Scale 3 Scale 4

iV

Inputs  Centers  Outputs Result

Figure 2. Structure of the face tracking and identity verification model

Figure 2 represents the structure of our model. The size of faces in the scene varies from
40 x 32 pixels to 135 x 108 pixels with four scales. The ratio between any two scales is fixed
to 1.5 (Howel & Buxton, 1998).We first subsample the original scene and extract only the
40 x 32 windows in the 4 subsampled images. Each pre-processed 40 x 32 window is then
fed to RBF network as an input vector. After the training procedure, the hidden nodes
obtained are partially connected to the output layer. In fact, the hidden nodes associated
with one person are only connected to the output node representing this class. This
technique reduces data dependencies and is computationally more efficient
(Koh et al., 2002). The decision stage yields the presence, position, identity and scale of the
faces using the maximal output values of the RBF neural network.

In order to evaluate and validate our model, we made experiments based on video
sequences of 256 images. In all sequences, the scene size is 288 x 352 pixels and they are
zero, one, two, or three different faces presented (see. Figure 4). We have decided to verify
two persons in these sequences. The 12 same training faces (see Figure 3) are used in order
to compare the different configurations of the model.
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Figure 3. 2x12 learning faces

First, in order to simplify future hardware implementations, the first phase has consisted in
reducing the input vectors length of the RBF network. In the preprocessing stage, we use
first all pixels of each 40 x 32 window to compose the feature vectors. Each pixel represents
one component of the vector. So, the input vectors of RBF neural network have
40 x 32 components. Second, we minimize the number of components in order to reduce the
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computing time. We realize a subsampling preprocessing: sample one pixel out of 4, 8, and
16 on each row of each window. We display some tested images (see Figure 4).

i

Figure 4. Some results of face tracking and identity verification

Results of face tracking and identity verification reveal that performances decreases quickly
when the input vectors have 80 components. In fact, incorrect detection regularly appears
when we use only one pixel out of 16 on each row of a window. The best results are
obtained with one pixel out of four using the Euclidean distance dx(x) to compute the
difference between an input vector and the centers (kernels) for each hidden node of the
RBF neural network (see Eq. 2). The distance di(x) is usually better when we use some noisy
images (Sim et al., 2000). Another distance considers only the components whose difference
between x, and ¢, is greater than a threshold 8. Here, the threshold & has been regulated to
10. The experiments show that we have the best result with the do(x) distance.
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Finally, we have evaluated some variations of the RBF kernel activation functions. The
Gaussian function is usually taken as the kernel activation function (see. Eq. 1) where d(x) is
the measured distance between the input vector x and the center c. Another approach is the
use of a simplified activation, for example the replacement of the Gaussian function in the
RBF network by a Heaviside function leading to a simplified hardware implementation. The
width of this function is the width o associated to the corresponding center.

1 dx)<o 3)

f(x):{o x>0

The number of no-detections has increased with the Heaviside function. The rate of correct
results decreases from 98.2% to 93.4%. In fact, the RBF neural network using the Heaviside
function restrains the capacity of generalization by lack of interactions between centers of a
same class: the model only detects faces that are sufficiently close to training examples.

Among all configurations of the model, the best performance has been obtained with 320
components of input vectors (subsampling 1 pixel/4 on each row of a window), using
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measured distance do(x) and the Gaussian activation function: the success rate is 98.2%.
Almost all the faces are well detected, localized, and identified in sequences of images.

2.3 Hardware Implementations

Hardware implementations of the RBF approach have been realized for different
applications, on either FPGA (Pérez-Uribe & Sanchez, 1996), or neurochip (Skrbek, 1999).
Commercial RBF products include the IBM ZISC chip and the Nestor Ni 1000 chip
(Lindbalad et al., 1995). Here, our aim is to elaborate in real time an efficient model of
unconstrained face tracking and identity verification in arbitrary scenes. Thus, hardware
implementations have been realized on three embedded systems based on FPGA, ZISC chip,
and DSP. We use industrial electronic systems: a MEMEC board, a General Vision
Neurosight board, and a board based on DSP TMS320c6x developed in our laboratory. We
discuss first for each case the architecture of the system. Then results are presented in terms
of hardware resources used and processing speed.

2.3.1 First Implementation based on FPGA

This implementation is realized on a MEMEC industrial board comprising a FPGA Xilinx
SpartanlI-300, which contains 3072 slices and 16 memory blocks of 512 bytes each. We have
implanted on the FPGA our model of face tracking and identity verification. This
implementation creates an RBF neural network with 15 hidden nodes. Each hidden node
stores a center vector of 320 components. The used measured distance is the distance di(x).
The activation function of each center is a Heaviside function whose associated width
delimits the influence area of the center. Figure 5 shows the organization’s tasks and the
coding of these tasks using VHDL description. The original video image is stored in an
image memory bank with each pixel coded on a byte; the input vector extraction consists of
calculating averages of four successive pixels on rows of the image. Each vector is fed to the
15 hidden nodes of the RBF network which gives their respective responses in parallel.
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Figure 5. Organization’s tasks and coding in VHDL for the first implementation

The Table 1 presents information on FPGA resources. The input vectors extraction needs 57
slices in order to define the image memory access and the interaction logic with centers. A
memory block (FIFO) is necessary to store input vectors to be tested. Each trained center
needs one memory block and 29 slices for calculation (distance, activation function,
decision). This implementation uses 827 “slices” (27% of total resources). Note that the
number of centers is limited by the number of independent internal memory blocks.
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extraction | 15 centers | Interfaces & controls | Total
Number of slices used 57 435 335 827
Slices used rate 2% 14.1% 10.9% 27%
Number of Blocks RAM used | 1 15 0 16
Blocks Ram used rate 6% 94% 0% 100%

Table 1. Results of the first implementation on the Memec Board

The complete implementation is realized in parallel using the pipeline technique for each
stage of the processing. The images size is 288 x 352 and contains 161 x 63 = 10 143 windows
of 40 x 32 pixels each with a displacement scan step along the row and the column of 2. We
realized, respectively, 49.65M additions, 48.8M subtractions, 370 944 divisions, and 142 002
comparisons. The processing speed of this first implementation is 14 images per second with
a success rate of 92% for face tracking and identity verification.
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Figure 6. Neurosight block diagram and board picture

2.3.2 Second Implementation based on ZISC Chip

We also made hardware implementation of our model using a commercial board linked to
pattern recognition applications. This General Vision Neurosight board contains a CMOS
sensor (288 x 352 pixels), a FPGA Xilinx SpartanII-50, two memory banks of 512KB each, as
well as two specific ZISC chips (see Figure 6). One ZISC chip contains 78 RBF-link nodes
with a maximal length of input vectors N=64. The used measured distance and the
activation function of each node are, respectively, the distance di(x) and the Heaviside
function. We adapt the complexity of the model to this embedded system. At first, we
reduce the size of the original image by keeping only one line out four. This new image
obtained (size 72 x 352) is then analyzed with a slippery window of 8 x 32. On each row of
each window, we compute averages of eight consecutive four pixels blocks. Each window
yields an input vector of 64 components to be analyzed by the ZISC chip. A total number of
10 465 windows are tested which implies 10.16 M additions, 10.05 M subtractions, 92 736
divisions, and 146 510 comparisons to be computed. We implement the input vectors
extraction and all interfaces (memory access, ZISC access) on the FPGA Xilinx SpartanIl.
Figure 7 shows the tasks on the Neurosight board and the different levels of control coded
in VHDL.
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Table 2 presents information on hardware resources used for this second implementation.
The input vectors extraction implementation requires the same resources as those used with
the MEMEC board. Here, we use only one ZISC chip (78 nodes maximum). The processing
speed of this second implementation is 25 images/s with a success rate of 85.3% for face
tracking and identity verification.

7 SRAM / CMOS Sensar Controller I
——[ Recognition | I [ =
N | i Main | — Input vectars.
= Calculation
> FEM || | Vectons
_ . ZISC | | Fsu S | storage 1EM
— [Image | ! ! FSM w.mhm-:.lw
m - Acquisition i | Om
i s o | |
I | Vectors exiraction Controller
: ZISC L
Im age I Controller Main Controller
. Storage | 3 . R
canning |
(SRAM) 1 et | L Parallel Port Controller

Figure 7. Organization’s tasks and coding in VHDL for the second implementation

Extraction Interfaces & controls | Total
Total number of slices 768 768 768
Number of slices used 57 235 292
Slices used rate 7.4% 30.6% 38%
Total number of Blocks RAM 8 8 8
Number of Blocks RAM used 1 0 1
Blocks Ram used rate 12.5% 0% 12.5%

Table 2. Results of the second implementation on the Neurosight Board

2.3.3 Third Implementation based on DSP

DSPs are specific processors destined for signal and image processing. The Cé6x family is the
last generation Texas Instruments DSP. They are available in fixed point (C62x and C64x)
and floating point (C67x) versions, with CPU frequencies from 150 MHz to 1000 MHz. Our
laboratory has developed a system based on a DSP TMS320 C6201B (see Figure 8). A CCD
sensor sends 16-bit data to the DSP via a complex programmable logic device (CPLD). The
DSP performs different processing and sends the resulting images to a PC via an USB bus.
Two SDRAM memories are available to store images between the different processings.

The hardware implementation of our model for face tracking is realized on this embedded
system. The goal of the implementation has been to optimize in Assembler each stage of
processing using, in parallel, the maximum number of DSP functional units.

The used measured distance and the activation function of each node are, respectively, the
distance d0(x) and a Gaussian function. Each vector of 320 components is fed to the 15
hidden nodes of the RBF network. The number of windows to be analyzed and the numbers
of additions and divisions for input vectors extraction are the same than in the first
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implementation. A correct rate of 98.2% is obtained for face tracking and identity

verification.
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Figure 8. Block diagram and board picture of the third embedded system
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Table 3 respectively shows experimental implementation results obtained using the DSP
C6201 and simulation results obtained using the DSP C64x with the development tools,
Code Composer Studio (Texas Instruments).

Hardware Implementation on C6201 | Simulation on C64x
Langage C Assembler | C Assembler
Input vectors Extraction 414 ms 1.8 ms 1.2 ms 0.14 ms
Distance calculation 211 ms 144 ms 58.8 ms 13.3 ms
Gaussian function + Decision 67 ms 22.2

Processing speed 35im. /s 4.81im. /s 12.1im. /s | 28.6im. /s

Table 3. Results of the third implementation on DSP

2.4 Discussion on the three Hardware implementations

We created a model that allows us to detect the presence of faces, to follow them, and to
verify their identities in video sequences using a RBF neural network. The model’s
robustness has been tested using video sequences. The best performance has been obtained
with one subsampling of a pixel/4 for each row, the measured distance do(x) and the
Gaussian activation function. In fact, the subsampling preprocessing and the application of
the do(x) distance render the model less sensitive to face details and to the small differences
between training examples and test windows, thus, we have the better generalization.

We have demonstrated the feasibility of face tracking and identity verification in real time
using existing commercial boards. We have implanted our model on three embedded
systems. The success rate of face tracking and identity verification is, respectively, 92%
(FPGA), 85% (ZISC), and 98.2% (DSP). Processing speeds obtained for images of size
288 x 352 are, respectively, 14 images/s, 25 images/s, and 4.8 images/s.

Our model integrating 15 hidden nodes allows us to distinguish two faces with a good
performance (>90% of success rate). Extending this model to recognition of more faces
(> 10) necessitates a calculation power superior to 10 Giga flops and thus, new architectures
must be developed. They can be developed using more effective components, for example,
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FPGA Virtex 5 series or DSP TMS320C64, thus allowing a very rapid processing speed and
better performance of face tracking and identity verification.

3. Design of a CMOS sensor dedicated to the extraction of input vectors

A system capable of doing face localization and recognition in real time has many
applications in intelligent man-machine interfaces and in other domains such as very low
bandwidth video conferencing, and video e-mail.

This section describes the main principles of a vision system, allowing to detect
automatically the faces presence, to localize and to follow them in video sequences. The
preliminary works, described in the previous section, have shown that RBF networks gave
interesting results (Yang & Paindavoine, 2003) but imposed a fast feature extraction to
reduce the size of the input vectors of the RBF network. So, the main goal of the current
project is the development and the characterisation of a specific CMOS sensor able to realize
the image acquisition, to extract a window of interest in the whole image and to evaluate
means values of consecutive pixels on lines and columns.

A first image sensor with electronic shutter has been integrated in a 0.6 pm digital CMOS
technology. The pixel cell consists of four transistors and a photodiode. Each pixel measures
30 pm by 30 um and has a fill factor of about 40%. Each selected pixel produces a current
which is transferred to the column readout amplifiers and converted by a pipeline ADC to
produce a digital output. The two analog and digital values are then multiplexed to the
output of the sensor. This retina also includes a logic command in order to realize
acquisition of subwindows with random size and position.

3.1 Overview of the Chip Architecture

An active pixel sensor (APS) is a detector array that has at least one active transistor within
the pixel unit cell (Nakamura et al., 1997). Currently, active pixel sensor technology
integrates electronic signal processing and control with smart camera function onto the
same single chip as a high performance image sensor (Kemeny et al., 1997). CMOS image
sensors with integrated signal processing have been implemented for a number of
applications (Aw & Wooley, 1996). Most current CMOS sensors have been designed for
video applications, and digital photography. Improvement continues to be made because
current mode image sensors have several advantages for example, low power supply,
smaller place, higher operation speed (Huang & Horsney, 2003, Tabet & Horsney, 2001).

The following subsections describe the design of the image sensor using a standard 0.6 pm
CMOS process. The design is based on the integration of four MOS transistors for each pixel,
a column readout amplifier, a sequential control unit which includes variable input
counters, decoders, multiplexers and finally an analog to digital converter. Results based on
design and simulations are presented for each part of the circuit.

The architecture of the proposed image sensor is shown in Figure 9. This figure first
describes the core of the system represented by the m x m array of transistors active pixels.
On the left, the second block, the row decoder is charged to send to each line of pixels the
control signals allowing pixel resetting, shutter opening or closing, pixel readout, ... On the
bottom of the circuit, the third block is made up of amplifiers, multiplexers and column
decoders whose purpose is to detect, amplify and route the signal resulting from readout
column to the output of the circuit. The automatic scan of the whole array of pixels or a
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subwindow of pixels is implemented by a sequential control unit which generates the
internal signals to the row and column decoders. Finally, the analog output voltages are
proportional to the grey scale intensity of the image. They are passed to an analog to digital
converter (ADC) (as seen on the right of the block diagram). This ADC allows the
conversion of analog values in digitals values which will be later processed by a DSP or a
FPGA outside the chip.

m x m pixel array
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Figure 9. Image Sensor Architecture

3.2 Design of the Active Pixel Sensor

We used a standard pixel as described in the left part of Figure 2 because it is a simple and
stable design (Aw & Wooley, 1996, Coulombe et al., 2000). It consists of 3 PMOS transistors,
a NMOS transistor for row access and a photodiode. m_1 is the shutter transistor, m_2 is the
reset transistor, and the transistor m_3 acts as a transconductance buffer that converts the
voltage at Vpj into a current. The vertical column lines in the array are implemented using
second-layer metal. First layer metal is used for the horizontal row lines. Third-layer metal is
connected to Vs and covers all active areas of the pixel except the photodiodes.
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Figure 10. Pixel circuit schematic and results of simulation

Prior to the image acquisition, m_1 and m_2 are on, resetting node Vphoto and Vpix to the Virese:
value. After reset, when m_1 is on and m_2 turned off, the charges generated by absorption
of light are integrated onto the parasitic capacitances of the photodiode and the transistor



134 Face Recognition

m_3. So, during the exposure period, voltage is accumulated at node Vpy and V. At the
end of the exposure period, the shutter is closed by turning off m_1. Consequently, the
photosignal is stored as a voltage on node V. Finally, during readout, the row access
transistor m_4 is turned on, and the drain current of m_3 is fed via the column line to the
column readout amplifier. The right part of Figure 10 shows the main waveforms (Vpiy,
Vphotor Vshutters VResetr VRow and Vi,1) obtained during the simulation of one pixel. The pixels in
a row are reseted by holding both reset and shutter low, turning on m_1 and m_2. The
voltages at nodes Vpyoro and Vpiy are thereby reseted close to Vieser.

During exposure, reset goes high (m_2 turns off) while shutter is unchanged at a low value
(m_1 remains on). So, the photocurrent can be integrated onto the parasitic capacitances at
Vphoto and Vpjx. At the end of the exposure period, shutter is closed by turning off m_1 and it
is cutting off the photocurrent into the node Vpi. Ica can be read on the column bus when
m_4 is turned on (row is high). The voltage at the drain of m_3 falls from Vy to the bias
voltage of the column line, and this change couples a small negative offset into node Vpi,.
The drain current of m_3 is fed via the column line to the column readout amplifier.
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Figure 11. Column amplifier schematic and simulation results

3.3 Design of the Column Amplifier

The Fig 11 represents the electronic schematic of the column amplifier. The design of this
amplifier provides a low impedance for the column lines, converts the readout current from
the selected pixel into a voltage that is proportional to the integrated photovoltage in the
pixel. The concept of using current mirror amplifier column is to amplify signal by
duplication at the column level. Amplification is achieved by designing a current mirror
m_20 and m_24 with ratio W/ Ly 20 = n x W/ L _24. The transistors m_22 and m_23 are added
to enhance the output impedance of the current mirror. The circuit including m_17, m_18,
m_20 operates almost identically to a diode connected transistor, it is used to ensure that all
the transistors bias voltages are matched to the output side (m_22, m_23, m_24). The
transistors m_17, m_21 are used to bias the feedback circuit. The transistors m_26, m_27,
m_28, m_29, and m_30 make up a differential unity gain amplifier. Once the current signal
has been amplified by column current miroir amplifier, its output is suitable for any
subsequent current mode image processing, either in continuous time or integration mode.
In our case, these outputs will be used as inputs for the feature extracting architecture
dedicated to the mean evaluation of consecutive pixels.
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The pixel with its column amplifier has been simulated for a large range of photodiode
currents as seen on Figure 11. The output voltages are plotted as a function of input
photocurrents. Good output linearity is observed, even at very low photocurrent.

3.4 Design of the Sequential Control Unit

A framework dedicated to the sequential readout of successive rows and columns has been
designed. The system offers the availability to program the location and the size of any
window of interest in the whole image. Advantages of a such technology are large: random
access of any pixel or subwindow, increase of acquisition frequency, ... In our main goal of
face tracking, these aspects are crucial because only windows of interest will be scanned by
the sensor. Each line of pixels included in the subwindow follows the same sequence of
reading but at different moments in order to multiplex the outputs. As seen previously, each
pixel is controlled by 3 signals: reset, shutter, and select. The Figure 12 shows the readout
sequence of 2 successive rows.
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Figure 12. Timing diagram of the rows control signals

To implement the sequential control, we need counters with variable inputs: the first one for
the starting position of the subwindow and the second one for its ending position. Our
design is inspired by a 74HC163 counter from Philips Semiconductors. This circuit starts
counting from a value which can be freely selected. It has been modified in order to add the
second input corresponding to the stop value of the counting process.

Associated with the counters, the control unit uses row decoders to active the pixels rows.
The row decoder is adopted from (Baker et al., 1998). A long L MOS transistor is used to pull
low the output of the decoder when that particular output is not selected. The result is that
all decoder outputs are zero except for the output that is selected by the input address. Two
inverters are used to drive the word line capacitance. Finally, a multiplexer is used to select
and pass output voltages from the column amplifiers. We use a simple design based on
pairs of transistors Nmos and Pmos.

3.5 Design of the Analog to Digital Converter

Most designs of video-rate analog to digital converters (ADC's) of 8 bit resolution are
implemented through flash architectures and bipolar technologies (Lewis et al., 1992). In
recent years, pipelined switched capacitor topologies have emerged as an approach to
implement power efficient nyquist-rate ADCs that have medium-to-high resolution (10-13
bits) at medium-to high conversion rates (Thomson & Wooley, 2001). Here, we present a 8
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bit ADC operating at a 5 V supply that achieves a sample rate of about 20 Msamples/s. An
experimental prototype of this converter has been implemented in a 0.6 pm CMOS process.
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Figure 13. Pipeline ADC Architecture and Associated Circuit

Figure 13 shows the block diagram of a 1-bit per stage pipelined A/D converter. The
pipelined ADC consists of N stages connected in series; two stages are only shown on the
Figure 13. Each stage contains a sample and hold (S/H), a comparator, a subtractor and an
amplifier with a gain of two. The pipelined ADC is an N-step converter, with 1 bit being
converted per stage. The most significant bits are resolved by the first stages in the pipeline.
The result of each stage is passed to the next stage in which the cycle is repeated. A pipeline
stage is implemented by the conventional switched capacitor (Sonkusale et al., 2001) as
shown in the Figure 13. Each stage consists of two capacitors C1 and C2 for which the values
are nominally identical, an operational amplifier and a comparator. Each stage operates in
two phases: a sampling phase and a multiplying phase. During the sampling phase ¢1, the
comparator produces a digital output D;. D; is equal to 1 if Vi, > Vi, and D; is 0 if Vi, < Vi,
where Vi, is the threshold voltage defined as the mean value between Vietp and Viem. Vrep is
defined as the positive reference voltage and Viem as a negative reference voltage. During
the multiplying phase, C; is connected to the output of the operational amplifier and C; is
connected to either the reference voltage Ve Or Vien, depending on the bit value D;. If D; =
1, C; is connected to Vregp, resulting in the following remainder Vou(i) = 2 Vin (i) - DiVretp.
Otherwise, C; is connected to Vief, giving an output voltage Vou(i) = 2 Vin (i) - D, Vretn-
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Figure 14. Simulation of one stage A/D converter
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The simulation of one stage A/D converter can be seen on the Figure 14 on which the
computed bit, the remainder, the input value and the clock are presented from top to
bottom. The input value is Vi, = 3V involving the output bit D; obtains a high value. The
remainder is then evaluated as the difference between 2Vi, and Vief, (ie 2*3 -5=1V).

Figure 15. Layout of the test chip

3.6 Preliminary results

We have presented here results from simulations intended to evaluate and validate the
efficiency of our approach. Every element described in these sections has been designed on a
standard 0.6 pm CMOS Process. Two test circuits have been sent in foundry to be fabricated
in 2004 and 2005. Unfortunately, the first circuit has some bugs in the design of analog
output multiplexer preventing any measure. The second circuit (see Figure 15) includes any
of the individual structures depicted in the previous sections of this chapter, except the
ADC. So, every structure has been validated by experimental measures, showing the
validity of the concepts embedded in the chip design.

Actual work focuses on the last part of the sensor ie the development of the feature
extracting architecture dedicated to the mean evaluation of consecutive pixels. For this
purpose, two main approaches are envisaged. First, the mean values of 4 consecutive pixels
can be digitally computed and takes place after the ADC in the chip. This can be done by an
adder of four 8-bit words producing a 10-bit result. The average of the four values can be
easily extracted on the 8 MSB (Most Significant Bits) of the results. Second, the evaluation of
the mean values can be made with the analog signals going out the column amplifiers. A
dedicated circuit must take place between the column amplifiers and the ADC. Our main
short-term perspective is to explore these two potential solutions, to design the
corresponding chips and to evaluate their performances.
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The next effort will be the fabrication of a real chip in a modern process such as a 130 nm
CMOS technology. The main objective will be the design of a 256 x 256 pixel array with a
pixel size of less than 10 um x 10 pm. This chip will include all the necessary electronics
allowing the extraction of parameters which can serve as inputs of a RBF neural network
dedicated to face recognition.

4. Development of a fast panoramic face mosaicking and recognition system

Biometry is currently a very active area of research, which comprises several subdisciplines
such as image processing, pattern recognition, and computer vision (Kung et al., 2005). The
main goal of biometry is to build systems that can identify people from some observable
characteristics such as their faces, fingerprints. Faces seem to have a particularly strong
appeal for human users, in part because we routinely use facial information to recognize
each other. Different techniques have been used to process faces such as neural network
approaches (Howel & Buxton, 1998) eigenfaces (Turk & Pentland, 1991) and Markov chains
(Slimane et al., 1999) As the recent DARPA-sponsored vendor test showed, most systems
use frontal facial images as their input patterns (Phillips et al., 2003) As a consequence, most
of these methods are sensitive to pose and lighting conditions. One way to override these
limitations is to combine modalities (color, depth, 3-D facial surface, etc.) (Tsalakanidou et
al., 2003, Hehser et al., 2003, Bowyer et al., 2004).

Most 3-D acquisition systems use professional devices such as a travelling camera or a 3-D
scanner (Hehser et al., 2003, Lu et al., 2004). Typically, these systems require that the subject
remain immobile during several seconds in order to obtain a 3-D scan, and therefore these
systems may not be appropriate for some applications, such as human-expression
categorization using movement estimation, or real-time applications. Also, their cost can
easily make these systems prohibitive for routine applications. In order to avoid using
expensive and time-intensive 3-D acquisition devices, some face recognition systems
generate 3-D information from stereo vision (Wang et al., 2003). Complex calculations,
however, are needed in order to perform the required self-calibration and 2-D projective
transformation (Hartly et al.,, 2003). Another possible approach is to derive some 3-D
information from a set of face images, but without trying to reconstitute the complete 3-D
structure of the face (Tsalakanidou et al., 2003).

For the last ten years, our laboratory has worked on face processing and obtained results for
2-D face tracking and recognition. The goal of the present section is to describe a system that
is simple and efficient and that also can potentially process 3-D faces in real time. Our
method creates panoramic face mosaics, which give some 3-D surface information. The
acquisition system is composed of five cameras, which together can obtain simultaneously
five different views of a given face. One of its main advantages is easy setup and very low
cost. This section is organized as follows. First, we describe our acquisition system. Then, we
describe the method for creating panoramic face mosaics using successive linear
transformations. Next, we present experimental results on panoramic face recognition.
Finally, we conclude and explore possible follow-ups and improvements.

4.1 Acquisition system
Our acquisition system is composed of five Logitech 4000 USB cameras with a maximal
resolution of 640x480 pixels. The parameters of each camera can be adjusted
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independently. Each camera is fixed on a height adjustable sliding support in order to adapt
the camera position to each individual (see Figure 16). The acquisition program grabs
images from the five cameras simultaneous (see Figure 16). These five images are stored in
the PC with a frame data rate of 20 x 5 = 100 images per second.

Figure 16. Acquisition system with 5 cameras and example of 5 images collected from a
subject

The human subject sits in front of the acquisition system, directly facing the central camera
(camera 3). Different color markers are placed on the subject’s face. These markers are used
later on to define common points between different face views. The positions of these color
markers correspond roughly to the face fiduciary points. There are ten markers on each face,
with at least three markers in common between each pair of face views.

4.2 Panoramic Face Construction

Several panoramic image construction algorithms have been already introduced. For
example, Jain & Ross (2002) have developed an image-mosaicking technique that constructs
a more complete fingerprint template using two impressions of the same finger. In their
algorithm, they initially aligned the two impressions using the corresponding minutiae
points. Then, this alignment was used by a modified version of the iterative closest point
(ICP) algorithm in order to compute a transformation matrix that defines the spatial
relationship between the two impressions. A resulting composite image is generated using
the transformation matrix, which has six independent parameters: three rotation angles and
three translation components about the x, y, and z axes.

For faces, Liu & Chen (2003) have proposed using facial geometry in order to improve the
face mosaicking result. They used a spherical projection because it works better with the
head motion in both horizontal and vertical directions. They developed a geometric
matching algorithm in order to describe the correspondences between the 2-D image plane
space QUV and the spherical surface space Oof.

In general, the methods using nonlinear transformations and iterative algorithms obtain
very correct results in terms of geometric precision. However, these methods require a large
number of computations and therefore cannot be easily implemented in real time. Because
ultimately we want to be able to build a real-time system, we decided to use simple (and
therefore fast) linear methods. Our panoramic face construction algorithm is performed in
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three stages: (1) marker detection and marker coordinate calculation, (2) transformation
matrix estimation and image linear transformation, and (3) creation of panoramic face
mosaics.

4.2.1 Marker Detection and Marker Coordinate Calculation

The first step of the algorithm corresponds to the detection of the markers put on the
subject’s face. The markers were made of adhesive paper (so that they would stick to the
subject’s face). We used three colors to create ten markers (four blue, three yellow, and three
violet ones). In order to detect the markers, we used color segmentation based on the hue
and saturation components of each image. This procedure allows strong color selectivity
and small sensitivity to luminosity variation. First, color segmentation gives, from the
original image a binary image that contains the detected markers. Then, in order to find the
marker coordinates, we used a logical AND operation, which was performed between the
binary image and a grid including white pixels separated by a fixed distance. This distance
was chosen in relation to the marker area. A distance of 3 pixels allows us to capture all
white zones (detected markers). Finally, we computed the centers of the detected zones.
These centers give the coordinates of the markers in the image.

4.2.2 Transformation-Matrix Estimation and Image Linear Transformation

We decided to represent each face as a mosaic. A mosaic face is a face made by
concatenation of the different views pasted together as if they were on a flat surface. So, in
order to create a panoramic face we combine the five different views. We start with the
central view and paste the lateral views one at a time. Our method consists of transforming
the image to be pasted in order to link common points between it and the target image. We
obtain this transformed image by multiplying it by a linear transformation matrix T. This
matrix is calculated as a function of the coordinates of three common markers between the
two images. C1 and C2 represent, respectively, the coordinates of the first and second
images:
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C = G =\, ' ' T=C, x(C,)
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Then, we generalize this transformation to the whole image: x=ax’+by’ +¢; and
y =apX’ + bay’ + c2. This linear transformation corresponds to a combination of image
rotation, image translation, and image dilation. The two first images on Figure 17 represent
an example of the linear transformation on the image 4. The right part of the figure depicts
the superposition of image 3 (not transformed) and image 4 (transformed).

4.2.3 Creation of Panoramic Face Mosaics

We begin the panoramic face construction with the central view (image 3). From the
superposition of the original image 3 and transformed image 4 (see Figure 17), we remove
redundant pixels in order to obtain a temporary panoramic image 3-4 (see Figure 18, first
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image). In order to eliminate redundant pixels, we create a cutting line that goes through
two yellow markers. This panoramic image 3-4 temporarily becomes our target image. We
repeat this operation for each view. First, image 2 is pasted on the temporary panoramic
image 3-4 in order to obtain a new temporary panoramic image 2-3-4 (see Figure 18, second
image). The corresponding transformation matrix is generated using three common violet
markers. Then, we compute the transformation matrix that constructs image 2-3-4-5 (see
Figure 18, third image) using two blue markers and one yellow marker. Finally, image 1 is
pasted to the temporary panoramic image 2-3-4-5 with the help of two blue markers and one
violet marker (see Figure 18, fourth image).

£ 16

Figure 17. From left to right, Image 4 before and after the linear transformation, original
image 3 and superposition of transformed image 4 and original image 3

Figure 18. Mosaicking results: image 3-4, image 2-3-4, image 2-3-4-5, and , image 1-2-3-4-5

Figure 19 displays some examples of the final panoramic face composition from five views.
This composition preserves some of the face shape. For example, the chin of a human face
possesses more curvature than other parts; therefore the bottom part of the panoramic face
is composed of five views: 1, 2, 3, 4, and 5. On the other hand, three views (1, 3, and 5)
suffice to compose the top part. Figure 19 shows final mosaic faces obtained after automatic
contour cutting. For this, we first surround the panoramic face with a circle that passes by
the extreme points of the ears in order to eliminate the background. Then, we replace
segments of this circle by polynomial curves using extreme-point coordinates located with
the help of the marker positions. Note that these ten markers allow us to link common
points between five views. The coordinates of the markers are computed in the marker
detection process and arranged in a table. Then, all ten markers are erased from all five
views, using a simple image-processing technique (local smoothing). This table of marker
coordinates is regenerated for each temporary panoramic image construction. The goal of
marker elimination is to use panoramic faces for face recognition or 3-D face reconstruction.

As compared to the method proposed by Liu & Chen (2003) panoramic faces obtained using
our model are less precise in geometry. For example, Liu and Chen used a triangle mesh in
order to represent a face. Each triangle possesses its own transformation parameters. In our
system, a single transformation matrix is generated for a complete image. Liu and Chen
have also established a statistical modeling containing the mean image and a number of
“eigenimages” in order to represent the face mosaic. Our objective is to study an efficient
and simple algorithm for later hardware implantations. Methods necessitating a large
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calculation volume and a large memory space are not adapted to embedded systems. In
order to test and validate our panoramic face mosaicking algorithm, we propose, in the next
sections, a study of face recognition based on the eigenface model proposed by Turk &
Pentland (1991). With our method, we created a panoramic face database composed of 12
persons x 4 expressions x 2 sessions = 96 panoramic faces. The two acquisition sessions were
performed over an interval of one month. The four expressions were: neutral, smile,
deepened eyebrows, and eyes closed (see Figure 19). We implemented a face recognition
procedure using this database.

Figure 19. Examples of panoramic faces

4.3 Face Recognition Description

Over the past 25 years, several face recognition techniques have been proposed, motivated
by the increasing number of real-world applications and also by the interest in modelling
human cognition. One of the most versatile approaches is derived from the statistical
technique called principal component analysis (PCA) adapted to face images
(Valentin et al., 1994). Such a approach has been used, for example, by Abdi (1988) and
Turk & Pentland (1991) for face detection and identification. PCA is based on the idea that
face recognition can be accomplished with a small set of features that best approximates the
set of known facial images. Application of PCA for face recognition proceeds by first
performing a PCA on a well-defined set of images of known human faces. From this
analysis, a set of K principal components is obtained, and the projection of the new faces on
these components is used to compute distances between new faces and old faces. These
distances, in turn, are used to make predictions about the new faces. Technically, PCA on
face images proceeds as follows. The K face images to be learned are represented by K
vectors ax, where k is the image number. Each vector ax is obtained by concatenating the
rows of the matrix storing the pixel values (here, gray levels) of the k’th face image. This
operation is performed using the vec operation, which transforms a matrix into a vector (see
Abdi et al. (1995) for more details).
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The complete set of patterns is represented by a I x K matrix noted A, where I represents the
number of pixels of the face images and K the total number of images under consideration.
Specifically, the learned matrix A can be expressed as A = P A QT where P is the matrix of
eigenvectors of AAT, Q is the matrix of eigenvectors of ATA, and A is the diagonal matrix of
singular values of A, that is, A=A1/2, with A, the matrix of eigenvalues of AAT and ATA. The
left singular eigenvectors P can be rearranged in order to be displayed as images. In general,
these images are somewhat facelike (Abdi, 1988) and they are often called eigenfaces. Given
the singular vectors P, every face in the database can be represented as a weight vector in
the principal component space. The weights are obtained by projecting the face image onto
the left singular vectors, and this is achieved by a simple inner product operation:
PROJ,=XTP*1 where x is a facial vector, corresponding to an example face in the training
process or a test face in the recognition process. Therefore, when a new test image whose
identification is required is given, its vector of weights also represents the new image.
Identification of the test image is done by locating the image in the known face database
whose weights have the smallest Euclidean distance from the weight of the test image. This
algorithm, employed by Turk and Pentland is called the nearest neighbor classification rule.

4.4 Experimental results on Panoramic Face Recognition

For these first tests, panoramic faces were analyzed using the original 240x320-pixel image
(spatial ~representation) without preprocessing. The database consisted of 12
persons x 4 expressions x 2 1sessions = 96 panoramic faces, and was divided into two
subsets. One subset served as the training set, and the other subset as the testing set. As
illustrated in Figure 19, all these panoramic faces possess a uniform background, and the
ambient lighting varied according to the daylight.

From the panoramic face database, one, two, three, or four images were randomly chosen
for each individual in order to create the training set (number of patterns for learning per
individual, p=1, 2, 3, 4). The rest of the panoramic faces were used in order to test the face
recognition method. For example, when p=1, the total number of training examples is equal
to 1 x 12 persons = 12, and the number of test samples for recognition is equal to 96-12=84.
Therefore, for each individual, only one panoramic face is learned in order to recognize
seven other images of this person. Several executions of our MATLAB program were run for
each value of p, using randomly chosen training and testing sets. Then we computed the
mean performance. Using the nearest neighbour classification rule, the panoramic face
identity test is done by locating the closest image in the known face database. Therefore, the
system can make only confusion errors (i.e., associating the face of one person with a test
face of another). Correct panoramic face recognition rates go from 70 % when p=1 to 93.2%
when p=4.

We added a discriminant analysis stage in the face recognition process so as to determine
the number of necessary eigenvectors. This analysis, called the jackknife
(Yang & Robinson, 2001) reorders eigenvectors, not according to their eigenvalues, but
according to their importance for identification. Specifically, we computed the ratio of the
between-group inertia to the within-group inertia for each eigenvector. This ratio expresses
the quality of the separation of the identity of the subject performed by this eigenvector. The
eigenvector with the largest ratio performs the best identity separation, the eigenvector with
the second largest ratio performs second best, etc. We observe that it suffices to use only 23
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eigenvectors to reach the maximum recognition rate (93.2%). Additional eigenvectors do not
add to the quality of the identification.

We also tested the frequential behavior of our recognition system. We can observe that the
frequential spectra of a panoramic face are well centered at low frequencies. This allows us
to apply a lowpass filter in order to reduce the size of the data set to process. Only
80 x 80 FFT amplitude values of low frequencies were used for the recognition system.

(b) (©
Figure 20. (a) original image, (b) original image with added Gaussian noise, (c) FFT image
using the spectrum amplitude of (b) and the phase of (a) and (d) FFT image using the
spectrum amplitude of (a) and the phase of (b)

We applied the same training and testing process as used in spatial representation. We
obtain a better recognition rate with the frequential representation (97.5%) than with the
spatial representation (93.2%). This advantage of the frequential representation is due to the
fact that for face images, the spectrum amplitude is less sensitive to noise than the spectrum
phase. We confirmed this interpretation by using a panoramic face image to which noise
was added. Figure 20(a) shows a original panoramic face. Figure 20 (b) displays the same
panoramic face image with added noise. We first obtained the FFTs of these two images and
then their inverse FFTs in the two following manners: (1) using the spectrum amplitude of
the noised image and the spectrum phase of the original image (see Figure 20-c) and (2)
using the spectrum phase of the noised image and the spectrum amplitude of the original
image (see Figure 20-d).

These results show that the face obtained with the first configuration is closer to the original
face than the face obtained with the second configuration. This confirms that the spectrum
amplitude is less sensitive to noise than the spectrum phase.

4.5 Panoramic face recognition with negative samples

In order to evaluate the behavior of our system for unknown people, we added four people
to the test database. These panoramic faces were obtained as described in Sec. 4.2. Table 4
displays the performance of different tests. In order to reject these unknown faces, we
established a threshold of Euclidean distance. Because we are working on applications of
typical access control, where confusion is more harmful than nonrecognition, we decided to
use a severe acceptance threshold in order to reject intruders. Note that the acceptance
threshold is constant for all tests. Efficiency is defined as follows:

e Recognition: Correct recognition of a panoramic face.

e Nonrecognition: A panoramic face has not been recognized.

e  Confusion: A panoramic face is confused with an intruder.

These performance results are obtained using the frequential representation and show that
performance declines in comparison with tests without negative samples.
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Table 4. Results of panoramic face recognition with negative samples

4.6 Discussion

In this section, we have proposed a fast and simple method for panoramic face mosaicking.
The acquisition system consists of several cameras followed by a series of fast linear
transformations of the images. The simplicity of the computations makes it possible to
envisage real-time applications.

In order to test the recognition performance of our system, we used the panoramic faces as
input to a recognition system based on PCA. We tested two panoramic face representations:
spatial and frequential. We found that a frequential representation gives the better
performance, with a correct recognition rate of 97.46%, versus 93.21% for spatial
representation. An additional advantage of the frequential representation is that it reduces
the data volume to be processed and this further accelerates the calculation speed. We used
negative samples for the panoramic face recognition system, and the correct recognition rate
was 92.38 % .Experimental results show that our fast mosaicking system provides relevant 3-
D facial surface information for recognition application. The obtained performance is very
close or superior to published levels (Howell & Buxton, 1998, Slimane et al., 1999,
Tsalakanidou et al., 2003).

In the future, we plan to simplify our acquisition system by replacing the markers with a
structured light. We also hope to use our system without markers. For this, we will detect
control points on faces (corners, points of maximum curvature, etc.). Another line of
development is to improve the geometry quality of our panoramic face mosaic construction
(Liu & Chen, 2003, Puech et al., 2001). For this, we will use realistic human face models. We
are also exploring processing panoramic face recognition using other classifiers with more
variable conditions.

5. Conclusions

In this chapter, we have presented three dedicated systems to face recognition developed by
our research team since 2002. Our main objective was motivated by the implementation on
embedded systems of efficient models of unconstrained face tracking and identity
verification in arbitrary scenes. The main goal of these various systems is to provide efficient
algorithms that only require few hardware in order to obtain high success rates of face
recognition with high real time constraints.

The first system is a real time vision system that allows us to localize faces in video
sequences and verify their identity. These processes are image processing techniques and
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the radial basis function (RBF) neural network approach. The robustness of this system has
been evaluated quantitatively on eight video sequences. We have also described three
hardware implementations of our model on embedded systems based, respectively, on field
programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital
signal processor (DSP). For each configuration, we have analyzed the algorithm complexity
and present results of implementations in terms of resources and processing speed.

The main results of these first implementations have highlighted the need of a dedicated
hardware such as an artificial retina embedding low level image processing in order to
extract input vectors of the RBF neural network. Such a system could unload a consequent
calculation part of FPGA. So, the second part of the chapter was devoted to the description
of the principles of an adequate CMOS sensor. For this purpose, a current mode CMOS
active sensor has been designed using an array of pixels that are amplified by using current
mirrors of column amplifiers. This circuit is simulated using Mentor Graphics™software
with parameters of a 0.6 pm CMOS process. The circuit is able to realise captures of
subwindows at any location and any size in the whole image and computes mean values of
adjacent pixels which can serve as inputs of the RBF network.

In the last section of this chapter, we present some new results on a system that performs
mosaicking of panoramic faces. Our objective was to study the feasibility of panoramic face
construction in real time. We built a simple acquisition system composed of five standard
cameras, which together can take simultaneously five views of a face at different angles.
Then, we chose an easily hardware-achievable algorithm, consisting of successive linear
transformations, in order to compose a panoramic face from these five views. In order to
validate our system, we also conducted a preliminary study on panoramic face recognition,
based on the principal-component method. Experimental results show the feasibility and
viability of our system and allow us to envisage later a hardware implementation.
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1. Introduction

This chapter presents a vision-based face and gesture recognition system for human-robot
interaction. By using subspace method, face and predefined hand poses are classified from
the three largest skin-like regions that are segmented using YIQ color representation system.
In the subspace method we consider separate eigenspaces for each class or pose. Face is
recognized using pose specific subspace method and gesture is recognized using the rule-
based approach whenever the combinations of three skin-like regions at a particular image
frame satisfy a predefined condition. These gesture commands are sent to robot through
TCP/IP wireless network for human-robot interaction. The effectiveness of this method has
been demonstrated by interacting with an entertainment robot named AIBO and a
humanoid robot Robovie.

Human-robot symbiotic systems have been studied extensively in recent years, considering
that robots will play an important role in the future welfare society [Ueno, 2001]. The use of
intelligent robots encourages the view of the machine as a partner in communication rather
than as a tool. In the near future, robots will interact closely with a group of humans in their
everyday environment in the field of entertainment, recreation, health-care, nursing, etc. In
human-human interaction, multiple communication modals such as speech, gestures and
body movements are frequently used. The standard input methods, such as text input via
the keyboard and pointer/location information from a mouse, do not provide a natural,
intuitive interaction between humans and robots. Therefore, it is essential to create models
for natural and intuitive communication between humans and robots. Furthermore, for
intuitive gesture-based interaction between human and robot, the robot should understand
the meaning of gesture with respect to society and culture. The ability to understand hand
gestures will improve the naturalness and efficiency of human interaction with robot, and
allow the user to communicate in complex tasks without using tedious sets of detailed
instructions.

This interactive system uses robot eye’s cameras or CCD cameras to identify humans and
recognize their gestures based on face and hand poses. Vision-based face recognition
systems have three major components: image processing or extracting important clues (face
pose and position), tracking the facial features (related position or motion of face and hand
poses), and face recognition. Vision-based face recognition system varies along a number of



150 Face Recognition

dimensions: number of cameras, speed and latency (real-time or not), structural
environment (restriction on lighting conditions and background), primary features (color,
edge, regions, moments, etc.), etc. Multiple cameras can be used to overcome occlusion
problems for image acquisition but this adds correspondence and integration problems.

The aim of this chapter is to present a vision-based face and hand gesture recognition
method. The scope of this chapter is versatile. Segmentation of face and hand regions from
the cluttered background, generation of eigenvectors and feature vectors in training phase,
classification of face and hand poses, recognizes the user and gesture. In this chapter we
present a method for recognizing face and gestures in real-time combining skin-color based
segmentation and subspace-based patterns matching techniques. In this method three larger
skin like regions are segmented from the input images using skin color information from
YIQ color space, assuming face and two hands may present in the images at the same time.
Segmented blocks are filtered and normalized to remove noises and to form fixed size
images as training images. Subspace method is used for classifying hand poses and face
from three skin-like regions. If the combination of three skin-like regions at a particular
frame matches with the predefined gesture then corresponding gesture command is
generated. Gesture commands are being sent to robots through TCP-IP network and their
actions are being accomplished according to user’s predefined action for that gesture. In this
chapter we have also addressed multi directional face recognition system using subspace
method. We have prepared training images in different illuminations to adapt our system
with illumination variation.

This chapter is organized as follows. Section 2 focuses on the related research regarding
person identification and gesture recognition. In section 3 we briefly describe skin like
regions segmentation, filtering and normalization techniques. Section 4 describes subspace
method for face and hand poses classification. Section 5 presents person identification and
gesture recognition method. Section 6 focuses on human-robot interaction scenarios. Section
7 concludes this chapter and focuses on future research.

2. Related Work

This section briefly describes the related research on computer vision-based systems that
include the related research on person identification and gesture recognition systems.
Numbers of approaches have been applied for the visual interpretation of gestures to
implement human-machine interaction [Pavlovic, 1997]. Major approaches are focused on
hand tracking, hand poster estimation or hand pose classification. Some studies have been
undertaken within the context of particular application: such as using a finger as a pointer to
control TV, or manipulated Augmented desks. There are large numbers of household
machine that can take benefit from the intuitive gesture understanding, such as: Microwave,
TV, Telephone, Coffee maker, Vacuum cleaner, Refrigerator, etc. The aged/disable people
can access such kind of machine if its have intuitive gesture understanding interfaces.

Computer vision supports a wide range of human tasks including, recognition, navigation,
communication, etc. Using computer vision to sense and perceive the user in an HCI or HRI
context is often called vision-based interaction or vision-based interface (VBI). In recent
years, there has been increased research on practical vision-based interaction methods, due
to availability of vision-based software, and inexpensive and fast enough computer vision
related hardware components. As an example of VBI, hand pose or gesture recognition
offers many promising approaches for human-machine interaction (HMI). The primary goal
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of the gesture recognition researches is to develop a system, which can recognize specific
user and his/her gestures and use them to convey information or to control intelligent
machine. Locating the faces and identifying the users is the core of any vision-based human-
machine interface systems. To understand what gestures are, brief overviews of other
gesturer researchers are useful.

2.1 Face Detection and Recognition

In the last few years, face detection and person identification attracts many researchers due
to security concern; therefore, many interesting and useful research demonstrations and
commercial applications have been developed. A first step of any face recognition or vision-
based person identification system is to locate the face in the image. Figure 1 shows the
example scenarios of face detection (partly of the images are taken from Rowley research
paper [Rowley, 1997]). After locating the probable face, researchers use facial features (eyes,
nose, nostrils, eyebrows, mouths, leaps, etc.) detection method to detect face accurately
[Yang, 2000]. Face recognition or person identification compares an input face image or
image features against a known face database or features databases and report match, if any.
Following two subsections summarize promising past research works in the field of face
detection and recognition.

2.1.1 Face Detection

Face detection from a single image or an image sequences is a difficult task due to variability
in pose, size, orientation, color, expression, occlusion and lighting condition. To build a fully
automated system that extracts information from images of human faces, it is essential to
develop efficient algorithms to detect human faces. Visual detection of face has been studied
extensively over the last decade. There are many approaches for face detection. Face
detection researchers summarized the face detection work into four categories: template
matching approaches, feature invariant approaches, appearance-based approaches and
knowledge-based approaches [Yang, 2002]. Such approaches typically rely on a static
background, so that human face can be detected using image differencing. Many researches
also used skin color as a feature and leading remarkable face tracking as long as the lighting
conditions do not varies too much [Dai, 1996], [Crowley, 1997].

Template Matching Approaches

In template matching methods, a standard template image data set using face images is
manually defined. The input image is compared with the template images and calculated
correlation coefficient or/and minimum distances (Manhattan distance, Euclidian distance,
Mahalanobis distance, etc.). The existence of face is determined using the maximum
correlation coefficient value and/or minimal distance. For exact matching correlation
coefficient is one and minimum distance is zero. This approach is very simple and easy to
implement. But recognition result depends on the template images size, pose, orientation,
shape and intensity.

Sakai et. al. [Sakai, 1996] used several sub-templates for the eyes, nose, mouth and face
contour to model a face which is defined in terms of line spaces. From the input images lines
are extracted based on greatest gradient change and then matched against the sub-
templates. The correlation between sub-images and contour templates are computed first to
locate the probable location of faces. Then matching with the other sub-templates is
performed at the probable face location.
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Tsukamoto et. al. [Tsukamoto, 1994] presents a qualitative model for face [QMF]. In their
model each sample image is divided into N blocks and qualitative features (‘lightness” and
‘edgeness’) are estimated for each block. This blocked template is used to estimate
“faceness” at every position of an input image. If the faceness measure is satisfied the
predefined threshold then the face is detected.

We have developed a face detection method using the combination of correlation coefficient
and Manhattan distance features, calculated from multiple face templates and test face
image [Hasanuzzaman, 2004a]. In this method three larger skin-like regions are segmented
first. Then segmented images are normalized to match with the size and type of the
template images. Correlation coefficient is calculated using equation (1),

a=M/F @

where, M; is total number of matched pixels (white pixels with white pixels and black pixels

with black pixels) with the t template, P; is total number of pixels in the t# template and t,

is a positive number. For exact matching ¢ is 1, but for practical environment we have

selected a threshold value for ¢; (0<a<1) through experiment considering optimal matching.
T T

P

(a) Single face detection

(b) Multiple faces detection
Figure 1. Examples of face detection scenarios [Rowley, 1997]
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Minimum distance can be calculated by using equation (2),
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where, I(x,y) is the input image and Gi(x,y), G2(x,y),~--------- ,Gi(x,y) are template images. For

exact matching ¢; is 0, but for practical environment we have selected a threshold value for
o; through experiment considering optimal matching. If the maximum correlation coefficient
and the minimum distance qualifier support corresponding specific threshold values then
that segment is detected as face and the center position of the segment is use as the location
of the face.

Miao et. al. [Miao, 1999] developed a hierarchical template matching method for multi-
directional face detection. At the first stage, an input image is rotated from -20° to +20° in
step of 5°. A multi-resolution image hierarchy is formed and edges are extracted using
Laplacian operator. The face template consists of the edges produced by six facial
components: two eyebrows, two eyes, nose and mouth. Finally, heuristics are applied to
determine the existence of face.

Yuille et. al. [Yuille, 1992] used deformable template to model facial features that fit a priori
elastic model to facial features. In this approach, facial features are described by
parameterized template. An energy function is defined to link edges, peaks, and valleys in
the input image to corresponding parameters in the template. The best fit of the elastic
model is found by minimizing an energy function of the parameters.

Feature Invariant Approaches

There are many methods to detect facial features (mouth, eyes, eyebrows, lips, hair-line, etc.)
individually and from their geometrical relations to detect the faces. Human face skin color
and texture also used as features for face detection. The major limitations with these
feature-based methods are that the image features are corrupted due to illumination, noise
and occlusion problem.

Sirohey proposed a face localization method from a cluttered background using edge map
(canny edge detector) and heuristics to remove and group edges so that only the ones on the
face contour are preserved [Sirohey, 1993]. An ellipse is then fit to the boundary between the
head region and the background.

Chetverikov et. al. [Chetverikov, 1993] presented face detection method using blobs and
streaks. They used two black blobs and three light blobs to represent eyes, cheekbones and
nose. The model uses streaks to represent the outlines of the faces, eyebrows and lips. Two
triangular configurations are utilized to encode the spatial relationship among the blobs. A
low resolution Laplacian image is generated to facilitate blob detection. Next, the image is
scanned to find specific triangular occurrences as candidates. A face is detected if streaks are
identified around the candidates.

Human faces have a distinct texture that can be separated them from other objects.
Augusteijn et. al. [Augusteijn, 1993] developed a method that infers the presence of face
thorough the identification of face like templates. Human skin color has been proven to be
an effective feature for face detections, therefore many researchers has used this feature for
probable face detection or localization [Dai 1996], [Bhuiyan, 2003], [Hasanuzzaman 2004b].
Recently, many researchers are combining multiple features for face localization and
detection and those are more robust than single feature based approaches. Yang and Ahuja
[Yang, 1998] proposed a face detection method based on color, structure and geometry.
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Saber and Tekalp [Saber, 1998] presented a frontal view-face localization method based on
color, shape and symmetry. Darrel et. al. [Darrel, 2000] integrated stereo, color and pattern
detection method to track the person in real time.

Appearance-Based Approaches

Appearance-based methods use training images and learning approaches to learn from the
known face images. These approaches rely on the statistical analysis and machine learning
techniques to find the relevant characteristics of face and non-face images. There are many
researchers using appearance-based methods.

Turk et. al. [Turk, 1991] applied principal component analysis to detect and recognize face.
From the training face images they generated the eigenfaces. Face images and non-face
images are projected onto the eigenspaces; form feature vectors and clustered the images
based on separation distance. To detect the presence of a face from an image frame, the
distance between the known face space and all location in the images are calculated. If the
minimum distance satisfied the faceness threshold values then the location is identified as
face. These approaches are widely used by the many researchers.

Knowledge-Based Approaches

These methods use the knowledge of the facial features in top down approaches. Rules are
used to describe the facial features and their relations. For example, a face is always consists
of two eyes, one nose and a mouth. The relationship is defined using relative distances and
positions among them. For example, the center of two eyes are align on the same line, the
center points of two eyes and mouth form a triangular. Yang and Huang [Yang, 1994] used
hierarchical knowledge-based method to detect face. In this method they used three layers
of rules. At the first level, all possible face candidates are found by scanning a mask window
(face template) over the input images, and applying a set of rules at each location. At the
second level, histogram equalization and edge detection is performed on candidate faces. At
the third level, using rules facial feature are detected individually and using the pre-
knowledge of their relation, detect the actual faces. Kotropoulous [Kotropoulous, 1997] and
other also presented rule-based face localization method.

2.1.2 Face Recognition

During the last few years face recognition has received significant attention from the
researchers [Zhao, 2003] [Chellappa, 1995]. Research on automatic machine- based face
recognition has started in the 1970s [Kelly 1970]. Figure 2 shows an example of face
recognition scenario. The test face image (preprocessed) is matched with the face images of
known persons in the database. If the face is sufficient close (nearest and support predefined
threshold) to any one of the face classes, then corresponding person is identified, otherwise
the person is unknown. Zhao [Zhao, 2003] et. al. have summarized the past recent researches
on face recognition methods with three categories: Holistic matching methods, Feature-
based matching methods and Hybrid methods.

Holistic Methods

These methods use the whole face region as the raw input for the recognition unit. One of
the most widely used representations of the face recognition is eigenfaces, which are based
on principal component analysis (PCA). The eigenface algorithm uses the principal
component analysis (PCA) for dimensionality reduction and to find the vectors those are
best account for the distribution of face images within the entire face image spaces. Using
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PCA many face recognition techniques have been developed [Turk, 1991], [Lee, 1999],
[Chung, 1999], etc.

Known Face Images Test Who is
Image | the
person?

E Person_4

EEEEE
CEEEESEEEEE

Figure 2. Example of face recognition scenario

Turk and Pentland [Turk, 1991] first successfully used eigenfaces for face detection and
person identification or face recognition. In this method from the known face images
training image dataset is prepared. The face space is defined by the “eigenfaces” which are
eigenvectors generated from the training face images. Face images are projected onto the
feature space (or eigenfaces) that best encodes the variation among known face images.
Recognition is performed by projecting a test image onto the “facespace” (spanned by the m
number of eigenfaces) and then classified the face by comparing its position (Euclidian
distance) in face space with the positions of known individuals. Figure 3 shows the example
of 8 eigenfaces generated from 140 training face (frontal) images of 7 persons. In this
example, the training faces are 60X 60 gray images.

The purpose of PCA is to find out the appropriate vectors that can describe the distribution
of face images in images spaces and form another face spaces. To form principal
components m-numbers of eigenvectors are used based on the eigenvalues distribution.
Eigenvectors and eigenvalues are obtained from the covariance matrix generated from
training face images. The eigenvectors are sorted based on eigenvalues (higher-to-lower)
and selected first m-number of eigenvectors to form principal components.

ARG ES

Figure 3. Example of eigenfaces

Figure 4 shows the example distribution of eigenvalues for 140 frontal face images. This
graph explores the eigenvalues spectrum and how much variance the first m-vectors for. In
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most cases the number of eigenvectors that account for variance somewhere in the 65%-90%
range.

Independent component analysis (ICA) is similar to PCA except that the distributions of the
components are designed to be non-Gaussian. The ICA separates the high-order moments of
the input in addition to the second order moments utilized in PCA. Bartlett ef. al. [Bartlett,
1998] used ICA methods for face recognition and reported satisfactory recognition
performance.

Face recognition system using Linear Discriminant Analysis (LDA) or Fisher Linear
Discriminant Analysis (FDA) has also been very successful. In Fisherface algorithm by
defining different classes with different statistics, the images in the learning set are divided
in the corresponding classes [Belhumeur, 1997]. Then, the techniques similar to those used
in eigenface algorithm are applied for face classification or person identification.
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Figure 4. Example of eigenvectors spectrum for 140 eigenfaces

Feature-Based Matching Methods

In these methods facial features such as the eyes, lips, nose and mouth are extracted first and
their locations and local statistics (geometric shape or appearance) are fed into a structural
classifier. Kanade developed one of the earliest face recognition algorithms based on
automatic facial feature detection [Kanade, 1977]. By localizing the corner of the eyes,
nostrils, etc., in frontal views, that system compares parameters for each face, which were
compared (using Euclidian distance metric) against the parameters of known person faces.
One of the most successful of these methods is the Elastic Bunch Graph Matching (EBGM)
system [Wiskott, 1997]. Other well-known methods in these systems are Hidden Markov
Model (HMM) and convolution neural network [Rowley, 1997]. System based on EBGM
approach have been applied to face detection and extraction, pose estimation, gender
classification, sketch image based recognition and general object recognition.
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Hybrid Approaches

These approaches use both holistic and features based approaches. These methods are very
similar to human perception consider whole image and features individually at a time.
Chung et. al. [Chung, 1999] combined Gabor Wavelet and PCA based approaches for face
recognition and reported better accuracy than each of individual algorithm. Pentland et. al.
[Pentland, 1994] have used both global eigenfaces and local eigenfeatures (eigeneyes,
eigenmouth and eigennose) for face recognition. This method is robust against face images
with multiple views.

2.2 Gesture Recognition and Gesture-Based Interface

Gestures are expressive meaningful body motions i.e., physical movements of the hands,
arms, fingers, head, face or other parts of the body with the intent to convey information or
interact with the environment [Turk, 2000]. People all over the world use their hands, head
and other parts of the body to communicate expressively. The social anthropologists
Edward T. Hall claims 60% of all our communications are nonverbal [Imai, 2004]. Gestures
are used for everything from pointing at a person or an object to change the focus of
attention, to conveying information. From the biological and sociological perspective,
gestures are loosely defined, thus, researchers are free to visualize and classify gestures as
these fit. Biologists define “gesture” broadly, stating, “the notion of gesture is to embrace all
kinds of instances where an individual engages in movements whose communicative intent
is paramount, manifest and openly acknowledged” [Nespoulous, 1986]. Gestures associated
with speech are referred to as gesticulation. Gestures, which function independently of
speech, are referred to as autonomous gestures. Autonomous gestures can be organized into
their own communicative language, such as American Sign Language (ASL). Autonomous
gesture can also represent motion commands to use in communication and machine control.
Researchers are usually concerned with gestures those are directed toward the control of
specific object or the communication with a specific person or group of people.

Gesture recognition is the process by which gestures made by the user are make known to
the intelligence system. Approximately in the year 1992 the first attempts were made to
recognize hand gestures from color video signals in real-time. It was the year, when the first
frame grabbers for color video input were available, that could grab color images in real
time. As color information improves segmentation and real time performance is a
prerequisite for human-computer interaction, this obviously seems to be the start of
development of gesture recognition. Two approaches are commonly used to recognize
gestures, one is a gloved-base approach [Sturman, 1994] and another is a vision-based
approach [Pavlovic, 1997].

2.2.1 Glove-Based Approaches

A common technique is to instrument the hand with a glove, which is equipped with a
number of sensors, which provide information about hand position, orientation and flex of
the fingers. The first commercially available hand tracker is the ‘Dataglove’ [Zimmerman,
1987]. The ‘Dataglove’ could measure each joint bend to an accuracy of 5 to 10 degrees,
could classify hand pose correctly, but not the sideways movement of the fingers. The
second hand tracker, ‘CyberGlove” developed by Kramer [Kramer, 1989] uses strain gauges
placed between the fingers to measure abduction as well as more accurate bend sensing.
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Figure 5 shows the example of a ‘CyberGlove” which has up to 22 sensors, including three
bend sensors on each finger, four abduction sensors, plus sensors measuring thumb
crossover, palm arch, wrist flexion and wrist abduction [Bllinghurst, 2002]. Once the gloves
have captured hand pose data, gestures can be recognized using a number of different
techniques. Neural network approaches or statistical template-matching approaches are
commonly used to identify static hand posses [Fels, 1993]. Time dependent neural network
and Hidden Markov Model (HMM) are commonly used for dynamic gesture recognition
[Lee, 1996]. In this case gestures are typically recognized using pre-trained templates,
however gloves can also be used to identify natural or untrained gestures. Glove-based
approaches provide more accurate gesture recognition than vision-based approaches but
they are expensive, encumbering and unnatural.

Figure 5. The ‘CyberGlove’ for hand gesture recognition [Bllinghurst, 2002]

2.2.2 Vision-Based Approaches

Vision-based gesture recognition systems can be divided into three main components:
image processing or extracting important clues (hand shape and position, face or head
position, etc.), tracking the gesture features (related position or motion of face or hand
poses), and gesture interpretation (based on collected information that support predefined
meaningful gesture). The first phase of gesture recognition task is to select a model of the
gesture. The modeling of gesture depends on the intent-dent applications by the gesture.
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There are two different approaches for vision-based modeling of gesture: Model based
approach and Appearance based approach.

The Model based techniques are tried to create a 3D model of the user hand (parameters:
Joint angles and palm position) [Rehg, 1994] or contour model of the hand [Shimada, 1996]
[Lin, 2002] and use these for gesture recognition. The 3D models can be classified in two
large groups: volumetric model and skeletal models. Volumetric models are meant to
describe the 3D visual appearance of the human hands and arms.

Appearance based approaches use template images or features from the training images
(images, image geometry parameters, image motion parameters, fingertip position, etc.)
which use for gesture recognition [Birk, 1997]. The gestures are modeled by relating the
appearance of any gesture to the appearance of the set of predefined template gestures. A
different group of appearance-based model uses 2D hand image sequences as gesture
templates. For each gestures number of images are used with little orientation variations
[Hasanuzzaman, 2004a]. Images of finger can also be used as templates for finger tracking
applications [O’Hagan, 1997]. Some researchers represent motion history as 2D image and
use it as template images for different actions of gestures. The majority of appearance-based
models, however, use parameters (image eigenvectors, image edges or contour, etc.) to form
the template or training images.  Appearance based approaches are generally
computationally less expensive than model based approaches because its does not require
translation time from 2D information to 3D model.

Once the model is selected, an image analysis stage is used to compute the model
parameters from the image features that are extracted from single or multiple video input
streams. Image analysis phase includes hand localization, hand tracking, and selection of
suitable image features for computing the model parameters.

Two types of cues are often used for gesture or hand localization: color cues and motion
cues. Color cue is useful because human skin color footprint is more distinctive from the
color of the background and human cloths [Kjeldsen, 1996], [Hasanuzzaman, 2004d]. Color-
based techniques are used to track objects defined by a set of colored pixels whose
saturation and values (or chrominance values) are satisfied a range of thresholds. The major
drawback of color-based localization methods is that skin color footprint is varied in
different lighting conditions and also the human body colors. Infrared cameras are used to
overcome the limitations of skin-color based segmentation method [Oka, 2002].

The motion-based segmentation is done just subtracting the images from background
[Freeman, 1996]. The limitation of this method is considered the background or camera is
static. Moving objects in the video stream can be detected by inter frame differences and
optical flow [Cutler, 1998]. However such a system cannot detect a stationary hand or face.
To overcome the individual shortcomings some researchers use fusion of color and motion
cues [Azoz, 1998].

The computation of model parameters is the last step of the gesture analysis phase and it is
followed by gesture recognition phase. The type of computation depends on both the model
parameters and the features that were selected. In the recognition phase, parameters are
classified and interpreted in the light of the accepted model or the rules specified for the
gesture interpretation. Two tasks are commonly associated with the recognition process:
optimal partitioning of the parameter space and implementation of the recognition
procedure. The task of optimal partitioning is usually addresses through different learning-
from-examples training procedures. The key concern in the implementation of the
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recognition procedure is computation efficiency. A recognition method usually determines
confidence scores or probabilities that define how closely the image data fits each model.
Gesture recognition methods are divided into two categories: static gesture or hand poster
and dynamic gesture or motion gesture.

Static Gesture

Static gesture (or pose gesture) recognition can be accomplished by using template matching,
eigenspaces or PCA, Elastic Graph Matching, neural network or other standard pattern
recognition techniques. Template matching techniques are the simple pattern matching
approaches. It is possible to find out the most likely hand postures from an image by
computing the correlation coefficient or minimum distance metrics with template images.
Eigenspace or PCA is also used for hand pose classification similarly it used for face
detection and recognition. Moghaddam and Pentland used eigenspaces (eigenhands) and
principal component analysis not only to extract features, but also to estimate complete
density functions for localization [Moghaddam, 1995]. In our previous research, we have
used PCA for hand pose classification from three larger skin-like components that are
segmented from the real-time images [Hasanuzzaman, 2004d].

Triesch et. al. [Triesch, 2002] employed the elastic graph matching techniques to classify
hand posters against complex backgrounds. They represented hand posters by label graphs
with an underlying two-dimensional topology. Attached to the nodes are jets, which are a
sort of local image description based on Gabor filters. This approach can achieve scale-
invariant and user invariant recognition and does not need hand segmentation. This
approach is not view-independent, because it uses one graph for one hand posture. The
major disadvantage of this algorithm is the high computational cost.

Dynamic Gesture

Dynamic gestures are considered as temporally consecutive sequences of hand or head or
body postures in sequence of time frames. Dynamic gestures recognition is accomplished
using Hidden Markov Models (HMMs), Dynamic Time Warping, Bayesian networks or
other patterns recognition methods that can recognize sequences over time steps. Nam et. al.
[Nam, 1996] used HMM methods for recognition of space-time hand-gestures. Darrel et. al.
[Darrel, 1993] used Dynamic Time Warping method, a simplification of Hidden Markov
Models (HMMs) to compare the sequences of images against previously trained sequences
by adjusting the length of sequences appropriately. Cutler et. al. [Cutler, 1998] used a ruled-
based system for gesture recognition in which image features are extracted by optical flow.
Yang [Yang, 2000] recognizes hand gestures using motion trajectories. First they extract the
two-dimensional motion in an image, and motion patterns are learned from the extracted
trajectories using a time delay network.

2.2.3 Gesture-Based Interface

The first step in considering gesture-based interaction with intelligent machine is to
understand the role of gesture in human-to-human communication. There are significant
amount of researches on hand, arm and facial gesture recognition, to control robot or
intelligent machine in recent years. This sub-section summarizes some promising existing
gesture recognition system. Cohen et. al. [Cohen, 2001] described a vision-based hand
gesture identifying and hand tracking system to control computer programs, such as
browser of PowerPoint or any other applications. This method is based primarily on color
matching and is performed in several distinct stages. After color-based segmentation,
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gestures are recognized using geometric configuration of the hand. Starner et. al. [Starner,
1998] proposed real-time American Sign Language (ASL) recognition using desk and
wearable computer based video. The recognition method is based on the skin color
information to extract hands poster (pose, orientation) and locate their position and motion.
Using Hidden Markov Models (HMM) this system recognizes sign language words but
vocabulary is limited to 40 words. Utsumi ef. al. [Utsumi, 2002] detected predefined hand
pose using hand shape model and tracked hand or face using extracted color and motion.
Multiple cameras are used for data acquisition to reduce occlusion problem in their system.
But in this process there incurs complexity in computations. Watanabe et. al. [Watanabe,
1998] used eigenspaces from multi-input image sequences for recognizing gesture. Single
eigenspaces are used for different poses and only two directions are considered in their
method. Hu [Hu, 2003] proposed hand gesture recognition for human-machine interface of
robot teleoperation using edge features matching. Rigoll et. al. [Rigoll, 1997] used HMM-
based approach for real-time gesture recognition. In their work, features are extracted from
the differences between two consecutive images and target image is always assumed to be
in the center of the input images. Practically it is difficult to maintain such condition. Stefan
Waldherr et. al. proposed gesture-based interface for human and service robot interaction
[Waldherr, 2000]. They combined template-based approach and Neural Network based
approach for tracking a person and recognizing gestures involving arm motion. In their
work they proposed illumination adaptation methods but did not consider user or hand
pose adaptation. Torras has proposed robot adaptivity technique using neural learning
algorithm [Torras, 1995]. This method is extremely time consuming in learning phase and
has no way to encode prior knowledge about the environment to gain the efficiency.

3. Skin Color Region Segmentation and Normalization

Images containing faces and hand poses are essential for vision-based human-robot
interaction. But still it is very difficult to segment face and hand poses in real time from the
color images with cluttered background. Human skin color has been used and proven to be an
effective feature in many application areas, from face detection to hand tracking. Since face
and two hands may present in the images at a specific time in an image frame, three largest
skins like regions are segmented from the input images using skin color information. Several
color spaces have been utilized to label pixels as skin including RGB, HSV, YCrCb, YIQ, CIE-
XYZ, CIE-LUV, etc. However, such skin color models are not effective where the spectrum of
the light sources varies significantly. In this study YIQ (Y is luminance of the color and I, Q are
chrominance of the color) color representation system is used for skin-like region segmentation
because it is typically used in video coding and provides an effective use of chrominance
information for modeling the human skin color [Bhuiyan, 2003], [Dai, 1996].

3.1 YIQ-Color Coordinate Based Skin-Region Segmentation

To detect human face or hand, it is assumed that the captured camera images are
represented in the RGB color spaces. Each pixel in the images is represented by a triplet
P=F(R,G,B). The RGB images taken by the video camera are converted to YIQ color
representation system (for detail please refer to Appendix A). Skin color region is
determined by applying threshold values ((Y_Low<Y<Y_High) && (I_Low<I<I_High) &&
Q_Low<Q<Q_High)) [Hasanuzzaman, 2005b].
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Figure 6. Histograms of Y, I, Q components for different person face images
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Figure 6 shows example skin regions and its corresponding Y, I, Q components distributions
for every pixels. Chrominance component I, play an important role to distinguish skin like
regions from non-skin regions, because it is always positive for skin regions. Values of Y and
I increases for more white people and decreases for black people. We have included an off
line program to adjust the threshold values for Y, I, Q, if the person color or light intensity
variation affect the segmentation output. For that reason we need to manually select small
skin region and non-skin regions and run our threshold evaluation program, that will
represent graphical view of Y, I, Q distributions. From those distinguishable graphs we can
adjust our threshold values for Y, I, Q using heuristic approach.

Probable hands and face regions are segmented from the image with the three largest
connected regions of skin-colored pixels. The notation of pixel connectivity describes a
relation between two or more pixels. In order to consider two pixels to be connected, their
pixel values must both be from the same set of values V (for binary images V is 1, for gray
images it may be specific gray value). Generally, connectivity can either be based on 4- or 8-
connectivity. In the case 4-connectivity, it does not compare the diagonal pixels but 8-
connectivity compares the diagonal positional pixels considering 3X3 matrix, and as a
result, 8-connectivity component is more noise free than 4-connectivity component. In this
system, 8-pixels neighborhood connectivity is employed [Hasanuzzaman, 2006].

a) “Twohand” b) “LeftHand” ) “RightHand”

d) “One” e) “Two” f) “Three”
Figure 7. Example outputs of skin-regions segmentation

In order to remove the false regions from the segmented blocks, smaller connected regions
are assigned by the values of black-color (R=G=B=0). As a result, after thresholding the
segmented image may contain some holes in the three largest skin-like regions. In order to
remove noises and holes, segmented images are filtered by morphological dilation and
erosion operations with a 3X3 structuring element. The dilation operation is used to fill

the holes and the erosion operations are applied to the dilationed results to restore the
shape.
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After filtering, the segmented skin regions are bounded by rectangular box using height and
width information of each segment:(M,XN,), (M,xN,), and (M,XN,). Figure 7

shows the example outputs of skin like region segmentation method with restricted
background. If the user shirt’s color is similar to skin color then segmentation accuracy is
very poor. If the user wears short sleeves or T-shirt then it needs to separate hand palm from
arm. This system assumes the person wearing full shirt with non-skin color.

3.2 Normalization

Normalization is done to scale the image to match with the size of the training image and
convert the scaled image to gray image [Hasanuzzaman, 2004a]. Segmented images are
bounded by rectangular boxes wusing height and width information of each

segment: (M, XN,), (M,XN,), and (M;XxN,). Each segment is scaled to be square
images with (60X 60) and converted it to as gray images (BMP image). Suppose, we have a
segment of rectangle P[(x',)")—(x",")] we sample it to rectangle Q[(0,0)—(60x60)]

using following expression,

q 9 b =X o 0=y 3

Ox"y)=Px + AT ) ®)

Each segment is converted as gray image (BMP image) and compared with

template/training images to find the best match. Using the same segmentation and

normalization methods training images and test images are prepared, that is why result of

this matching approach is better than others who used different training/template image

databases. Beside this, we have included training/template images creation functions in this

system so that it can adapt with person and illumination changes. Figure 8 shows the
examples of training images for five face poses and ten hand poses.

Figure 8. Examples of training images



Face and Gesture Recognition for Human-Robot Interaction 165

4. Face and Hand Pose Classification by Subspace method

Three larger skin like regions are segmented from the input images considering that two
hands and one face may present in the input image frame at a specific time. Segmented
areas are filtered, normalized and then compared with the training images for finding the
best matches using pattern-matching method. Principal component analysis (PCA) method
is a standard pattern recognition approach and many researchers use it for face and hand
pose classification [Hasanuzzaman, 2004d]. The main idea of the principal component
analysis (PCA) method is to find the vectors that best account for the distribution of target
images within the entire image space. In the general PCA method, eigenvectors are
calculated from training images that include all the poses or classes. But for classification a
large number of hand poses for a large number of users, need large number of training
datasets from which eigenvectors generation is tedious and may not be feasible for a
personal computer. Considering these difficulties we have proposed pose-specific subspace
method that partition the comparison area based on each pose. In pose-specific subspace
method, training images are grouped based on pose and eigenvectors for each pose are
generated separately. In this method one PCA is used for each pose [Hasanuzzaman, 2005b]
[Hasanuzzaman, 2004c]. In the following subsection we have described the algorithm of
pose-specific subspace method for face and hand pose classification, which is very similar to
general PCA based algorithm.

Symbols | Meanings

T j(i) Training images for ith class

u ,(ni) mth Eigenvectors for ith class

Qv Weight vector for ith class

Ct),(fi) Element of weight vector for ith class

D, Average image for ith class

s l(i) Ith Known image for ith class

£ Euclidean distance among weight vectors

& l(i) Element of Euclidean distance among weight vectors for ith class

Table 1. List of symbols used in subspace method

Pose-Specific Subspace Method

Subspace method offers an economical representation and very fast classification for vectors
with a high number of components. Only the statistically most relevant features of a class
are retained in the subspace representation. The subspace method is based on the extraction
of the most conspicuous properties of each class separately as represented by a set of
prototype sample. The main idea of the subspace method is similar to principal component
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analysis, is to find the vectors that best account for the distribution of target images within
the entire image space. In subspace method target image is projected on each subspace
separately. Table 1 summarizes the symbols that are used for describing pose-specific
subspace method for face and hand poses classification. The procedure of face and hand
pose classification using pose-specific subspace method includes following operations:

(I) Prepare noise free version of predefined face and hand poses to form training images

Tl_“) (NXN), where j is number training images of ith class (each pose represent one class)

and j=1,2,...., M. Figure 8 shows the example training image classes: frontal face, right
directed face, left directed face, up directed face, down directed face, left hand palm, right
hand palm, raised index finger, raised index and middle finger to form “V” sign, raised
index, middle and ring fingers, fist up, make circle using thumb and fore fingers, thumb up,
point left by index finger and point right by index finger are defined as pose P1, P2, P3, P4,
P5, P6, P7, P8, P9, P10, P11, P12, P13, P14 and P15 respectively.

(IT) For each class, calculate eigenvectors (uf,f)) using Matthew Turk and Alex Pentland

technique [Turk, 1991] and chose k-number of eigenvectors (u,({i))corresponding to the

highest eigenvalues to form principal components for that class. These vectors for each class
define the subspace of that pose [for detail please refer to Appendix B].

(III) Calculate corresponding distribution in k-dimensional weight space for the known
training images by projecting them onto the subspaces (eigenspaces) of the corresponding

class and determine the weight vectors (Q,(i) ), using equations (4) and (5).

(1) i i
. = (uli b3 (SI( ) -D) ®)
Q' =[a),a,...a0"] ©)
1 M .
Where, average image of it class @ =— > 7 and s[(’)(N X N) is Ith known images of ith

n=1
class.
(IV) Each segmented skin-region is treated as individual test input image, transformed into
eigenimage components and calculated a set of weight vectors (Q®) by projecting the input
image onto each of the subspace as equations (4) and (5).
(V) Determine if the image is a face pose or other predefined hand pose based on minimum
Euclidean distance among weight vectors using equation (6) and (7),

e 100 ©
£ =argmin{e\"} @)

If € is lower than predefined threshold then its corresponding pose is identified. For exact
matching & should be zero but for practical purposes this method uses a threshold value
obtained from experiment. If the pose is identified then corresponding pose frame will be
activated.
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5. Face and Gesture Recognition

A number of techniques have been developed to detect and recognize face and gesture. For
secure or operator specific gesture-based human machine interaction, user identification or
face recognition is important. The meaning of the gesture may differ from person to person
based on their culture. Suppose according to his culture, user “Hasan” uses “ThumbUp”
gesture to terminate an action of robot, whereas user “Cho” uses this gesture to repeat the
previous action. In order to person specific gesture interpret (i.e., gesture is same but
different meaning for different users) or person dependent gesture command generation we
should map user, gesture and robot action.

5.1 Face Recognition

Face recognition is important for human-robot natural interaction and person dependent
gesture command generation, i.e, gesture is same but different meaning for different
persons. If any segment (skin-like region) is classified as a face, then it needs to classify the
pattern, whether it belongs to a known person or not. The detected face is filtered in order to
remove noises and normalized so that it matches with the size and type of the training
image. The detected face is scaled to be a square image with 60X60 dimension and
converted to be a gray image.

This face pattern is classified using the eigenface method [Turk, 1991], whether it belongs to
known person or unknown person. The face recognition method uses five face classes:
frontal face (P1), right directed face (P2), left directed face (P3), up state face (P4) and down
state face (P5) in training images as shown in Figure 8 (top row). The eigenvectors are
calculated from the known persons face images for each face class and k-number of
eigenvectors corresponding to the highest eigenvalues are chosen to form principal
components for each class. For each class we have formed subspaces and projected known
person face images and detected face image on those subspaces using equation (4) and (5).
We get weight vectors for known person images and detected face images. The Euclidean
distance is determined between the weight vectors generated from the training images and
the weight vectors generated from the detected face by projecting them onto the eigenspaces
using equation (6) and (7). If minimum Euclidian distance is lower than the predefined
threshold then corresponding person is identified other wise result is unknown person
[Hasanuzzaman, 2004c]. We have used face recognition output for human robot (‘Robovie”)
greeting application. For example, if the person is known then robot say (“ Hi, person name,
How are you?”) but for unknown person robot say (“I do not know you”).

We found that the accuracy of frontal face recognition is better than up, down and more left
right directed faces [Hasanuzzaman, 2004c]. In this person identification system we prefer
frontal and a small left or right rotated faces. Figure 9 shows the sample outputs of face
detection method. We have verified this face recognition method for 680 faces of 7 persons,
where two are females. Table 2 shows the confusion matrix for the results of face recognition
for 7-persons. The diagonal elements represent the correct recognition of corresponding
persons. In this table, the 1st column represents the input image classes and other columns
represent the recognition results. For example, among 136 face images of person “Hasan”,
132 are correctly recognized as “Hasan” and 4 are wrongly recognized as another person
“Vuthi”.
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Figure 9. Sample outputs of face detection method

Table 3 presents the precisions (%) and recall rates (%) of face recognition method. The
precision (%) is defined by the ratio of the numbers of correct recognition to total numbers
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of recognition for each person faces. The recall rate (%) is defined by the ratio of the
numbers of correct face recognition to total numbers of input faces for each person. In the
case of person “Pattra” (Figure 9(d)), the precision of face recognition is very low because
his face has one black spot.

Input Hasan | Ishida | Pattara | Somjai | Tuang | Vuthi Cho
Hasan
(136) 132 0 0 0 0 4 0
Ishida
(41) 0 41 0 0 0 0 0
Pattara
(41) 0 0 38 3 0 0 0
Somjai
(126) 0 0 5 118 3 0 0
Tuang
(76) 0 0 0 10 66 0 0
Vuthi
(103) 0 0 7 0 5 91 0
Cho
(157) 0 0 0 0 0 0 157
Table 2. Confusion Matrix of face recognition

Person Precision (%) Recall (%)

Hasan 100% 97.05%

Ishida 100% 100%

Pattara 76% 92.68%

Somjai 90.07% 93.65%

Tuang 89.18% 86.84%

Vuthi 95.78% 88.34%

Cho 100% 100%

Table 3. Performance evaluation of face recognition method

5.2 Gesture Recognition

Gesture recognition is the process by which gestures made by the user are known to the
system. Gesture components are the face and hand poses. Gestures are recognized using
rule-based system according to predefined model with the combinations of the pose
classification results of three segments at a particular image frame. For examples, if left hand
palm, right hand palm and one face present in the input image then recognizes it as
“TwoHand” gesture and corresponding gesture command generated. If one face and left
hand open palm are present in the input image frame then recognized it as “LeftHand”
gesture. Similarly others static gestures as listed in Table 4 are recognized. It is possible to
recognize more gesture including new poses and new rules using this system. According to
recognized gestures, corresponding gesture commands are generated and sent to interact
with robot through TCP-IP network.
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Figure 10. Sample visual output of gesture “TwoHand”

The sample output of our gesture recognition system is shown in Figure 10. This shows
gesture command at the bottom text box corresponding to matched gesture, in case of no
match it shows “no matching found”. Accuracy of the gesture recognition system depends
on the accuracy of the pose detection system. For example: in some cases two hands and one
face were present in the image but pose detection method failed to detect one hand due to
variation of orientation and output of gesture recognition is then either “LeftHand” or
“RightHand”. We use two standard parameters to define accuracy: precision and recall for
pose classification method.

Gesture Components Gesture names
Face Left hand palm Right hand palm | TwoHand
Face Right hand palm X RightHand
Face Left hand palm X LeftHand
Face Index finger raise X One

Face Form V sign with index and middle finger | X Two

Face Index, middle and ring fingers raise X Three

Face Thumb up X/Thumb up ThumbUp
Face Make circle using thumb and index finger | X OK

Face Fist up X/Fist up FistUp
Face/X | Point left by index finger X PointLeft
Face/X | Point right by index finger X PointRight

Table 4. Three segments combination and corresponding gesture
(X=absence of predefined hand poses or face poses)
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Table 5 shows the comparison of precisions and recall rates of the pose-specific subspace
method and the general PCA method for face and hand poses classification. The precision
(%) is defined by the ratio of the number of correct recognition to total number of
recognition for each pose. The recall rate (%) is defined by the ratio of the number of correct
recognition to total number of input for each pose. From the results, we conclude that
precision and recall rates are higher in the subspace method and wrong classification rates
are lower than the standard PCA method for majority cases. Wrong classification occurred
due to orientation and intensity variation.

For this experiment we have trained the system using 2100 training images of 15 faces and
hand poses of 7 persons (140 images for each pose of 7 persons). Figure 8 shows the example
of 15 poses. These poses are frontal face (P1), right directed face (P2), left directed face (P3),
up directed face (P4), down directed face (P5), left hand palm (P6), right hand palm (P7),
raised index finger (P8), raised index and middle finger to form “V” sign (P9), raised index,
middle and ring fingers (P10), fist up (P11), make circle using thumb and fore fingers (P12),
thumb up (P13), point left by index finger (P14) and point right by index finger (P15). Seven
individuals were asked to act for the predefined face and hand poses in front of the camera
and the sequence of images were saved as individual image frame. Then each image frame
is tested using the general PCA and the pose-specific subspace methods. The threshold
value (for minimal Euclidian distance) for the pose classifier is empirically selected so that
all the poses are classified.

Precision (%) Recall (%)

et [P Teca | Do [
P1 96.21 90.37 97.69 93.84
P2 100 96.59 98.06 91.61
P3 100 93.28 99.28 99.28
P4 97.33 92.30 99.31 97.95
P5 99.21 90.90 98.43 93.75
P6 100 100 94.28 91.42
P7 97.22 96.47 100 97.85
P8 95.17 94.52 98.57 98.57
P9 97.77 97.67 94.28 90

P10 97.81 93.05 95 95

P11 100 100 92.66 87.33
P12 96.71 96.68 98 97.33
P13 99.31 100 94.66 93.33
P14 94.89 93.28 97.69 93.84
P15 100 100 100 99.33

Table 5. Comparison of pose-specific subspace method and PCA method
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6. Implementation Scenarios

Our approach has been verified using a humanoid robot ‘Robovie’ and an entertainment
robot “Aibo’. This section describes example scenarios, which integrates gestures commands
and corresponding robot behaviors. For interaction with an ‘Aibo” robot, a standard CCD
video camera is attached to the computer (Image analysis and recognition PC) to capture the
real-time images. In the case of ‘Robovie’ robot, its eyes cameras are used for capturing the
real time images. Each captured image is digitized into a matrix of 320% 240 pixels with 24-
bit color. First, the system is trained using the known training images of predefined faces
and hand poses of all known persons. All the training images are 60X 60 pixels gray
images. In the training phase, this system generates eigenvectors and feature vectors for the
known users and hand poses. We have considered robot as a server and our PC as a client.
Communication link has been established through TCP-IP protocol. Initially, we connected
the client PC with robot server and then gestures recognition program was run in the client
PC. The result of gesture recognition program generates gesture commands and sends to
robot. After getting gesture command robot acted according to user predefined actions. We
have considered for human-robot interaction that gesture command will be effective until
robot finishes corresponding action for that gesture.

Figure 11. Human robot (‘Robovie’) interaction scenario

6.1 Example of Interaction with Robovie

Figure 11 shows the example of human interaction with a ‘Robovie’ robot [Hasanuzzaman,
2005b]. The user steps in front of the eyes camera and raises his two hands. The image
analysis and recognition module recognizes the user as ‘Hasan” and classifies the three
poses as ‘FACE’, ‘LEFTHAND’, ‘RIGHTHAND'. This module sends gesture command
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according to gesture name and user name, and selected robot function will be activated.
This system implements person-centric gesture-based human robot interaction. The same
gesture can be used to activate different actions for different persons even the robot is same.
The robot actions are mapped based on the gesture user relationships (“gesture-user-robot-
action”) in the knowledge base. In this case, “Robovie” raises its two arms (as shown in
Figure 11) and says “Raise Two Arms”. This system has considered that gesture command
will be effective until the robot finishes corresponding action for that gesture. This method
has been implemented on a ‘Robovie” for the following scenarios:

User: “Hasan” comes in front of Robovie
eyes camera, and the robot recognizes the
user as Hasan.

User: “Cho” comes in front of Robovie eyes
camera and robot recognizes the user as
Cho.

Robot: “Hi

(Speech)

Hasan, How are you?” | Robot: “Hi Cho, How are you?” (Speech)

Cho: uses the gesture “ThumbUp”.

Hasan: uses the gesture “ThumbUp”

Robot: “ Oh, good, do you want to play
Robot: “ Oh, sad, do you want to play | now?” (Speech)

now?” (Speech
®p ) Cho: uses the gesture “Ok”.

Hasan: uses the gesture “Ok”,
Robot: “Thanks!” (Speech)

Robot: “Thanks!” (Speech)
Cho: uses the gesture “LeftHand”

Hasan: uses the gesture “TwoHand”

Robot: imitate user’s gesture (“Raise Left
Robot: imitate user’s gesture “Raise Two | Arm”).

Arms” as shown in Figure6.
Cho: uses the gesture “TwoHand” (STOP)

Hasan: uses the gesture “FistUp” (stop the

action) Robot: Bye-bye (Speech)

Robot: Bye-bye (Speech).

The above scenarios show that same gesture is used for different meanings and several
gestures are used for the same meanings for different persons. The user can design new
actions according to his/her desires using ‘Robovie’.

6.2 Example of Interaction with Aibo

Figure 12 shows an example of human robot ("Aibo’) interaction scenario. The system uses a
standard CCD video camera for data acquisition. The user raises his index finger in front of
the camera that is connected to gesture recognition PC. The image analysis and recognition
module classifies the poses “FACE” and “ONE” (hand pose) and corresponding pose frames
will be activated. Gestures are interpreted using three components. According to the
predefined combination gesture is recognized as “One” and corresponding gesture frame is
activated. The gesture recognition module recognizes the gesture is “One” and the face
recognition module identifies the person as “Hasan”. The user selects ‘Aibo” robot for the
interaction. In this combination activates the “Aibo’ for playing action 'STAND UP".
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(a) Sample visual output (“One”) (b) AIBO STAND-UP for Gesture “One”

Figure 12. Human robot ("Aibo’) interaction scenario

User “Hasan” User “Cho”

Gesture Aibo action Gesture Aibo action

One STAND UP TwoHand STAND UP

Two WALK FORWARD One WALK FORWARD

Three WALK BACKWARD | Two WALK BACKWARD

PointLeft MOVE RIGHT RightHand | MOVE RIGHT

PointRight MOVE LEFT LeftHand MOVE LEFT

RightHand | KICK (right leg) Three KICK

TwoHand SIT FistUp SIT

LeftHand LIE ThumbUp | LIE

Table 6. User-Gesture-Action mapping for Aibo

But for another user same gesture may be used for another action of “Aibo’. Suppose user
“Cho” defines the action “WALK FORWARD” for gesture “One”, i.e. if user is “Cho”,
gesture is “One” then the ‘Aibo’ robot will “Walk Forward’. In a similar way, the user can
design “Aibo’ action frames according to his/her desires. The other actions of the ‘Aibo’
those we have used for interaction, are listed in Table 6. The scenarios in Table 6
demonstrate how the system accounts for the fact that the same gesture is used for different
meanings and several gestures are used for the same meanings for different persons. The
user can design new actions according to his/her desires and can design corresponding
gesture for their desired actions.
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7. Conclusions and future research

This chapter describes a real-time face and hand gesture recognition system using skin color
segmentation and subspace method based pattern matching technique. This chapter also
describes gesture-based human-robot interaction system using an entertainment robot
named ‘Aibo” and humanoid robot ‘Robovie’. In pose-specific subspace method, training
images are grouped based on pose and eigenvectors for each pose are generated separately.
In this method, one PCA is used for each pose. From the experimental result we have
concluded that performance of pose-specific subspace method is better than general PCA
method in the same environment.

One of the major constrains of this system is that the background should be non-skin color
substrate. If we used infrared camera then it is possible to overcome this problem just by a
minor modification of our segmentation technique and other module will remain the same.
Since the skin reflects near IR light nicely, active IR sources placed in proximity to the
camera in combination with IR pass filter on the lens makes it easy to locate hands those are
within the range of light sources.

Considering the reduction of processing time, so far eigenvectors calculations are performed
separately in off-line. The eigenvectors do not change during dynamic learning process. The
user has to initiate this calculation function to change the eigenvectors or principal
components. In future, if faster CPUs are available, these components are then possible to be
integrated into on-line learning function.

We could not claim that our system is more robust against new lighting condition and
clutter background. Our hope is to make this face and gesture recognition system more
robust and capable to recognize dynamic facial and hand gesture.

Face and gesture recognition simultaneously will help us in future to develop person
specific and secure human-robot interface. The ultimate goal of this research is to establish a
symbiotic society for all of the distributed autonomous intelligent components so that they
share their resources and work cooperatively with human beings.

8. Appendix

8.1 Appendix A: CONVERSION FROM RGB COLOR SPACE TO YIQ COLOR SPACE
This system uses skin-color based segmentation method for determining the probable face
and hands areas in an image. There are several color coordinate systems, which have come
into existence for a variety of reasons. The YIQ is a universal color space used by NTSC to
transmit color images using the existing monochrome television channels without
increasing the bandwidth requirements. In the YIQ color model a color is described by three
attributes: luminance, hue and saturation. The capture color image is represented by the
RGB color coordinate system at each pixel. The colors from RGB space are converted into
the YIQ space. The YIQ produces a linear transform of RGB images, which generates Y
representing luminance channel and I, Q representing two chrominance channels to carry
color information. The transformation matrix for the conversion from RGB to YIQ is given
below [Jain, 1995],

Y 0.299 0.587 0.114 || R
I =059 -0.274 -0322||G
0 0.211 -0.523 0312 || B
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Where R, G, and B are the red, green, and blue component values which exist in the range
[0, 255]. Using the following equations we can converts the images from RGB color
coordinates system to YIQ color coordinate system,

Y =0.299R+0.587G +0.114B (A1)
1=0.596R—0.274G —0.322B (A2)
0=0211R-0.523G+0.3128 (A3)

Images are being searched in YIQ space depending on the amount of color content of these
dominant colors, that is, whether the skin color value is substantially present in an image or
not. In order to segment face and hand poses in an image, the skin pixels are thresholded
empirically. In this experiment, the ranges of threshold values are defined from the Y, I, Q
histograms calculated for a selected skin region.

8.2 Appendix B: EIGENVECTORS CALCULATION
This section describes Eigenvectors calculation method from the training images. The major
steps of the Eigenvectors calculation algorithm [Smith, 2002] [Turk, 1991] are,

Stepl: Read all the training images 7;(N X N) those are two-dimensional N by N gray

images, where i=1,2, ...., M.
Step2: Convert each image into a column vector

T,(N*)=T;(NxN) (B.1)

Step3: Calculate the mean of all images
¥Y=— 3T (B.2)

Step4: Subtract the mean and form a big matrix with all the subtracted image data

1

A=[¢,0,05,....... Ny (B.4)
Step5: Calculate the Covariance of matrix ‘A’
C=A44" (B.5)
Step6: Calculate the Eigenvectors and Eigenvalues of the Covariance Matrix

ﬂkuk = Cuk (B.6)

Where, the vectors . (non-zero) and scalar 4, are the Eigenvectors and Eigenvalues,

respectively, of the Covariance matrix C. The relation between Eigenvectors and
Eigenvalues of a Covariance matrix can be written using equation (B.7)
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2 _Lﬂi( T 5 \2 (B.7)
k_M uk¢n) :
n=l

Using MALAB function Eigenvectors and Eigenvalues can be calculated,

[eigvec, eigvalue] = eig(C) (B.8)

Each Eigenvector is of length N 2 , describe an N-by-N images and is a linear combination of

the original image. Eigenvalues are the coefficient of Eigenvectors. The Eigenvectors are
sorted based on Eigenvalues (higher to lower). According higher order of Eigenvalues k-
numbers of Eigenvectors are chosen to form principal components.
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1. Introduction

Face is one of the important biometric identifier used for human recognition. The face
recognition involves the computation of similarity between face images belonging to the
determination of the identity of the face. The accurate recognition of face images is essential
for the applications including credit card authentication, passport identification, internet
security, criminal databases, biometric cryptosystems etc. Due to the increasing need for the
surveillance and security related applications in access control, law enforcement, and
information safety due to criminal activities, the research interest in the face recognition has
grown considerably in the domain of the pattern recognition and image analysis. A number
of approaches for face recognition have been proposed in the literature (Zhao et al. 2000),
(Chellappa et al. 1995). Many researchers have addressed face recognition based on
geometrical features and template matching (Brunelli and Poggio, 1993). There are several
well known face recognition methods such as Eigenfaces (Turk and Pentland 1991),
Fisherfaces (Belhumeur et al. 1997), (Kim and Kitter 2005), Laplacianfaces (He et al. 2005).
The wavelet based Gabor function provide a favorable trade off between spatial resolution
and frequency resolution (Gabor 1946). Gabor wavelets render superior representation for
face recognition (Zhang, et al. 2005), (Shan, et al. 2004), (Olugbenga and Yang 2002).

In recent survey, various potential problems and challenges in the face detection are
explored (Yang, M.H., et al., 2002). Recent face detection methods based on data-driven
learning techniques, such as the statistical modeling methods (Moghaddam and Pentland
1997), (Schneiderman, and Kanade, 2000), (Shih and Liu 2004), the statistical learning theory
and SVM based methods (Mohan et al., 2001). Schneiderman and Kanade have developed
the first algorithm that can reliably detect human faces with out-of-plane rotation and the
first algorithm that can reliably detect passenger cars over a wide range of viewpoints
(Schneiderman and Kanade 2000). The segmentation of potential face region in a digital
image is a prelude to the face detection, since the search for the facial features is confined to
the segmented face region. Several approaches have been used so far for the detection of
face regions using skin color information. In (Wu, H.Q., et al., 1999), a face is detected using
a fuzzy pattern matching method based on skin and hair color. This method has high
detection rate, but it fails if the hair is not black and the face region is not elliptic. A face
detection algorithm for color images using a skin-tone color model and facial features is
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presented in (Hsu et al. 2002). Face recognition can be defined as the identification of
individuals from images of their faces by using a stored database of faces labeled with
people’s identities. This task is complex and can be decomposed into the smaller steps of
detection of faces in a cluttered background, localization of these faces followed by
extraction of features from the face regions, and finally, recognition and verification. It is a
difficult problem as there are numerous factors such as 3D pose, facial expression, hair style,
make up etc., which affect the appearance of an individual’s facial features. In addition to
these facial variations, the lighting, background, and scale changes also make this task even
more challenging. Additional problematic conditions include noise, occlusion, and many
other possible factors.

Many methods have been proposed for face recognition within the last two decades. Among
all the techniques, the appearance-based methods are very popular because of their
efficiency in handling these problems (Chellappa et. al. 1995). In particular, the linear
appearance based face recognition method known as eigenfaces (Turk &Pentland 1991) is
based on the principal component analysis of facial image ensembles (Kirbi & Sirovich
1990). The defining characteristic of appearance-based algorithms is that they directly use
the pixel intensity values in a face image as the features on which to base the recognition
decision. The pixel intensities that are used as features are represented using single valued
variables. However, in many situations same face is captured in different orientation,
lighting, expression and background, which lead to image variations. The pixel intensities
do change because of image variations. The use of single valued variables may not be able to
capture the variation of feature values of the images of the same subject. In such a case, we
need to consider the symbolic data analysis (SDA) (Bock & Diday 2000; Diday 1993), in
which the interval-valued data are analyzed. Therefore, there is a need to focus the research
efforts towards extracting features, which are robust to variations due to illumination,
orientation and facial expression changes by representing the face images as symbolic
objects of interval type variables (Hiremath & Prabhakar 2005). The representation of face
images as symbolic objects (symbolic faces) accounts for image variations of human faces
under different lighting conditions, orientation and facial expression. It also drastically
reduces the dimension of the image space. In (Hiremath & Prabhakar 2005), a symbolic PCA
approach for face recognition is presented, in which symbolic PCA is employed to compute
a set of subspace basis vectors for symbolic faces and then project the symbolic faces into the
compressed subspace. This method requires less number of features to achieve the same
recognition rate as compared to eigenface method. The symbolic PCA technique, however,
encodes only for second order statistics, i.e., pixel wise covariance among the pixels, and is
insensitive to the dependencies of multiple (more than two) pixels in the patterns. As these
second order statistics provide only partial information on the statistics of both natural
images and human faces, it might become necessary to incorporate higher order statistics as
well. The kernel PCA (Scholkopf et. al. 1998) is capable of deriving low dimensional features
that incorporate higher order statistics. Higher order dependencies in an image include
nonlinear relations among the pixel intensity values, such as the relationships among three
or more pixels in an edge or a curve, which can capture important information for
recognition. The kernel PCA is extended to symbolic data analysis as symbolic kernel PCA
(Hiremath & Prabhakar 2006) for face recognition and the experimental results show
improved recognition rate as compared to the symbolic PCA method. The extension of
symbolic analysis to face recognition techniques using methods based on linear discriminant
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analysis, two-dimensional discriminant analysis, Independent component analysis, factorial
discriminant analysis and kernel discriminant analysis has been attempted in (Hiremath and
Prabhakar Dec 2006, Jan 2006, Aug 2006, Sept 2006, 2007).

It is quite obvious that the literature on face recognition is replete with a wide spectrum of
methods addressing a broad range of issues of face detection and recognition. However, the
objective of the study in the present chapter is the modeling of uncertainty in the
representation of facial features, typically arising due to the variations in the conditions
under which face images of a person are captured as well as the variations in the personal
information such as age, race, sex, expression or mood of the person at the time of capturing
the face image. Two approaches, namely, fuzzy-geometric approach and symbolic data
analysis, for face recognition are considered for the modeling of uncertainty of information
about facial features.

2. Fuzzy face Mode for Face Detection

In (Hiremath and Danti, Dec 2005), the detection of the multiple frontal human faces based
on the facial feature extraction, using the fuzzy face model and the fuzzy rules, is proposed
and it is described in this section. The input color image is searched for the possible skin
regions using the skin color segmentation method. In which, 2D chromatic space CbCr using
the sigma control limits on the chromatic components Cb and Cr, derived by applying the
statistical sampling technique. Each potential face region is then verified for a face in which,
initially, the eyes are searched and then the fuzzy face model is constructed by dividing the
human facial area into quadrants by two reference lines drawn with respect to the eyes.
Further, other facial features such as mouth, nose and eyebrows are searched in the fuzzy
face model using the fuzzy rules and then face is detected by the process of defuzzification.
Overview of this fuzzy-geometric approach is shown in the Figure 3.

2.1 Skin Color Segmentation

Face detection based on skin color is invariant of facial expressions, rotations, scaling and
translation (Hsu et al. 2002). Human skin color, with the exception of very black complexion,
is found in a relatively narrow color space. Taking advantage of this knowledge, skin
regions are segmented using the skin color space as follows.

Skin Color Space

The YCbCr color model is used to build the skin color space. It includes all possible skin
colors. We are able to extract more facial skin color regions excluding the non-skin regions.
The skin color space uses only the chromatic color components Cb and Cr for skin color
segmentation using the sigma control limits (Hiremath and Danti, Feb 2006). The procedure
to build skin color space is described as following.

The sample images are in RGB colors. The RGB color space represents colors with
luminance information. Luminance varies from person to person due to different lighting
conditions and hence luminance is not a good measure in segmenting the human skin color.
The RGB image is converted into YCbCr color model in which luminance is partially
separated (Jain A.K. 2001). Skin color space is developed by considering the large sample of
facial skins cropped manually from the color face images of the multi racial people. Skin
samples are then filtered using low pass filter (Jain 2001) to remove noises. The lower and
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upper control limits of the pixel values for the chromatic red and blue color components are
determined based on one-and-half sigma limits using the equation (1).

Zk:(ﬂ,- -’

i=l
k

n

m _ k

y=l

lel=u-156 , ucl=u+l50

where z; denote the mean of the chromatic color components of the i” sample image c(x,y)

of size m x n, where ¢ denotes the color plane(i.e. red and blue). # and ¢ denotes mean and
standard deviation of the color components of the population of all the k sample images
respectively. The lower and upper control limits, IcI and ucl of the chromatic color
components of skin color, respectively, are used as threshold values for the segmentation of
skin pixels as given below

L if (el < Cr(x,y) <ucl,) & (Icly < Cb(x,y) <ucly),
0, Otherwise,

P(x,y)= { (2

where Cr(x,y) and Cb(x,y) are the chromatic red and blue component values of the pixel at (x,
y) in the red and blue planes of the test image respectively. Hence, the lower and upper
sigma control limits Icl, and ucl, for red and Icly and ucly for blue colors, can transform a color
image into a binary skin image P, such that the white pixels belong to the skin regions and
the black pixels belong to the non skin region as shown in the Figure 1(b). In the
computation of the lower and upper control limits, experimental results show that, in the
30 limits, the probability of inclusion of non-skin pixels in the face area is high. On the
contrary, in the ¢ limits, the probability of omission of facial skin pixels in the face area is
high. It is found that 1.50 limits are the optimal limits, which yield a suitable trade off
between the inclusion of facial skin pixels and the omission of non-skin pixels in the face
area. In the experiments, the values of the mean # and the standard deviation ¢, and lower
and upper control limits of the chromatic color components are quantified based on the
several sample skin images of the multiracial people and are mentioned in the Table 1. The
sigma control limits are flexible enough to absorb the moderate variations of lighting
conditions in the image to some extent. The results of the skin color segmentation are shown
in the Figure 1(b). The skin color segmentation leads to a faster face detection process as the
search area for the facial features is comparatively less. The comparative analysis of the
different skin color segmentation methods is shown in the Table 2.

Color Component Mean (u) Std. Dev. (0) lel ucl
Cb (Blue) 120 15 97.5 142.5
Cr (Red) 155 14 134 176

Table 1. Statistical values for the skin color space



Modelling Uncertainty in Representation of Facial Features for Face Recognition

187

g)

Figure 1. Comparison of skin segmentation results. a) Original Image, b) YCbCr (Hiremath-
Danti, Feb 2006), c) RGB (Wang-Yuan method), d) HSV (Bojic method), ) YCbCr (Chai

method), f) YUV (Yao method), g) YIQ (Yao method)

. % Avg Avg N o. of
. Avg. time Std. facial
Skin Color spaces based on segmented
(In secs) Dev. . feature
skin area
blocks
RGB Model (Wang & Yuan 2001) 1.04 0.0332 29.00 67
HSV Model (Bojic & Pang 2000) 0.59 0.0395 32.83 84
YCbCr Model(Chai& Ngan 1999) 212 0.0145 26.31 26
YUV Model (Yao and Gao 2001) 1.01 0.0136 52.85 99
YIQ Model (Yao and Gao 2001) 1.05 0.0143 66.07 105
YCbCr(Hiremath & Danti, Feb 2006) 0.82 0.0137 25.28 21

Table 2. Comparison of time, segmented skin area, and number of candidate facial feature
blocks for the various skin color segmentation methods

Pre processing of Skin Segmented Image
The binary skin segmented image obtained above is preprocessed by performing binary
morphological opening operation to remove isolated noisy pixels. Further, white regions
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may contain black holes these black holes may be of any size and are filled completely. The
binary skin image is labeled using the region labeling algorithm and their feature moments,
such as center of mass (X, ), orientation 6 , major axis length, minor axis length and area,
are computed (Jain, A.K,, 2001; Gonzalez, R.C,, et al., 2002). By the observation of several
face regions under analysis, it is found that the face regions are oriented in the range of +45°
degrees in the case of frontal view of the face images. Only such regions are retained in the
binary skin image for further consideration. The remaining regions are considered as non
face regions and are removed from the binary skin image. The observation of several real
faces also revealed that the ratio of height to width of each face region is approximately 2,
only such regions are retained. Further, though the skin regions of different sizes are
successfully segmented, it is found that the potential facial features are miss-detected
whenever the face area is less than 500 pixels. Hence, the regions, whose area is more than
the 500 pixels are considered for the face detection process. The resulting binary skin image
after the preprocessing and applying the above constraints is expected to contain potential
face regions (Fig 2(a), (b)).

a) b) <)

Figure 2. Results of Skin color segmentation a) Original Image b) Potential face regions in
gray scale image c) Sobel Filtered Binary image

2.2 Face Detection

Each potential face region in the binary image is converted into gray scale image as shown
in Figure 2.(b) and then each face region is passed on to our fuzzy face model to decide
whether the face is present in that region or not, by the process of facial feature extraction
using the fuzzy rules (Hiremath & Danti Dec. 2005). The detailed face detection process,
which detects multiple faces in an input image, is described in Figure 3.

Skin color segmentation I.. Obtain face regions 4 Select a face region |g—
A

4
Input color image RI <: Search eyes and construct Fuzzy
face model with respect to eyes.

HRL
Fuzzy Face A J
Maodel Search Eyebrows, Nose
and Mouth w.r.t eves.

v

Yes
N
———

L No
= A4
<—| Display detected faces in Boxes ‘

Figure 3. Overview of the multiple face detection process
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Preprocessing of Face Regions

The each gray scale version of the potential face region is filtered using the Sobel edge filter
and binarized using a simple global thresholding and then labeled. In the labeled image, the
essential facial feature blocks are clearly visible in the potential face region under
consideration Figure 2(c). Further, for each facial feature block, its center of mass (x,y),
orientation ¢ , bounding rectangle and the length of semi major axis are computed (Jain,
A K., 2001).

Feature Extraction

The feature blocks of the potential face region in the labeled image are evaluated in order to
determine which combination of feature blocks is a potential face and the procedure is
explained as follows:

Searching Eyes

The eyes are detected by exploiting the geometrical configuration of the human face. All the
feature blocks are evaluated for eyes. Initially, any two feature blocks are selected arbitrarily
and assume them as probable eye candidates. Let (x;,» ) and (x,,y,) be respectively, the
centers of right feature block and left feature block. The line passing through the center of
both the feature blocks is called as the horizontal-reference-line (HRL) as shown in Figure 4
and is given by the equation (3) and the slope angle 8, between the HRL and x-axis is

given by equation (4).

II Quadrant

Support region

for left eyebrow

111 Quadrant

Figure 4. Fuzzy face model with support regions for eyebrows, nose and mouth shown in
rectangles

ax+by+cyp, =0

where, a=y, -y, b=x-x), cpp =% -5, (©)
The slope angle & g, between the HRL and x-axis is given by:

Oupy =tan”'(-a/b) , —7/2 < Oypy < 7/2 (4)

Since the fuzzy face model is a frontal view model, a face in a too skewed orientation is not
considered in this model. Hence, the slope angle 8, is constrained within the range

of £45° . If the current pair of feature blocks does not satisfy this orientation constraint, then
they are rejected and another pair of feature blocks from the remaining feature blocks is
taken for matching. Only for the accepted pairs of features, the normalized lengths of the
semi major axis [; and I; are computed by dividing the length of the semi major axis by the
distance D between these two features. The distance D is given by the equation (5).
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D=[(x,—x2)2+(y1—y2)z]”2 ®)

Let 6, and 9, are the orientations of the above accepted feature blocks. The evaluation

function Egy is computed using the equation (6) to check whether the current pair of
features is a potential eye pair or not.

Egy = eXP[— 1-2((11 ) )2 + (11 +1 - 1)2 + (91 = Omre )2 + (92 = Oure )2 )] (6)

This evaluation function value ranges from 0 to 1 and it can be given the interpretation of a
probability value. The constant 1.2 is the mean of the negative exponential distribution,
which is determined empirically with respect to the sample images considered for
experimentation to optimize higher detection rate with lower false detections. Hence, higher
the evaluation value Eg, higher is the probability of the two selected feature blocks to be
eyes. If this evaluation value is greater than an empirical threshold value 0.7, then these two
feature blocks are accepted as the potential eye pair candidate. Otherwise, this pair of blocks is
rejected and another pair of feature blocks is selected. For potential eye pair candidate, the
fuzzy face model is constructed and the other facial features are searched as follows.
Construction of Fuzzy Face Model

It is assumed that every human face is having the same geometrical configuration and the
relative distances between the facial features are less sensitive to poses and expressions
(Yang et al. 2002). The fuzzy face model is constructed with respect to the above potential
eye candidates. A line perpendicular to the HRL at the mid point of the two eyes is called as
vertical reference line (VRL). Let (p,q) be the mid point of the line segment joining the centers
of the two eye candidates. Then the equation of the VRL is given by equation (7).

bx—ay+cyp, =0 (7)

These two reference lines (HRL and VRL) are used to partition the facial area into quadrants
as shown in Figure 4. The vertical and horizontal distances of the facial features namely,
eyebrows, nose and mouth are empirically estimated in terms of the distance D between the
centers of the two eyes on the basis of the observations from several face images. The
notations Veyeprowss Vivose @1 Viou,  denote the vertical distances of the centers of eyebrows,

nose and mouth from the HRL which are estimated as 0.3D, 0.6D and 1.0D respectively. The
notations  H gyeprons » A Nose @1d H ypy - denote  the horizontal distances of the centers of

eyebrows, nose and mouth from the VRL which are estimated as 0.5D, 0.05D and 0.1D
respectively. The facial features are enclosed by the rectangles to represent the support
regions, which confine the search area for facial features. This completes the construction of
the fuzzy face model with respect to the selected potential eye pair candidate in the given
face region as shown in Figure 4. Further, the fuzzy face model is used to determine which
combination of the feature blocks is a face.

Searching Eyebrows, Nose and Mouth

The searching process proceeds to locate the other potential facial features, namely
eyebrows, nose and mouth with respect to the above potential eye pair candidate. The
support regions for eyebrows, nose and mouth are empirically determined using fuzzy rules
as given in Table 3. Then these support regions are searched for facial features. For
illustration, we take the left eyebrow feature as an example to search. Let a feature block K
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be a potential left eyebrow feature. The horizontal distance /1., and the vertical distance vr
of the centroid of the K feature from the VRL and HRL, respectively, are computed using
the equation (8).

Vertical distances Horizontal distances
Feature(j) min,, max, v; o, min, max;, hj oy,

Eyebrows | 0.02 038 |02]0.06| 024 0.65 | 045 | 0.07
Nose 0.30 090 106 ]010]| -02 0.2 0.0 | 0.07
Mouth 0.45 135 109]015| -03 0.3 0.0 | 0.10

Table 3. Emperically determined distances of the facial features (normalized by D)

|az1< +hyg + CHRLl

—_—, 8
) ©

Treating h;,,and v, as the fuzzy quantities to represent the possible location of the

|b)71< —ayg + CVRLl

hLeb = 5 S )2 and Viebh =
(a +b )l

potential left eyebrow feature, the fuzzy membership values g, . and 4, , , respectively, are

defined using the trapezoidal fuzzy membership function (Hines & Douglas 1990). In
particular, the membership function g, —is defined using the equation (9) and Table 3.

0, i vy < minvy,
(Viep —Min vy,p)
(¢ —min v, )
for, Or)= 1. i@ <vy< P ©)
(Max vy = Viey)

(max v — B

0, if (Viep 2 max viep)

s i (min vy Svig < @)

s I (BE Vi Smax vy, )

Similarly, the membership function u, is defined. The support region for the potential left

eyebrow feature is the set of values iz, and vi, whose fuzzy membership values are non-
zero. The Figure 5(a) shows the graph of the trapezoidal fuzzy membership function x, for

the vertical distance of the j feature and the support region for the left eyebrow is shown in
Figure 5(b). To evaluate K feature block in the support region for left eyebrow, the value of
the evaluation function Eg is given by the equation (10). The Ex value ranges from 0 to 1 and
represents the probability that the feature block K is a left eyebrow.

1 |« o, Vi A VRL
Membersh L Max v be----=
value | Vertical =/ ]:!
u, (_\-)T i Distance MMV, ===--- \ )
1
' (Vi) i i
0 1 o i i HRI I
miny; o ]'_";' p max vy K 0 min/; I o
» Vertical distante ( v, ) Horizontal distance ( fi;,;, )

Figure 5. Trapezoidal fuzzy membership function u, for the vertical distance of the jth facial

feature b) Support region for left eyebrow in the I quadrant of face model



192 Face Recognition

2 2
1 VLeb — VEyebrows hLeb -H Eyebrows
Ep =—|exp|—-1.2| ————— | |+exp| -1 —MMM8M8— 10
K 2[ Xp{ [ D/2 ] ] Xp[ ( D/2 (10)

Similarly, evaluation value is computed for all the feature blocks present in that support
region of the left eyebrow. The evaluation value Er is a fuzzy quantity represented by the
set of Ex values with their corresponding fuzzy membership values y; . The membership
value u;,, corresponding to Ej. is obtained by the min-max fuzzy composition rule (Klir &

Yuan 2000) given by the equations (11) and (12). The feature block having the evaluation
value Er., with the corresponding ., found in the support region of the left eyebrow is the

potential left eyebrow feature with respect to the current pair of potential eye candidates.

Uy = min(,uhk,yvk ), for each K (11)
Hiep = max {uurc } (12)

Similarly, the right eyebrow, nose and mouth are searched in their respective support
regions determined by appropriately defining the membership functions for the fuzzy
distances (horizontal and vertical) from the centroid of these facial features, and their fuzzy
evaluation values are computed by applying the min-max fuzzy composition rule. The
overall fuzzy evaluation E for the fuzzy face model is defined as the weighted sum of the
fuzzy evaluation values of the potential facial features namely, for the eye, left eyebrow,
right eyebrow, nose and mouth, respectively. The weights are adjusted to sum to unity as
given in the equation (13). The membership value y; corresponding to E is obtained by the

fuzzy composition rule as given by the equation (14).

E =04E g, +0.3E 5 +0.2E yy, + 0.05E  + 0.05Epg, (13)

Hg = min{ﬂMomh > UNose s HLeb ::uReb} (14)

Above procedure is repeated for every potential eye pair candidate and get the set of fuzzy
faces. These fuzzy faces are represented by the set of E values with their corresponding
membership values . Finally, the most probable face is obtained by the defuzzification
process as given by the equation (15).

HEmax = l;?eaé {#E} (15)

Then the E value corresponding to . is the defuzzified evaluation value Ep of the face.
If there are more than one E value corresponding to ug,, , the maximum among those

values is the defuzzified evaluation value Ep of the face. Finally, the potential eyes,
eyebrows, nose and mouth features corresponding to the overall evaluation value Ep
constitute the most probable face in the given face region, provided Ep is greater than the
empirical threshold value 0.7. Otherwise this face region is rejected. The face detection
results are shown in Figure 6, where (a) display the feature extraction in which facial
features are shown in bounding boxes (Jain 2001) and (b) shows detected face in rectangular
box. (Hiremath P.S. & Danti A. Feb 2006). The above procedure is repeated for every
potential face region to detect possible faces in the input image.
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Figure 6. Results of Face Detection a) Facial Feature extraction b) Detected face in box

2.3 Experimental Results

The MATLAB 6.0 implementation of the above described procedure on Pentium IV @ 2.6
GHz yields the success rate of 96.16%. The average time taken to detect one face is about
0.78 sec, which depends on the size of the potential face region. The search area for the facial
feature extraction is confined to only the total area covered by the support regions i.e.
0.67D2, (D is distance between eyes) which is considerably very small compared to that of
the image size. This reduced search area leads to the reduction in the detection time to a
great extent. Sample detection results are shown in Figure 7 and Figure 8 with detected faces
enclosed in rectangular boxes. Due to the constraints of the face model, miss-detection
occurs due to several reasons i.e. profile (side) view faces, abnormal lighting conditions, face
occluded by hair, very small face sizes, face occluded by hand and too dark shadow on faces
as shown in Figure 9.

The comparison of different state of the art detectors proposed by (Shih and Liu 2004, we
refer as S-L method) and (Schneiderman and Kanade 2000, we refer as S-K method) and
(Hiremath and Danti, Dec. 2005, we refer as H-D method) is given in Table 4. It is observed
that, fuzzy face model approach based on skin color segmentation (H-D method) is
comparable to others in terms of detection rate and very low in both detection time and false
detections.

Det. False Det. Time No. of | No. of
Method Rate (%) | detection (secs) Dataset images | faces
S-L method | 98.2 2 not MIT-CMU | 92 282
reported
S-K method 944 65 5 MIT-CMU 125 483
H-D method | 96.1 02 0.78 CIT, FERET, 650 725
Internet

Table 4. Comparison of performance

Figure 7. Sample detection results for single as well as multiple human faces with sizes,
poses, expressions and complex backgrounds
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Figure 8. Sample images with expressions, lighting conditions, complex background &
beards

Figure 9. Sample images with miss-detections

3. Optimization of feature sets

A small set of geometrical features is sufficient for the face recognition task, which requires
less computational time and less memory due to their low dimension. In this approach,
facial features detected based on the Fuzzy face model are considered. The normalized
geometrical feature vector is constructed with the distances, areas, evaluation values and
fuzzy membership values. Normalization is done with respect to the distance between eyes.
Further, the feature vector is optimized and demonstrated that the resultant vector is
invariant of scale, rotation, and facial expressions. This vector uniquely characterizes each
human face despite changes in rotation, scale and facial expressions. Hence, it can be
effectively used for the face recognition system. Further, it is a 1-dimensional feature vector
space which has reduced dimensionality to a greater extent as compared to the other
methods (Turk & Pentland, 1991; Belhumeur et al., 1997) based on the 2-dimensional image
intensity space. In (Hiremath and Danti, Dec. 2004), the method of optimization of feature
sets for face recognition is presented and it is described as below.

3.1 Geometrical Facial Feature Set

The geometrical facial feature set contains total of about 26 features, in which 12 facial
features are obtained from face detector and remaining 14 projected features are determined
by the projection of facial features such as eyes, eyebrows, nose, mouth and ears.

Facial Features

Using the face detector based on Lines-of-Separability face model (Hiremath P.S. & Danti A.,
Feb. 2006) and fuzzy face model (Hiremath P.S. & Danti A., Dec. 2005) respectively, the list
of geometrical facial features extracted are given in the Table 5.

Projected Features

The centroid of the facial features obtained by our face detectors are projected
perpendicularly to the Diagonal Reference Line (DRL) as shown in the Figure 10. The DRL is
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the line bisecting the first quadrant in the HRL-VRL plane and is a locus of point (x,y)
equidistant from HRL and VRL. The equation of the DRL is given by:

Ax+ By +C =0, where the coefficients A, B, and C are given by: (16)
A=(a=b), B=(a+b). C=(cyr ~cyrr) (17)
Feature | Description Feature | Description
Ekyes Evaluation value of eyes ERrear Evaluation value of right ear
E Evaluation value of left E Overall evaluation value of the
ke eyebrow face
Evaluation value of right Membership value of left
Ere Hiep
eyebrow eyebrow
Enose Evaluation value of nose Hrep Membership value of right
eyebrow
EMouth Evaluation value of mouth HNose Membership value of nose
Erear Evaluation value of left ear Hfouth Membership value of mouth

Table 5. List of geometrical features extracted from face detectors

Figure 10. Projection of features on to DRL

Distance Ratio Features

The distance ratios are computed as described in the following. Let (xx,yx) be the centroid
K of the kth feature (e.g. left eyebrow in the Figure 10). Let Py be the projection of point K on
the DRL. Then, the following distances are computed:

KPy = Axg + By +C (Perpendicular distance) (18)
VA2 +B?
MK = \/(p _ XK)Z +(g- yK)2 (Radial distance) (19)

MPy =\|MK? - KP¢* (Diagonal distance) (20)
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Rreh - K (Distance ratio) (21)
MPy

The notation, R, denote the distance ratio obtained by the projection of left eyebrow.
Similarly the distance ratios R;,,Rge,Rress Ryose s Ritouth »Riear @nd Rye, are determined,
respectively for left eye, right eye, right eyebrow, nose, mouth, left ear and right ear.
Distance Ratio Features in Combination

The distances of all the facial features along the DRL are used to compute the distance ratios
for the combination of facial features as follows.

RpeverReye = % (Left Eye to Right Eye) (22)

R} opaReh = ﬁ/[/jﬁizz (Left Eyebrow to Right Eyebrow) (23)
Rynom = AA//[[—;’; (Nose to Mouth) (24)
Rlear2Rear _ Mhiear (Left Ear to Right Ear) (25)

Area Features

The centroids of the eyes, eyebrows, nose and mouth are connected in triangles as shown in
the Figure 11. The areas covered by the triangles are used to determine the area features. In
Figure 11(a), e; and e, denote right and left eyes respectively; n and m denote nose and
mouth respectively. The coordinates (x;,y), (x,,¥,), (x3,13) ,and (x4,y,) are the centroids of

right eye, left eye, nose, and mouth respectively.

b‘: (x1,11) b, (x2/2)

" (xayd) m (xuys

Figure 11. Triangular area features (a) Areas formed by eyes, nose, and mouth (b) Areas
formed by eyebrows, nose, and mouth

The triangular area A., formed by eyes and nose; and, the triangular area A., formed by
eyes and mouth are computed as given below.

= (1 =%) (1 =33) =0, (1 —x4) (11 = ¥4) (26)
(xz —x3) (y2—3) (x2 —x4) (y2 — y4)
AEVI
AEyes = (27)

N

em
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Then the ratio of areas covered by eyes, nose and mouth is given by the equation (27).
Similarly, in Figure 11(b), b; and b, denote right and left eyebrows respectively, and n and m
denote nose and mouth respectively. The coordinates (x,y(), (x,»2) , (x3,y3),and (x4,y4) are
the centroids of right eyebrow, left eyebrow, nose, and mouth respectively. The triangular
area Aqy formed by eyebrows and nose; and, the triangular area A, formed by eyebrows
and mouth are computed as given below.

(x1=x3) ()1 = »3) (xt —x4) (V1 —ya)

Aypp =0.5 =0. 28
" a0 =) T =) (2= ) @)
A
AEyebmws = Aebn (29)
ebm

Then the ratio of areas covered by eyebrows, nose and mouth is given by the equation (29).
The projected features are listed in the Table 6.

Feature | Description Feature | Description
Rieye Distance ratio by left eye RRear Distance ratio by right ear
Rreye Distance ratio by right eye Rieyeareye | Distance ratio by left and right eyes
Riey Distance ratio by left Rrepores | Distance ratio by left & right
eyebrow eyebows
Rrep Distance ratio by right Rnom Distance ratio by nose and mouth
eyebrow
Rnose Distance ratio by nose Rrearzrear | Distance ratio by left ear and right
ear
Ritoutn Distance ratio by mouth AEyes Area ratio by eyes, nose and mouth
Riear Distance ratio by left ear Agyebrows | Area ratio by eyebrows, nose and
mouth

Table 6. List of projected features

Final geometrical features include 26 features, in which 12 features are from the Table 5 and
14 features are from the Table 6.

3.2 Optimization of Features Sets
Three subsets of features from 26 features in different combinations are considered for
optimization. The subset A, B, C consist of 14, 6, 14 features, respectively as given below.

Subsetd = (RLeye 4 RReye, RLeb > RReb > RNose > RMauth > RLear > RRear >

(30)

RLeyeZReye > RRehZLeb ’ RNZM ° RLearZRear > AEyeS ’ AEyehraws)
Subset B = (EEyes E,RRep2Leb »RN2M > AEyes > AEyebrows ) (31)
Subset C = (UL ep » URe b » M Nose » HMouth » EEyes »Ereb s ERed » ENose » (32)

E Mouth »E s RRe b2Leb > R Mouth2 Nose > AEyes > AEyebrows )

The every feature subset is optimized by the maximal distances between the classes and
minimal distances between the patterns of one class. Here each class represents one person
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and the different images of one person were considered as patterns. The effectiveness of
every feature subset is determined by the evaluation function F as given below.

where M; and D; are mean and variance of the feature values f;; for (j =1 to k) k images of the
i-th person respectively, M,, and M; are mean of M; and D; respectively. The F value is the
ratio of the measures of dispersion of sample standard deviations and of the sample means
of the feature values in the k sample images of a class. For illustration we have used ORL
face database, which contain 40 subjects or classes and each of 10 variations. The Figure 12
shows the optimization of feature subsets in which F values along the y-axis are plotted for
40 classes along the x-axis. The lower F value indicates the stronger invariance property of
the feature subset with respect to scale, rotation and facial expressions. In the Figure 12 it
shows that the feature subset C is well optimized with the lowest F values compared to
other subsets and, hence it corresponds to a better feature subset.

Figure 12. Optimization of subsets of features

Invariance Property

The above feature Subset C is considered as the most optimized geometrical feature vector
for face recognition and is invariant to scaling, rotation, and facial expressions, because the
relative geometrical distances between the facial features such as eyes, nose, mouth, and
eyebrows vary proportionally with respect to scaling, rotation, and facial expressions, and
their feature values remain nearly constant. Hence the optimized feature vector
characterizes each human face uniquely. The Figure 13 illustrates the invariance property of
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feature vectors for the images shown in Figure 13(a). The Figure 13(b), feature vectors
exhibit negligible variations in the feature values.

25+
2) Re-Scaled gug-na: Image
§Varied o] Grikdne

3) Rotated Expression E3 Varied expression

1)Original

w

1 2 3 4 5 & 7 B 9 10 11 12 13 14

Feature No
a) b)

Figure 13. Illustration of invariance property a) Different images of the same person b)
Feature vectors for the images in a)

4. Face Recognition

In automated face recognition, a human face can be described by several features, but very
few of them are used in combination to improve discrimination ability and different facial
features have different contributions in personal identification. The use of geometrical
features will always have the credit of reducing huge space that is normally required in face
image representation, which in turn increases the recognition speed considerably (Zhao et
al. 2000). In (Hiremath and Danti, Jan 2006), the geometric-Gabor features extraction is
proposed for face recognition and it is described in this section.

4.1 Gemetric-Gabor feature Extraction
In the human ability of recognizing a face, the local features such as eyes, eyebrows, nose
and mouth dominate the face image analysis. In the present study, we have used
geometrical features and Gabor features in combination for face recognition. The optimized
feature set (Subset C) is considered as Geometric-Features for face recognition and the
features are listed as below.

Geometric Features = (Uyp s MRe b s MNose s MMouth > EEyes Erep s Ere > Enose s (34)

EMauth E, RRe b2Leb > RMothZNose > AEyes > AEyebrows)

The Gabor features are extracted by applying the Gabor filters on the facial feature locations
as obtained by our face detector and these locations are considered as highly energized
points on the face. We refer these Gabor features as Geometric-Gabor Features and the feature
extraction process is as given below.

The local information around the locations of the facial features is obtained by the Gabor
filter responses at the highly energized points on the face. A Gabor filter is a complex
sinusoid modulated by a 2D Gaussian function and it can be designed to be highly selective
in frequency. The Gabor filters resemble the receptive field profiles of the simple cells in the
visual cortex and they have tunable orientation, radial frequency bandwidth and center
frequency. The limited localization in space and frequency yields a certain amount of
robustness against translation, distortion, rotation and scaling. The Gabor functions are
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generalized by Daugman (Daugman 1980) to the following 2D form in order to model the
receptive fields of the orientation selective simple cells. The Gabor responses describe a
small patch of gray values in an image I(x) around a given pixel x=(x,y)T. It is based on a
wavelet transformation, given by the equation:

Ri(x) = jf(x’)zm-(x—x’)dx’ (35)

This is a convolution of image with a family of Gabor kernels

k; k, cosd,
,, where k,=| " |=| " # (36)
ki k,sing,

i

2 <]
vi(x)= @ e 207 |:ejk')C - eﬁT
(o

Each y; is a plane wave characterized by the vector ; enveloped by a Gaussian function,
where o is the standard deviation of this Gaussian. The center frequency of i filter is
given by the characteristic wave vector ;, in which scale and orientation given by («,.,6,) .

The first term in the Gabor kernel determines the oscillatory part of the kernel and the
second term compensates for the DC value of the kernel. Subtracting the DC response,
Gabor filter becomes insensitive to the overall level of illumination. The decomposition of an
image into these states is called wavelet transform of the image given by equation (35).
Convolving the input image with complex Gabor filters with 5 spatial frequencies (v=0.,...4)

and 8 orientations (x = 0,...7) will capture the whole frequency spectrum, both amplitude and
phase, as shown in the Figure 14.
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Figure 14. Gabor filters w.r.t. 5 Frequencies and 8 Orientations

In the Figure 15, an input face image (a), the highly energized points (b) and the amplitude
of the responses (c) to the above Gabor filters are shown. Several techniques found in the
literature for Gabor filter based face recognition consist of obtaining the response at grid
points representing the entire facial topology using elastic graph matching for face coding
(Kotropoulos et al. April 2000; Wiskott et al. 1999; Duc et al. 1999), which generate the high
dimensional Gabor feature vector. However, instead of using the graph nodes on entire face,
we have utilized only the locations of the facial features such as eyes, eyebrows, nose, and
mouth extracted by our face detector (Hiremath P.S. & Danti March 2005) as the highly
energized face points (Figure 15(b)) and Gabor filter responses are obtained at these points
only. This approach leads to reduced computational complexity and improved performance
on account of the low dimensionality of the extended feature vector, which is demonstrated
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in the experimental results. Gabor responses are obtained at the highly energized face points
of the input face image. A feature point is located at (x,y,) if

Nl NZ
1
Ri(xo,yo)—(;%;’;VO(R,'(XJ)) and Ri(xo,)’o)> NN, ;;&(&J’) (37)

where i=1,...,40, R;is the response of the image to the i*» Gabor filter. The size of the face
image is N; X N, and the center of the window, I, is at (xy,y,). The window size W must be

small enough to capture the important features and large enough to avoid redundancy. In
our experiments, 9X9 window size is used to capture the Gabor responses around the face
points. For the given face image, we get 240 Gabor responses (6 highly energized facial
feature points and 40 filters) as a Geometric-Gabor feature set. Finally, both the Geometric-
Features and Geometric-Gabor-Features are integrated into an Extended-Geometric-Feature
vector. These feature vectors are used for the recognition of a face by applying the matching
function as described in the next section.

8 Orientations

' |

(b) © i’

Figure 15. Facial image response to 40 Gabor Filters a) Original Image, b) highly energized
face points c) Gabor Filter Responses
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4.2 Face Matching

The traditional PCA technique (Turk and Pentland 1991) considers each face image as a
feature vector in a high dimensional space by concatenating the rows of the image and using
the intensity of each pixel as a single feature. Hence, each image can be represented as an n-
dimensional random vector x. The dimensionality n may be very large, of the order of
several thousands. The main objective of the PCA is dimensionality reduction, i.e. n-
dimensional vector x into an m-dimensional vector, where m<<n. A face image is
represented by Geometric-Feature set and also by Geometric-Gabor-Feature set. Further, these
two feature sets are integrated into an Extended-Geometric feature vector, which is
considerably very small compared to that of the feature vector used in (Turk and Pentland
1991). The matching function is evaluated for all the feature sets of the training face images
in order to assess the match between the images of the same person (or subject) and the
images from different individuals. The match value is determined by comparing a host face
with the other face images using the negative exponential function given by:

N
. . 1
Matching Function d= W.Zl:exp(_ |x; - y,«l) where 0<d<1 (38)
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where x; and y; are the feature elements of the face images X and Y, respectively, N is the
total number of elements of the feature. The results of the matching performance for the
database faces using the Geometric-Feature set, the Geometric-Gabor-Feature set and the
Extended-Geometric-Feature set are shown in the Figure 17(a), (b) and (c), respectively. The
match value decr for an Extended-Geometric-Feature vector is determined by the average of
the match values of Geometric dcr and Geometric-Gabor dcgr feature sets as given below:

1
dggr = E[dGF + dGGF] 39)

The match values are determined using the matching function. The horizontal axis
represents the face number and the vertical axis represents the match between faces for that
feature set. The value of the match is within the range [0,1] and can be given probability
interpretation. The match is 1, when the host face is having highest match with that of the
target faces and the match is zero, when the host face is having lowest match with that of the
target faces. The performance of the features are analyzed by searching for target faces that
match with the given host face. The targets are different images of the same person as the
host. The analysis is based on the individual assessment of the two feature sets as well as the
performance when both the feature sets are integrated into the extended feature vector.

4.3 Experimental Results

For experimentation, the ORL and MIT face databases, which are the publicly available
benchmark databases for evaluation, are used. The ORL database consists of 400 images, in
which there are 40 subjects (persons) and each having 10 variations i.e. varying expressions,
poses, lighting conditions under homogeneous background. The MIT database consists of
432 images, in which there are 16 subjects and each having 27 variations i.e. different head
tilts, scales and lighting conditions under moderate background. The experimentation is
done with 40 face images, which consist of 10 subjects and each of 4 variations. To illustrate
the analysis of experimental results, the Figure 16 depicts face no 21 as host face and face
nos. 22, 23 and 24 as its target faces, i.e. these face images pertain to the same subject
(person). Results of the match between the face 21 and the other 39 faces are shown in the
Figs. 17 (a), (b) and (c) for the Geometric-Feature set, the Geometric-Gabor-Feature set and the
Extended-Geometric-Feature vector, respectively. In the Figure 17(a), we observe that some of
the non-target faces also yield a comparable match value as that of target faces leading to
recognition errors, e.g. non-target face nos. 3, 26 and 27 have match values close to that of
target faces no. 23. Further, many of the non-target faces have match values greater than 0.5
leading to the poor discrimination ability of the geometric feature set. Similar observations
can be made in the Figure 17(b), but the discrimination ability of Geometric-Gabor feature
set is found to be better than the geometric feature set. Only few non-target faces have
match values greater than 0.4 and close to the target faces. However, still improved match
results are found in case of the integrated feature vector combining geometric as well as
Geometric-Gabor features and are depicted in Figure 17(c). All the non-target faces have
their match values much less than 0.4 and are well discriminated from the target faces
leading to enhanced recognition rate.

The possibility of a good match of the non-target faces on individual feature sets have been
reduced and such faces are well discriminated by the integration of both the feature sets as
shown in the Figure 17(c). Similar discrimination results are reported when comparing the
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effectiveness of template matching to geometric features (Brunelli and Poggio, 1993). In
matching, the geometric features remain reasonably constant for a certain extent of
variations in face orientation, expressions and tolerate side-to-side rotation better than up-
down movement, which are attributed to the normalization by the distance between eyes.
However for the geometric features, match fails for upside down faces and extreme
illumination conditions, due to the fact that, the fuzzy face model is constrained by the face
orientation within the range £45° and minimum face area of 500 pixels, otherwise the facial
features are miss-detected. These factors are greatly affecting the matching performance of
the Geometric-Feature set. The Geometric-Gabor-Feature set performed well on all the faces due
to the fact that, Gabor features capture most of the information around the local features,
which yields a certain amount of robustness against lighting variations, translation,
distortion, rotation and scaling. Further, robustness of Gabor features is also because of
capturing the responses only at highly energized fiducial points of the face, rather than the
entire image. The Gabor filters are insensitive to the overall level of illumination, but fail for
the images under extreme illumination conditions (too darkness). Hence, the match on the
Extended-Geometric-Feature vector exhibits a balanced performance. Face movement not only
affects feature translation and rotation but also causes variation in illumination by changing
the position of shadows especially in case of up-down, and side-to-side face movements.
Hence this approach is tolerant not just to face movement but also to a certain extent of
variations in illumination.
22 24
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Figure 16. Sample faces of MIT database images a) Host face b) Target faces
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Figure 17. Match between host face and training faces on feature sets a) Geometric b)
Geometric-Gabor c) Extended-Geometric

The comparison of the present method with the well known algorithms for face recognition
such as eigenface (Turk and Pentland 1991) and elastic graph matching (Wiskott et al. 1999)
with respect to the recognition performance is presented in the Table 7.
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Face Databases
Method MIT ORL
Eigenface (Turk 1991) 97% 80 %
Elastic graph Matching (Wiskott 1999) 97% 80 %
Fuzzy face model with optimized feature set 89 % 91 %
(Hiremath and Danti, Sept. 2005)

Table 7. Recognition Performance

The eigenface method did reasonably better on MIT database with 97% recognition and also
has acceptable performance on ORL database with 80% recognition. Eigenface technique
uses minimum Euclidian distance classifier, which is optimal in performance only if the
lighting variation between training and testing images is around zero-mean. Otherwise,
minimum distance classifier deviates significantly from the optimal performance, which is
resulting in the deterioration of performance. Elastic matching method also performed well
on the MIT database with 97% recognition and 80% recognition on ORL database. This
method utilizes Gabor features covering entire face and it has some disadvantages due to
their matching complexity, manual localization of training graphs and overall execution
time.

The present method performed reasonably well on MIT database with 89% recognition,
which is comparable to the other two methods, and has significantly improved performance
on ORL database with 91% recognition. The comparison reveals that the Extended-
Geometric feature vector is more discriminating and easy to discern from others and has a
credit of low dimensional feature vector when compared to the high dimensional vectors
used in other two methods. The reduced dimension has increased the recognition speed
significantly a reduced the computation cost considerably.

5. Symbolic Data Approaches for Face Recognition

The symbolic data analysis (SDA) is an extension of classical data analysis to represent more
complex data. Features characterizing symbolic object may be large in number, which leads
to creation of a multi-dimensional feature space. Larger the dimensionality, more severe is
the problem of storage and analysis. Hence, a lot of importance has been attributed to the
process of dimensionality or feature reduction of symbolic objects, which is achieved by sub
setting or transformation methods. Nagabhushan et. al. proposed the dimensionality
reduction method on interval data based on Taylor series (Nagabhushan et. al. 1995). Ichino
(Ichino 1994) proposed an extension of a PCA based on a generalized Minkowski metrics in
order to deal with interval, set valued structure data. Choukria, Diday and Cazes (Choukria
et. al. 1995) proposed different methods, namely, Vertices Method (V-PCA), Centers Method
and Range Transformation Method. The idea of using kernel methods has also been adopted
in the Support Vector Machines (SVM) in which kernel functions replace the nonlinear
projection functions such that an optimal separating hyperplane can be constructed
efficiently (Bozer et. al. 1992). Scholkopf et. al. proposed the use of kernel PCA for object
recognition in which the principal components of an object image comprise a feature vector
to train a SVM (Scholkopf et al. 1998). Empirical results on character recognition using
MNIST data set and object recognition using MPI chair database show that kernel PCA is
able to extract nonlinear features. Yang et al., compared face recognition performance using
kernel PCA and the eigenfaces method (Yang et al. 2000). Moghaddam demonstrated that
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kernel PCA performed better than PCA for face Recognition (Moghaddam 2002). Chengjun
Liu extended kernel PCA method to include fractional power polynomial models for
enhanced face recognition performance. (Chengjun Liu 2004). In (Hiremath and Prabhakar,
2006), an integrated approach based on symbolic data analysis and kernel PCA for face
recognition is explored.

5.1 Symbolic Kernel PCA for Face Recognition

This section details the face recognition method using symbolic kernel PCA method
(Hiremath and Prabhakar, 2006). In the training phase, firstly, the symbolic faces are
constructed for a given face database images. Secondly, symbolic kernel PCA is applied to
the symbolic faces in order to nonlinearly derive low dimensional interval type features that
incorporate higher order statistics. In the classification phase, the test symbolic face is
constructed for a given test face class in order to derive the symbolic kernel PCA interval-
type features. Finally, a minimum distance classifier is employed for classification using
appropriate symbolic dissimilarity measure.

Construction of Symbolic Faces

Consider the face imagesT},T,...,T,, each of size NxM , from a face image database. Let

Q={1,...,T,}be the collection of n face images of the database, which are first order
objects. Each objectT;eQ, /=l,.,n, is described by a feature vec’cor()ﬁ,...?)7 ), of length
p=NM, where each component )N{/, j=L..,p,is a single valued variable representing the
intensity values of the face imageI;,. An image set is a collection of face images of m

different subjects and each subject has different images with varying expressions,
orientations and illuminations. The face images are arranged from right side view to left
side view. Thus there are m number of second order objects (face classes) denoted by
F={c,¢2,..¢,u}, €ach consisting of different individual images, T; € Q , of a subject. The view

range of each face class is partitioned into g sub face classes and each sub face class contains
r number of images. The feature vector of k" sub face class ¢ of i face classc; , where

k=1,2,...,q, is described by a vector of p interval variables ¥,....,¥,, and is of length p=NM .

The interval variable v; of k™ sub face class ¢} of i” face class is described as:

—k
Yje) = lxyxi) (40)

where Ef; and ¥} are minimum and maximum intensity values, respectively, among jth

pixels of all the images of sub face classcf. This interval incorporates variability of "

feature inside the k™ sub face class ¢/ .

We denote, X} = ()ﬁ(c{‘l...,Yp(c{‘)li:l,...,m, k=1...q. (41)

k
i

The vector X¥ of interval variables is recorded for k" sub face class cf of i face class. This

vector is called as symbolic face and is represented as:

xk=(ok,...ok) (42)
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where a§=Yj(c{C)=[£§,xly‘], j=l..,p and k=1,...,q; i=12,...,m. We represent the gm symbolic

faces by a (gmx p) matrix X consisting of gm row vectors X¥ :

X= [X{‘ mep (43)

Extraction of Non Linear Interval Type Features

Let us consider the matrix X containing gm symbolic faces pertaining to the given set Q of
. . c . —k
images belonging to m face classes. The centers x,!; eR of the intervals a,-lj‘»:[gg,xij-], are

given by

=k k
C X +£..
x,l; =%,where k=1,..,q, i=1l,..m and j=1,..,p. (44)

(C .
The gmxp data matrix X containing the centers x;. € R of the intervals 06; for gm
symbolic faces is given by:

X2 [X;CC} (45)

qmxp

=i =il

. . c c C —k —k —k
Where the p-dimensional vectors X* = x*" ... x5 |, x* =|x*,..,x* | and Xi=| xa,....x;
i il ip Zip P

represent the centers, lower bounds and upper bounds of the gm symbolic faces X},

respectively. Let ®:R” -F be a nonlinear mapping between the input space and the
feature space. For kernel PCA, the nonlinear mapping, @, usually defines a kernel function.
Let D represent the data matrix of centers of gm symbolic faces in the feature space:

D:[<I>(X1‘C),...,<I>(Xfc), .. ,cD(X,‘nC),...,tD(X,‘{TC)} . Let KeR?>? define a kernel matrix by
means of dot product in the feature space:
K;=(ox) ) (46)

Assume the mapped data is centered. As described in (Scholkopf et al., 1998), the

eigenvalues, 4 >4, >...24,,, and the eigenvectors 1,,,,...,V,,,of kernel matrix K can be

derived by solving the following equation:

KA=gmAA, with A:lal,...,aqml, A:a'iag{/ll,... A } 47)

> Mgm

gmxgqm gmxqm

where 4e® is an orthogonal eigenvector matrix, Ae%® a diagonal eigen value
matrix with diagonal elements in decreasing order. In order to derive the eigenvector matrix

V=[V,,V2,...,quJof symbolic kernel PCA, first, A should be normalized such that

A || a, ||2 =Lu=1,...,qm. The eigenvector matrix, V, is then derived as follows:

v=pT4 (48)
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A subspace is extracted from the pxgm dimensional space V' by selecting S <gm number of
eigenvectors, which  contain maximum  variance and are denoted by

. . b .
.V, ...,Vs, corresponding to eigenvalues 4 >4, >...24;. The V' eigenvector of V is

denoted by 7, ( Voo Vp). Since, the symbolic face X} is located between the lower bound
symbolic face X f‘ and upper bound symbolic face}f-(, it is possible to find v" interval

principal component [Kffv,Wﬁ(V] of symbolic face X} defined by

—k c c
wk = Z [@(x,«j)—qxx{; )].ij + Z [cp(xf;.)—m(x{; )].ij (49)
JiV,; <0 JjiVy>0
—k c -k c
W= [w(xf;) - ok )]‘VW £y [':D(xij) - oGk )].ij (50)
JiVy; <0 JjiVy; >0
where v=1,...,5, and ¢ {Z ok )} / . Let ¢, be the test face class, which contains face
ij

images of same subject with different expression, lighting condition and orientation. The test

face class ¢ is described by a feature vector X, termed as test symbolic face of p

test

interval variables ,,....Y,, and is of length p= NM . The interval variable Y; of test symbolic

face is described asY;(X,,)=I[ ], where x and X4, are minimum and

E(te.vt)j > X(test) j Z(test) )’

maximum intensity values, respectively, among jth pixels of all the images of test face
class ¢, . This interval incorporates information of the variability of ;” feature inside the

test face classc,,. The lower bound of test symbolic face Xx,, is described

as X Similarly, the upper bound is described

(test) — ( (test)l’f(test)Z’"'7£(test)p)‘

as X rest :(x(,gs,)l,x(m,)z, ...,;(m) » ) The v" interval principal component [ W(,es,).,] of test

—(test)v’

symbolic face X, is computed as:

. P _

W = D, (@(x(wn-)—@(x(m/] vy + z (cbq(,m),-)—<1>(x<,w,),~>).Vv,- (51)
JiV,; <0

Wi = D @) = @) ¥y + Z (@G = @G )| 7y (52)
JV,;<0 jiV,; >0

v

X(test) j + I(resl)j

wherev=1,....S, and ®(x(,;) = 5

5.2 Classification Rule
When test face class C,,, is presented to the symbolic kernel PCA classifier, low dimensional

test

symbolic kernel PCA interval type features [W W(,m)v] are derived. Let [Efv ,va],

(test)v>

i=1,2,.., m, and k=1,...,q, be the symbolic kernel PCA interval type features of gm symbolic
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faces. The classifier applies the minimum distance rule for classification using symbolic
dissimilarity measure §:

— —k . — —k
J[mes,)v,W«emv INUANTS ]= min J(IKWS,)wWaesz)vL [Kﬁ‘v,lej e ¢ (53)
1

The symbolic kernel PCA interval type feature vector [W, . W] is classified as

(test)v
belonging to the face class, C,, using appropriate symbolic dissimilarity measure J. Two

classes of kernel functions widely used in kernel classifiers are polynomial kernels and
Gaussian kernels defined, respectively, as:

k(x,p)=(x-y)? (54)
2
k(x,y)= em[—%} , where de N, 6>0 and k>0. (55)

5.3 Experimental Results

The symbolic kernel PCA method is experimented with the face images of the ORL face
database, which composed of 400 images with ten different images for each of the 40 distinct
subjects. All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position, with tolerance for some tilting and rotation of up to

about 20° from frontal view to left side view and right side view. In the training phase, each
face class is partitioned into three sub face classes based on view range from right side view
to left side view. Each sub face class will have three images and totally nine images of one
subject are used for training purpose. Thus, we obtain the 120 symbolic faces. The symbolic
kernel PCA is applied to obtain the non-linear interval type features from symbolic faces.
The classification phase includes construction of test symbolic face for each trial using
randomly selected three images from each face class and extraction of interval type features
from test symbolic face. Further, a minimum distance classifier is employed for classification
using symbolic dissimilarity measure. Figure 18(a) shows some typical images of one subject
of ORL database and their corresponding view based arrangement. Figure 18(b) shows the
constructed symbolic faces for face class shown in (a).

Figure 18. (a) Arrangement of faces images from right to left side view belonging to one
subject of ORL database. (b) Three symbolic faces of face class shown in (a) and each
symbolic face summarizes the variation of feature values through the images belonging to
corresponding sub face class (each interval of symbolic face is centered for display purpose)
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Performance of symbolic kernel PCA using symbolic dissimilarity measures
Experimentation is done to compare performance of symbolic kernel PCA with polynomial
kernel of degree one using symbolic dissimilarity measures. The recognition accuracy (%) of
64.50, 71.25 and 78.15 is observed in the experiments using symbolic dissimilarity measures
(Bock & Diday 2000): Gowda and Diday, Ichino and Yaguchi and De Carvalho and Diday
dissimilarity measures, respectively. Hence, De Carvalho and Diday dissimilarity measure
is considered appropriate for face recognition using symbolic kernel PCA method.
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Figure 19. Rectangular representation of first two principal components of eight face classes

Performance of symbolic kernel PCA with varying number of features

Two popular kernels are used in the experimentation. One is the polynomial kernel
(equation 5.15) and the other is Gaussian kernel (equation 5.16). Three methods, namely,
conventional kernel PCA, eigenface method and symbolic kernel PCA method, are tested
and compared. The minimum distance classifier is employed in the experiments. In the
phase of model selection, the goal is to determine proper kernel parameters (i.e., the order d
of the polynomial kernel and the width o of the Gaussian kernel), the dimension of the
projection subspace for each method. Since it is very difficult to determine these parameters,
a stepwise selection strategy is adopted here. Specifically one has to fix the dimension and
try to find the optimal kernel parameters for a given kernel function. Then, based on the
chosen kernel parameters, the selection of the subspace sizes is performed. To determine the
proper parameters for kernels, we use the global to local strategy. After globally searching
over a wide range of the parameter space, we find a candidate interval where the optimal
parameters might exist. Here, for the polynomial kernel, the candidate order interval is from
1 to 7 and, for the Gaussian kernel, the candidate width interval is from 0.5 to 12. Then, we
try to find the optimal kernel parameters within these intervals. Figure 20 (a) and (b) show
the recognition accuracy versus the variation of kernel parameters corresponding to
conventional kernel PCA, and symbolic kernel PCA method with a fixed dimension of 30.
From these figures, the optimal order of polynomial kernel is found to be three and the
width of Gaussian kernel should be five for symbolic kernel PCA method. After
determining the optimal kernel parameters, we set out to select the dimension of subspace.

Method Polynomial Kernel Gaussian Kernel
Order Subspace Dimension Width | Subspace Dimension
Conventional
Kernel PCA 1 44 7 47
Symbolic
Kernel PCA 3 35 5 44

Table 8. Optimal Parameters corresponding to each method with respect to two different
kernels
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We depict the performance of each method over the variation of dimensions and present
them in Figure 20(c) and (d). From these figures, the optimal subspace dimension can be
chosen for each method with respect to different kernels. The optimal parameters for each
method with respect to different kernels are listed in Table 8. After selection of optimal
parameters for each method with respect to different kernels, all three methods are
reevaluated using same set of training and testing samples. The number of features and
recognition accuracy for the best case are shown in Table 9. The best performance of the
symbolic kernel PCA method is better than the best performance of the conventional kernel
PCA and eigenface method. We note that the symbolic kernel PCA method outperforms
eigenface method and conventional kernel PCA in the sense of using small number of
features. This is due to the fact that first few eigenvectors of symbolic kernel PCA method
account for highest variance of training samples and these few eigenvectors are enough to
represent image for recognition purposes. Hence, improved recognition results can be
achieved at less computational cost by using symbolic kernel PCA method, by virtue of its
low dimensionality.

Eigenface Symbolic Kernel PCA Conventional Kernel PCA
Polynomial | Gaussian | Polynomial Gaussian
Kernel Kernel Kernel Kernel
Recognition 78.11 91.15 90.25 84.95 81.35
Rate (%)
Number of 47 35 44 44 47
Features

Table 9. Comparison of symbolic kernel PCA Method using optimal parameters

Recogniion Acosacy

£ .. o a5 mboic kemel FCA

4 —e— conventional kemel PCA

Figure 20. Illustration of recognition rates over the variations of kernel parameters and
subspace dimensions. a) order of polynomial kernel b) Width of Gaussian kernel c)
Subspace dimension using polynomial kernel with optimal order d) Gaussian kernel with
optimal width

The symbolic kernel PCA method is also superior in terms of computational efficiency for
feature extraction. In the Table 10, CPU times (in seconds) required for feature extraction by
different methods are presented. It is observed that the symbolic kernel PCA method is
found to be faster.
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Symbolic Kernel PCA Conventional Kernel PCA
Eigenface Polynomial Gaussian Polynomial Gaussian Kernel
Kernel Kernel Kernel
124 78 116 91 131

(CPU: Pentium 2.5GHz, RAM: 248 MB)
Table 10. The CPU Time(s) for feature extraction corresponding to each method

6. Symbolic Factorial Discriminant Analysis for Face Recognition

In the framework of symbolic data analysis (SDA), a generalization of the classical factorial
discriminant analysis to symbolic objects is proposed in (Hiremath and Prabhakar, Sept.
2006), which is termed as symbolic factorial discriminant analysis (symbolic FDA). It
consists of a symbolic-numerical-symbolic procedure for face recognition under variable
lighting. In the first phase, the face images are represented as symbolic objects of interval
type variables. The representation of a face images as symbolic faces results in coverage of
image variations of human faces under different lighting conditions and also enormously
reduces the dimension of the original image space without losing a significant amount of
information. Symbolic FDA proceeds by a numerical transformation of the symbolic faces,
using a suitable coding. Optimal quantification step of the coded variables is achieved by
Non-Symmetrical Multiple Correspondence Analysis (NS-MCA) proposed by Verde and
Lauro. This yields new factorial variables, which will be used as predictors in the analysis.
In the second phase, we applied symbolic factorial discriminant analysis method on the
centered factorial variables to extract interval type discriminating features, which are robust
to variations due to illumination. This procedure is detailed as given below.

6.1 Construction of symbolic Faces

We construct the gm symbolic faces by a matrix E with size (gm X p), consisting of row
vectors S{‘:(Yl(c{‘i...,Yp(c{‘ i=l...,m k=1...,q, as described in the section 5.1. The p-
dimensional vectors, St :(Lkl ~xy | and S{ =(x...1p) represent the lower bounds and
upper bounds of the symbolic face ¥, respectively.

Coding of Symbolic Variables

This phase performs a numerical transformation of the interval variables by means of
dichotomic and non-linear functions. The coding values are collected in coding matrices that

we denote by X;(j=1,...,p). We adopt a fuzzy coding system in order to preserve as much

as possible the numerical information of the original variables after their categorization. For
this purpose, a interval type variable is transformed based on a fuzzy approach using
special piece wise polynomial functions, such as B-Splines, as has been proposed by Van
Rijeckevorsel and Verde (Bock & Diday 2000). In order to attain a reasonably small number
of categories for the coded variables, typically low degree polynomials are used. By a
B-Spline of degree one, or a semi linear transformation, the domain of each variable is split
into two intervals and a fuzzy coding is performed by three semi linear functions, e.g.
By, B,,B; . The threshold knots are chosen as the minimum and maximum values assumed by

the variable and middle knot might be the average, median, or the semi range value of the
variable. According to the B-Spline coding system, a symbolic face S is coded as a unique
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row in the matrix X; corresponding to the values assumed by the B-Spline functions for the
value Y, for a S :B(Y;(S))., B,(Y;(S})., B;(Y;(S/)). Finally, a global coding matrix Xy, is

constructed by combining coded descriptors. It is also considered as a partitioned matrix
built by juxtaposing p fuzzy coding matrices obtained in coding phase:

X:hX1|~--|Xj|~--|Xp” (56)

here K =3¢, (g<p) is the number of columns of X; of all transformed variables in the
descriptions of the symbolic faces. The total number N of rows of X will be larger than the
original number gm of symbolic faces.

Quantification of symbolic variables
After the coding of the variables in terms of fuzzy coding, we want to find a quantification
of the coded variables. The optimal quantification of the K categories of the p descriptors is
obtained as solution of the eigen equation:

L P e P

W(G XA X G- G UGJ Wy = Ly 0, (57)

where Gy, be the indicator matrix that identifies the different symbolic faces of the set E.
Under the ortho-normality constraints: wj,w, =1 and w,w, =0 for a=«. Here U is a matrix
with unitary elements, y,and w,are the o” eigen value and eigenvector, respectively, of
the matrix in the brackets, and A, is the block diagonal matrix with diagonal

blocks (X}X},fl. New quantified variables associated with the a™ factorial axis is

computed as:
®,= XN XGa,e RY (58)

Extraction of Interval Type Features

After having transformed the categorical predictors into optimal numerical variables, we
can perform a classical FDA in order to look for a suitable subspace with optimum
separation and, at the same time, obtaining a minimum internal dispersion of the

corresponding symbolic faces. We denote by X matrix collecting the new variables
|@)]--|@,|-|@,| of set E. The factorial discriminant axes are solutions of the eigen equation:

[()?’H)? ['#uc)croyon )?)} Vo= Vo (59)

where the column vectors of X are centered, and C is the indicator matrix that specifies the
membership of each symbolic face to just one of the m classesc;. Here H is the diagonal

matrix with diagonal elements equal to d; /gm(i=1,...,m), where d; are the class sizes, and 4,

th

and y, are the " eigen value and eigenvector, respectively, of the matrix in brackets. The

eigenvectors of symbolic factorial discriminant analysis method can be obtained as:

Vom=E' Yy, (60)
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where V,,,=,...,vym) is the gmxgm matrix with columns v,...,v,,, and Y, is the Pxgm

matrix with corresponding eigenvectors yj,y;,...,ygm, as its columns. The o™

eigenvector
of ¥ is denoted by va:(vm,...,vap). A subspace is extracted by selecting L number of
eigenvectors, ~which  contain maximum  variance and are denoted by
VisVas ... »v1, corresponding to eigenvalues 4 >4,>...>4,. Since, the symbolic face S/ is

. . <k ..
located between the lower bound symbolic face §§‘ and upper bound symbolic face S; , it is

possible to find " interval principal component [#* Wf-{a] of symbolic face Sf defined by

i’
Wi, =Skve (61)
—k =k
Wia=Si vy (62)

6.2 Classification of Rule
Let ¢, be the test face class, which contains face images of same subject under varying

illumination conditions. The test symbolic face S, is constructed for test face classc, -

The lower bound of test symbolic face S, is described ass - :(E(m)l,)_c(m)z, ...,)_c(m)p)‘

Similarly, the upper bound is described asg,m:(;(,@X,)l,;(,m)z, e X(test)p ) A matrix

representation for the test symbolic face is obtained by the same coding system and the
coded descriptors are collected in a global coding matrix X*=(x}|..|x;) of

dimension (N*,K). The quantification of the coded descriptors of test symbolic face is
achieved by:

L =X"AX'Ga, (63)

where w, are the eigenvectors obtained as solutions of the equation (57). The &” interval

principal component [#, (test) Q,W(m)a] of test symbolic face S,,,, is computed as:
E(test)a zgtestva (64)

W(tesr)a = Stestva (65)

—k . . .
Let [Kf‘a,W,-a], i=1,2,..,m, and k=1,...,q, be the interval type features of gm symbolic faces.

The classifier applies the minimum distance rule for classification using De Carvalho and
Diday symbolic dissimilarity measure § (Bock & Diday 2000).

— P —k . — P——
5([Z(zm ya W testye 1 TW 0 s Wi ]): min 5([W (test Yo IV Gtest yer ], W oW “”j (66)

> Crest € €

The interval type feature vector [ W esna] is classified as belonging to the face class,

(test)a’

¢; , using De Carvalho and Diday symbolic dissimilarity measure &.
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6.3 Experimental Results

In order to demonstrate the effectiveness of symbolic factorial discriminant analysis method
for face recognition under varying illumination conditions, we have conducted a number of
experiments by using 4,050 image subset of the publicly available Yale Face Database B
(Georghiades et. al. 2001). This subset contains 405 viewing conditions of 10 individuals in 9
poses acquired under 45 different point light sources and an ambient light. The pose
variation is limited to only upto 10° -15°. The images from each pose were divided into four
subsets (12°,25°,50°and 77°) according to the angle 6 between the direction of the light source
and the optical axis of a camera. Subset 1(respectively 2, 3, 4) contains 70 (respectively 120,
120, 140) images per pose. In the experiments, images which were cropped and down-
sampled to 64 X 64 pixels by averaging are used. Actually, in order to remove any bias due
to the scale and position of a face in each image from the recognition performance, they
were aligned so that the locations of the eyes or the face center were the same. In Figure 21,
we show images of an individual belonging to each subset. One can confirm that images
vary significantly depending on the direction of the light source.

A"
g -

Figure 21. Images of an individual belonging to each subset: the angle 6 between the light
source direction and the optical axis lie (0°,12°l (20",25") (35°,52°)and (60°,77°) respectively

We have conducted several experiments to compare our algorithm with two other
algorithms. In particular, we compared our algorithm with eigenfaces (Turk & Pentlad 1991)
and kernel Fisher discriminant analysis algorithm (Yang et. al 2005). Eigenfaces is the
defacto baseline standard by which face recognition algorithms are compared. In the present
study, we have assumed that more probe images are available. The proposed method
improves the recognition accuracy as compared to other algorithms by considering three
probe images with wide variations in illuminations and pose for each trial. In all the
experiments, simplest recognition scheme namely, a minimum distance classifier with
symbolic dissimilarity measure is used.

Variations in illumination and fixed pose

The first set of face recognition experiments, where the illumination varies while pose
remains fixed are conducted using 450 images (45 per face) for both training and testing. The
goal of these experiments was to test the accuracy of this method. First, we used images

belonging to subset 1 (#<12°) as training images of each individual, and then tested other

images (6 220°) .
Recognition error rates (%)
Method Subset 2 | Subset 3 | Subset 4
Symbolic FDA 0 0 4.3
Eigenfaces 7.6 22.50 60.90
KFDA 2.5 12.45 50.8

Table 11. Comparison of recognition error rates under variations in illuminations and fixed
pose
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In Table 11, we show the recognition error rates of different methods for each subset. The
results show that the proposed method outperforms other methods when illumination
varies while pose remains fixed. This is due to the fact that the first subset allows images
with maximum intensity among images of the subsets and any possible intensity values lies
within intervals constructed by using subset 1.

Variations in illumination and pose

Secondly, the experiments are conducted by using images taken under varying illumination
conditions and poses, and confirmed the robustness of symbolic FDA method against
variations due to slight changes in pose. In these experiments, the images in five poses
instead of images in frontal pose only are used. The criteria used to select both training set
and test set are same as like previous experiments but for five poses of each individual. In
Table 12, the recognition error rates of symbolic FDA method and other two methods for
each subset are given. The results show that the symbolic FDA method outperforms other
methods for images with variations in illuminations and pose.

Recognition error rates (%)
Method Subset 2 | Subset3 | Subset 4
symbolic FDA 0 0.5 5.5
Eigenfaces 3.8 15.7 25.65
KFDA 3.0 225 14.5

Table 12. Comparison of recognition error rates under variations in illuminations and pose

7. Conclusions

Face is a more common and important biometric identifier for recognizing a person in a
non-invasive way. The face recognition involves identification of the facial features, namely,
eyes, eyebrows, nose, mouth, ears, and their spatial interrelationships uniquely. The
variability in the facial features of the same human face due to changes in facial expressions,
illumination and poses shall not alter the face recognition. In the present chapter we have
discussed the modeling of the uncertainty in information about facial features for face
recognition under varying face expressions, poses and illuminations. There are two
approaches, namely, fuzzy face model based on fuzzy geometric rules and symbolic face
model based on extension of symbolic data analysis to PCA and its variants. The
effectiveness of these approaches is demonstrated by the results of extensive
experimentation using various face databases, namely, ORL, FERET, MIT-CMU and CIT.
The fuzzy face model as well as symbolic face model are found to capture variability of
facial features adequately for successful face detection and recognition.
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1. Introduction

Face recognition by humans is a natural process that we perform on daily basis. A quick
glance at a face and we are able to recognize the face and, most of the time, name the person.
Such a process occurs so quickly that we never think of what exactly we looked at in that
face. Some of us may take a longer time while trying to name the person, however, the
recognition of the familiar face is usually instantaneous.

The complexity of a human face arises from the continuous changes in the facial features
that take place over time. Despite these changes, we humans are still able to recognize faces
and identify the persons. Of course, our natural recognition ability extends beyond face
recognition, where we are equally able to quickly recognize patterns, sounds and smells.
Unfortunately, this natural ability does not exist in machines, thus the need for artificially
simulating recognition in our attempts to create intelligent autonomous machines.

Face recognition by machines can be invaluable and has various important applications in
real life, such as, electronic and physical access control, national defense and international
security. Simulating our face recognition natural ability in machines is a difficult task, but
not impossible. Throughout our life time, many faces are seen and stored naturally in our
memories forming a kind of database. Machine recognition of faces requires also a database
which is usually built using facial images, where sometimes different face images of a one
person are included to account for variations in facial features.

Current face recognition methods rely on: detecting local facial features and using them for
face recognition or on globally analyzing a face as a whole. The first approach (local face
recognition systems) uses facial features within the face such as (eyes, nose and mouth) to
associate the face with a person. The second approach (global face recognition systems) uses
the whole face for identifying the person.

This chapter reviews some known existing face recognition methods and presents one case
study of a recently developed intelligent face recognition system that uses global pattern
averaging for facial data encoding prior to training a neural network using the averaged
patterns.

The development of intelligent systems that use neural networks is fascinating and has
lately attracted more researchers into exploring the potential applications of such systems.
The idea of simulating the human perceptions and modeling our senses using machines is
great and may help humankind in medical advancement, space exploration, finding
alternative energy resources or providing national and international security and peace.
Intelligent systems are being increasingly developed aiming to simulate our perception of
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various inputs (patterns) such as images, sounds...etc. Biometrics is an example of popular
applications for artificial intelligent systems. The development of an intelligent face
recognition system requires providing sufficient information and meaningful data during
machine learning of a face.

This chapter presents a brief review of known face recognition methods such as Principal
Component Analysis (PCA) (Turk & Pentland, 1991), Linear Discriminant Analysis (LDA)
(Belhumeur et al., 1997) and Locality Preserving Projections (LPP) (He et al., 2005), in
addition to intelligent face recognition systems that use neural networks (Khashman, 2006).
There are many works emerging every year suggesting different methods for face
recognition, however, these methods are appearance-based or feature-based methods that
search for certain global or local representation of a face.

The chapter will also provide one detailed case study on intelligent global face recognition
system. In this case a neural network is used to identify a person upon presenting his/her
face image. Global pattern averaging is used for face image preprocessing prior to training
or testing the neural network. Averaging is a simple but efficient method that creates
"fuzzy" patterns as compared to multiple "crisp" patterns, which provides the neural
network with meaningful learning while reducing computational expense.

Intelligent global face recognition considers a person’s face and its background and suggests
that a quick human “glance” can be simulated in machines using image pre-processing and
global pattern averaging, whereas, the perception of a “familiar” face can also be achieved
by exposing a neural network to the face via training (Khashman, 2006).

The chapter is organized as follows: section 1 contains an introduction to the chapter.
Section 2 presents a review on problems and difficulties in face recognition. Section 3
describes known conventional face recognition methods and a selection of intelligent face
recognition techniques. Section 4 presents in details our case study on intelligent global face
recognition. Section 5 presents analysis and discussion of the results of implementing the
work that is described in section 4. Finally, section 6 concludes this chapter and provides a
discussion on the efficiency of intelligent face recognition by machines.

2. Problems with Face Recognition

The databases used in developing face recognition systems rely on images of human faces

captured and processed in preparation for implementing the recognition system. The

variety of information in these face images makes face detection difficult. For example, some

of the conditions that should be accounted for, when detecting faces are (Yang et al., 2002):

e Occlusion: faces may be partially occluded by other objects

e  Presence or absence of structural components: beards, mustaches and glasses

e  Facial expression: face appearance is directly affected by a person's facial expression

e  Pose (Out-of Plane Rotation): frontal, 45 degree, profile, upside down

e  Orientation (In Plane Rotation):face appearance directly varies for different rotations
about the camera's optical axis

e Imaging conditions: lighting (spectra, source distribution and intensity) and camera
characteristics (sensor response, gain control, lenses), resolution

Face Recognition follows Face detection. Face recognition related problems include (Li &

Jain, 2005):

e Face localization
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¢ Aim to determine the image position of a single face
e A simplified detection problem with the assumption that an input image contains
only one face
e  Facial feature extraction (for local face recognition)
e To detect the presence and location of features such as eyes, nose, nostrils,
eyebrow, mouth, lips, ears, etc
e  Usually assume that there is only one face in an image
e  Face recognition (identification)
e  Facial expression recognition
¢  Human pose estimation and tracking
The above obstacles to face recognition have to be considered when developing face
recognition systems. The following section reviews briefly some known face recognition
methods.

3. Face Recognition Methods

With the increase in computational power and speed, many face recognition techniques
have been developed over the past few decades. These techniques use different methods
such as the appearance-based method (Murase & Nayar, 1995); where an image of a certain
size is represented by a vector in a dimensional space of size similar to the image. However,
these dimensional spaces are too large to allow fast and robust face recognition. To
encounter this problem other methods were developed that use dimensionality reduction
techniques (Belhumeur et al., 1997); (Levin & Shashua, 2002); (Li et al., 2001); (Martinez &
Kak, 2001). Examples of these techniques are the Principal Component Analysis (PCA)
(Turk & Pentland, 1991) and the Linear Discriminant Analysis (LDA) (Belhumeur et al.,
1997).

PCA is an eigenvector method designed to model linear variation in high-dimensional data.
Its aim is to find a set of mutually orthogonal basis functions that capture the directions of
maximum variance in the data and for which the coefficients are pairwise decorrelated. For
linearly embedded manifolds, PCA is guaranteed to discover the dimensionality of the
manifold and produces a compact representation. PCA was used to describe face images in
terms of a set of basis functions, or “eigenfaces”.

LDA is a supervised learning algorithm. LDA searches for the projection axes on which the
data points of different classes are far from each other while requiring data points of the
same class to be close to each other. Unlike PCA which encodes information in an
orthogonal linear space, LDA encodes discriminating information in a linearly separable
space using bases that are not necessarily orthogonal. It is generally believed that algorithms
based on LDA are superior to those based on PCA. However, other work (Martinez & Kak,
2001) showed that, when the training data set is small, PCA can outperform LDA, and also
that PCA is less sensitive to different training data sets.

Another linear method for face analysis is Locality Preserving Projections (LPP) (He &
Niyogi, 2003) where a face subspace is obtained and the local structure of the manifold is
found. LPP is a general method for manifold learning. It is obtained by finding the optimal
linear approximations to the eigenfunctions of the Laplace Betrami operator on the
manifold. Therefore, though it is still a linear technique, it seems to recover important
aspects of the intrinsic nonlinear manifold structure by preserving local structure. This led
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to a recently developed method for face recognition; namely the Laplacianface approach,
which is an appearance-based face recognition method (He et al., 2005).

The main difference between PCA, LDA, and LPP is that PCA and LDA focus on the global
structure of the Euclidean space, while LPP focuses on local structure of the manifold, but
they are all considered as linear subspace learning algorithms. Some nonlinear techniques
have also been suggested to find the nonlinear structure of the manifold, such as Locally
Linear Embedding (LLE) (Roweis & Saul, 2000). LLE is a method of nonlinear
dimensionality reduction that recovers global nonlinear structure from locally linear fits.
LLE shares some similar properties to LPP, such as a locality preserving character.
However, their objective functions are totally different. LPP is obtained by finding the
optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the
manifold. LPP is linear, while LLE is nonlinear. LLE has also been implemented with a
Support Vector Machine (SVM) classifier for face authentification (Pang et al., 2005).
Approaches that use the Eigenfaces method, the Fisherfaces method and the Laplacianfaces
method have shown successful results in face recognition. However, these methods are
appearance-based or feature-based methods that search for certain global or local
representation of a face. None so far has considered modeling the way we humans
recognize faces.

One of the simplest methods for modelling our way of recognizing faces is neural network
arbitration. This has been explored with the aim of developing face recognition systems that
incorporate artificial intelligence using neural networks in order to provide an intelligent
system for face recognition.

The use of neural networks for face recognition has also been addressed by (Lu X. et al.,
2003); (Zhang et al., 2004); (Pang et al., 2005); (Fan & Verma, 2005). More recently, Li et al. (Li
G. et al., 2006) suggested the use of a non-convergent chaotic neural network to recognize
human faces. Lu et al. (Lu K. et al., 2006) suggested a semi-supervised learning method that
uses support vector machines for face recognition. Zhou et al. (Zhou et al., 2006) suggested
using a radial basis function neural network that is integrated with a non-negative matrix
factorization to recognize faces. Huang and Shimizu (Huang & Shimizu, 2006) proposed
using two neural networks whose outputs are combined to make a final decision on
classifying a face. Park et al. (Park et al., 2006) used a momentum back propagation neural
network for face and speech verification.

Many more face recognition methods that use artificial intelligence are emerging
continually; however, one particular method; namely Intelligent Global Face Recognition,
will be studied in this chapter, and is therefore presented in the following section.

4. Intelligent Face Recognition Using Global Pattern Averaging

One of our commonly referred five senses is “Seeing”. We see and perceive objects in
different ways depending on our individuality. However, we share the ability to recognize
objects or patterns quickly even though our experience of these objects is minimal. A q